首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ig gene conversion is most likely initiated by activation-induced cytidine deaminase-mediated cytosine deamination. If the resulting uracils need to be further processed by uracil DNA glycosylase (UNG), UNG inactivation should block gene conversion and induce transition mutations. In this study, we report that this is indeed the phenotype in the B cell line DT40. Ig gene conversion is almost completely extinguished in the UNG-deficient mutant and large numbers of transition mutations at C/G bases accumulate within the rearranged Ig L chain gene (IgL). The mutation rate of UNG-deficient cells is about seven times higher than that of pseudo V gene-deleted (psiV-) cells in which mutations arise presumably after uracil excision. In addition, UNG-deficient cells show relatively more mutations upstream and downstream of the VJ segment. This suggests that hypermutating B cells process activation-induced cytidine deaminase-induced uracils with approximately one-seventh of uracils giving rise to mutations depending on their position.  相似文献   

2.
The activity of uracil DNA glycosylases (UDGs), which recognize and excise uracil bases from DNA, has been well characterized on naked DNA substrates but less is known about activity in chromatin. We therefore prepared a set of model nucleosome substrates in which single thymidine residues were replaced with uracil at specific locations and a second set of nucleosomes in which uracils were randomly substituted for all thymidines. We found that UDG efficiently removes uracil from internal locations in the nucleosome where the DNA backbone is oriented away from the surface of the histone octamer, without significant disruption of histone-DNA interactions. However, uracils at sites oriented toward the histone octamer surface were excised at much slower rates, consistent with a mechanism requiring spontaneous DNA unwrapping from the nucleosome. In contrast to the nucleosome core, UDG activity on DNA outside the core DNA region was similar to that of naked DNA. Association of linker histone reduced activity of UDG at selected sites near where the globular domain of H1 is proposed to bind to the nucleosome as well as within the extra-core DNA. Our results indicate that some sites within the nucleosome core and the extra-core (linker) DNA regions represent hot spots for repair that could influence critical biological processes.  相似文献   

3.
Activation-induced deaminase (AID) converts DNA cytosines to uracils in immunoglobulin genes, creating antibody diversification. It also causes mutations and translocations that promote cancer. We examined the interplay between uracil creation by AID and its removal by UNG2 glycosylase in splenocytes undergoing maturation and in B cell cancers. The genomic uracil levels remain unchanged in normal stimulated B cells, demonstrating a balance between uracil generation and removal. In stimulated UNG−/− cells, uracil levels increase by 11- to 60-fold during the first 3 days. In wild-type B cells, UNG2 gene expression and enzymatic activity rise and fall with AID levels, suggesting that UNG2 expression is coordinated with uracil creation by AID. Remarkably, a murine lymphoma cell line, several human B cell cancer lines, and human B cell tumors expressing AID at high levels have genomic uracils comparable to those seen with stimulated UNG−/−splenocytes. However, cancer cells express UNG2 gene at levels similar to or higher than those seen with peripheral B cells and have nuclear uracil excision activity comparable to that seen with stimulated wild-type B cells. We propose that more uracils are created during B cell cancer development than are removed from the genome but that the uracil creation/excision balance is restored during establishment of cell lines, fixing the genomic uracil load at high levels.  相似文献   

4.
Uracil-DNA glycosylase (UNG) is the key enzyme responsible for initiation of base excision repair. We have used both kinetic and binding assays for comparative analysis of UNG enzymes from humans and herpes simplex virus type 1 (HSV-1). Steady-state fluorescence assays showed that hUNG has a much higher specificity constant (k(cat)/K(m)) compared with the viral enzyme due to a lower K(m). The binding of UNG to DNA was also studied using a catalytically inactive mutant of UNG and non-cleavable substrate analogs (2'-deoxypseudouridine and 2'-alpha-fluoro-2'-deoxyuridine). Equilibrium DNA binding revealed that both human and HSV-1 UNG enzymes bind to abasic DNA and both substrate analogs more weakly than to uracil-containing DNA. Structure determination of HSV-1 D88N/H210N UNG in complex with uracil revealed detailed information on substrate binding. Together, these results suggest that a significant proportion of the binding energy is provided by specific interactions with the target uracil. The kinetic parameters for human UNG indicate that it is likely to have activity against both U.A and U.G mismatches in vivo. Weak binding to abasic DNA also suggests that UNG activity is unlikely to be coupled to the subsequent common steps of base excision repair.  相似文献   

5.
Gottesfeld JM  Luger K 《Biochemistry》2001,40(37):10927-10933
Previous studies have compared the relative free energies for histone octamer binding to various DNA sequences; however, no reports of the equilibrium binding affinity of the octamer for unique sequences have been presented. It has been shown that nucleosome core particles (NCPs) dissociate into free DNA and histone octamers (or free histones) on dilution without generation of stable intermediates. Dissociation is reversible, and an equilibrium distribution of NCPs and DNA is rapidly attained. Under low ionic strength conditions (<400 mM NaCl), NCP dissociation obeys the law of mass action, making it possible to calculate apparent equilibrium dissociation constants (K(d)s) for NCPs reconstituted on defined DNA sequences. We have used two DNA sequences that have previously served as model systems for nucleosome reconstitution studies, human alpha-satellite DNA and Lytechinus variegatus 5S DNA, and find that the octamer exhibits K(d)s of 0.03 and 0.06 nM, respectively, for these sequences at 50 mM NaCl. These DNAs form NCPs that are approximately 2 kcal/mol more stable than total NCPs isolated from cellular chromatin. As for mixed-sequence NCPs, increasing ionic strength or temperature promotes dissociation. van't Hoff plots of K(a)s versus temperature reveal that the difference in binding free energy for alpha-satellite and 5S NCPs compared to bulk NCPs is due almost entirely to a more favorable entropic component for NCPs formed on the unique sequences compared to mixed-sequence NCPs. Additionally, we address the contribution of the amino-terminal tail domains of histones H3 and H4 to octamer affinity through the use of recombinant tailless histones.  相似文献   

6.
Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions.  相似文献   

7.
The human base excision repair machinery must locate and repair DNA base damage present in chromatin, of which the nucleosome core particle is the basic repeating unit. Here, we have utilized fragments of the Lytechinus variegatus 5S rRNA gene containing site-specific U:A base pairs to investigate the base excision repair pathway in reconstituted nucleosome core particles in vitro. The human uracil-DNA glycosylases, UNG2 and SMUG1, were able to remove uracil from nucleosomes. Efficiency of uracil excision from nucleosomes was reduced 3- to 9-fold when compared with naked DNA, and was essentially uniform along the length of the DNA substrate irrespective of rotational position on the core particle. Furthermore, we demonstrate that the excision repair pathway of an abasic site can be reconstituted on core particles using the known repair enzymes, AP-endonuclease 1, DNA polymerase beta and DNA ligase III. Thus, base excision repair can proceed in nucleosome core particles in vitro, but the repair efficiency is limited by the reduced activity of the uracil-DNA glycosylases and DNA polymerase beta on nucleosome cores.  相似文献   

8.
Replication Protein A (RPA) is a single-stranded DNA binding protein that interacts with DNA repair proteins including Uracil DNA Glycosylase (UNG2). Here, I report DNA binding and activity assays using purified recombinant RPA and UNG2. Using synthetic DNA substrates, RPA was found to promote UNG2's interaction with ssDNA-dsDNA junctions regardless of the DNA strand polarity surrounding the junction. RPA stimulated UNG2's removal of uracil bases paired with adenine or guanine in DNA as much as 17-fold when the uracil was positioned 21 bps from ssDNA-dsDNA junctions, and the largest degree of UNG2 stimulation occurred when RPA was in molar excess compared to DNA. I found that RPA becomes sequestered on ssDNA regions surrounding junctions which promotes its spatial targeting of UNG2 near the junction. However, when RPA concentration exceeds free ssDNA, RPA promotes UNG2's activity without spatial constraints in dsDNA regions. These effects of RPA on UNG2 were found to be mediated primarily by interactions between RPA's winged-helix domain and UNG2's N-terminal domain, but when the winged-helix domain is unavailable, a secondary interaction between UNG2's N-terminal domain and RPA can occur. This work supports a widespread role for RPA in stimulating uracil base excision repair.  相似文献   

9.
The DNA repair enzyme human uracil DNA glycosylase (UNG) scans short stretches of genomic DNA and captures rare uracil bases as they transiently emerge from the DNA duplex via spontaneous base pair breathing motions. The process of DNA scanning requires that the enzyme transiently loosen its grip on DNA to allow stochastic movement along the DNA contour, while engaging extrahelical bases requires motions on a more rapid timescale. Here, we use NMR dynamic measurements to show that free UNG has no intrinsic dynamic properties in the millisecond to microsecond and subnanosecond time regimes, and that the act of binding to nontarget DNA reshapes the dynamic landscape to allow productive millisecond motions for scanning and damage recognition. These results suggest that DNA structure and the spontaneous dynamics of base pairs may drive the evolution of a protein sequence that is tuned to respond to this dynamic regime.  相似文献   

10.
Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mutations resulting from uracil in DNA are prevented by error-free base excision repair. However, in B-cells uracil in DNA is also a physiological intermediate in acquired immunity. Here, activation-induced cytosine deaminase (AID) introduces template uracils that give GC to AT transition mutations in the Ig locus after replication. When uracil-DNA glycosylase (UNG2) removes uracil, error-prone translesion synthesis over the abasic site causes other mutations in the Ig locus. Together, these processes are central to somatic hypermutation (SHM) that increases immunoglobulin diversity. AID and UNG2 are also essential for generation of strand breaks that initiate class switch recombination (CSR). Patients lacking UNG2 display a hyper-IgM syndrome with recurrent infections, increased IgM, strongly decreased IgG, IgA and IgE and skewed SHM. UNG2 is also involved in innate immune response against retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans.  相似文献   

11.
Deamination of cytosine in DNA results in mutagenic U:G mispairs, whereas incorporation of dUMP leads to U:A pairs that may be genotoxic directly or indirectly. In both cases, uracil is mainly removed by a uracil-DNA glycosylase (UDG) that initiates the base excision repair pathway. The major UDGs are mitochondrial UNG1 and nuclear UNG2 encoded by the UNG-gene, and nuclear SMUG1. TDG and MBD4 remove uracil from special sequence contexts, but their roles remain poorly understood. UNG2 is cell cycle regulated and has a major role in post-replicative removal of incorporated uracils. UNG2 and SMUG1 are both important for prevention of mutations caused by cytosine deamination, and their functions are non-redundant. In addition, SMUG1 has a major role in removal of hydroxymethyl uracil from oxidized thymines. Furthermore, UNG-proteins and SMUG1 may have important functions in removal of oxidized cytosines, e.g. isodialuric acid, alloxan and 5-hydroxyuracil after exposure to ionizing radiation. UNG2 is also essential in the acquired immune response, including somatic hypermutation (SHM) required for antibody affinity maturation and class switch recombination (CSR) mediating new effector functions, e.g. from IgM to IgG. Upon antigen exposure B-lymphocytes express activation induced cytosine deaminase that generates U:G mispairs at the Ig locus. These result in GC to AT transition mutations upon DNA replication and apparently other mutations as well. Some of these may result from the generation of abasic sites and translesion bypass synthesis across such sites. SMUG1 can not complement UNG2 deficiency, probably because it works very inefficiently on single-stranded DNA and is down-regulated in B cells. In humans, UNG-deficiency results in the hyper IgM syndrome characterized by recurrent infections, lymphoid hyperplasia, extremely low IgG, IgA and IgE and elevated IgM. Ung(-/-) mice have a similar phenotype, but in addition display dysregulated cytokine production and develop B cell lymphomas late in life.  相似文献   

12.
Human nuclear uracil DNA glycosylase (UNG2) is a cellular DNA repair enzyme that is essential for a number of diverse biological phenomena ranging from antibody diversification to B-cell lymphomas and type-1 human immunodeficiency virus infectivity. During each of these processes, UNG2 recognizes uracilated DNA and excises the uracil base by flipping it into the enzyme active site. We have taken advantage of the extrahelical uracil recognition mechanism to build large small-molecule libraries in which uracil is tethered via flexible alkane linkers to a collection of secondary binding elements. This high-throughput synthesis and screening approach produced two novel uracil-tethered inhibitors of UNG2, the best of which was crystallized with the enzyme. Remarkably, this inhibitor mimics the crucial hydrogen bonding and electrostatic interactions previously observed in UNG2 complexes with damaged uracilated DNA. Thus, the environment of the binding site selects for library ligands that share these DNA features. This is a general approach to rapid discovery of inhibitors of enzymes that recognize extrahelical damaged bases.  相似文献   

13.
Class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin (Ig) genes are initiated by the activation-induced cytosine deaminase AID. The resulting uracils in Ig genes were believed to be removed by the uracil glycosylase (UNG) and the resulting abasic sites treated in an error-prone fashion, creating breaks in the Ig switch regions and mutations in the variable regions. A recent report suggests that UNG does not act as a glycosylase in CSR and SHM but rather has unknown activity subsequent to DNA breaks that were created by other mechanisms.  相似文献   

14.
15.
16.
Recently, we developed an in vitro system using human uracil DNA glycosylase (UDG), AP endonuclease (APE), DNA polymerase beta (pol beta) and rotationally positioned DNA containing a single uracil associated with a 'designed' nucleosome, to test short-patch base excision repair (BER) in chromatin. We found that UDG and APE carry out their catalytic activities with reduced efficiency on nucleosome substrates, showing a distinction between uracil facing 'out' or 'in' from the histone surface, while DNA polymerase beta (pol beta) is completely inhibited by nucleosome formation. In this report, we tested the inhibition of BER enzymes by the N-terminal 'tails' of core histones that take part in both inter- and intra-nucleosome interactions, and contain sites of post-translational modifications. Histone tails were removed by limited trypsin digestion of 'donor' nucleosome core particles and histone octamers were exchanged onto a nucleosome-positioning DNA sequence containing a single G:U mismatch. The data indicate that UDG and APE activities are not significantly enhanced with tailless nucleosomes, and the distinction between rotational settings of uracil on the histone surface is unaffected. More importantly, the inhibition of pol beta activity is not relieved by removal of the histone tails, even though these tails interact with DNA in the G:U mismatch region. Finally, inclusion of X-ray cross complement group protein 1 (XRCC1) or Werner syndrome protein (WRN) had no effect on the BER reactions. Thus, additional activities may be required in cells for efficient BER of at least some structural domains in chromatin.  相似文献   

17.
尿嘧啶糖基化酶是碱基切除修复过程的起始酶,对于维护基因稳定具有重要意义。在不同组织及不同细胞周期中,该酶的表达水平存在差异。通过反转录PCR克隆了人尿嘧啶糖基化酶的cDNA编码序列,进一步以克隆所得的已知UNG基因拷贝数的重组质粒作为定量标准,通过实时荧光定量RT-PCR测定了食管癌病人手术切除组织中尿嘧啶糖基化酶的mRNA水平,探讨了尿嘧啶糖基化酶表达水平与食管癌之间的联系。  相似文献   

18.
19.
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2–3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential ‘pre-replicative’ removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号