首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Stress coping styles have been characterized as a proactive/reactive dichotomy in laboratory and domesticated animals. In this study, we examined the prevalence of proactive/reactive stress coping styles in wild-caught short-tailed singing mice (Scotinomys teguina). We compared stress responses to spontaneous singing, a social and reproductive behavior that characterizes this species. To establish proactive/reactive profiles for singing mice, we measured exploratory and anxiety behavior using an open-field behavioral test. We examined correlations between open-field behaviors and fecal corticosterone (CORT) metabolites, baseline plasma CORT, and stress-induced CORT. Mice with proactive behavioral responses in the open-field had higher fecal CORT titers than reactive males, but did not differ in baseline or stress-induced plasma CORT. We suggest that individual differences in CORT metabolism may contribute to this surprising pattern. Males that sang in the open-field were behaviorally proactive and had lower stress-induced CORT, indicating a link between stress responses and singing in this species. Overall, the data demonstrate that singing mice offer an interesting model for exploring how stress reactivity can shape social behaviors.  相似文献   

2.
The existence of consistent individual differences in behavioral strategies ("personalities" or coping styles) has been reported in several animal species. Recent work in great tits has shown that such traits are heritable and exhibit significant genetic variation. Free-living birds respond to environmental stresses by up-regulating corticosterone production. Behavior during mild stress can occur in accordance to two types of coping styles, i.e. active and passive. Using artificially selected lines of zebra finches that vary in the amount of corticosterone produced in response to a manual restraint stressor we ran three "personality" experiments. We show that birds in the different corticosterone lines differ in their exploratory and risk-taking behaviors. There was an increase in exploratory behavior as corticosterone titre increased but only in the low corticosterone line. Birds in high corticosterone line showed greater risk-taking behavior than birds in the other lines. Thus, in general, higher levels of circulating corticosterone following a mild stress result in greater exploratory behavior and greater risk taking. This study shows that lines of animals selected for endocrine hormonal responses differ in their "coping" styles or "personalities".  相似文献   

3.
X-linked and lineage-dependent inheritance of coping responses to stress   总被引:2,自引:2,他引:0  
Coping—or how one routinely deals with stress—is a complex behavioral trait with bearing on chronic disease and susceptibility to psychiatric disorders. This complexity is a result of not only underlying multigenic factors, but also important non-genetic ones. The defensive burying (DB) test, although originally developed as a test of anxiety, can accurately measure differences in coping strategies by assaying an animals behavioral response to an immediate threat with ethological validity. Using offspring derived from reciprocal crosses of two inbred rat strains differing in DB behaviors, we provide convergent phenotypic and genotypic evidence that coping styles are inherited in an X-linked fashion. We find that first-generation (F1) males, but not females, show maternally derived coping styles, and second-generation (F2) females, but not males, show significant differences in coping styles when separated by grandmaternal lineage. By using a linear modeling approach to account for covariate effects (sex and lineage) in QTL analysis, we map three quantitative trait loci (QTL) on the X Chromosome (Chr) (Coping-1, Approach-1, and Approach-2) associated with coping behaviors in the DB paradigm. Distinct loci were associated with different aspects of coping, and their effects were modulated by both the sex and lineage of the animals, demonstrating the power of the general linear modeling approach and the important interplay of allelic and non-allelic factors in the inheritance of coping behaviors.  相似文献   

4.
As part of an ongoing survey of the behavioral responses of vertebrates to abrupt changes in gravity, we report here on the reactions of bats (Carollia perspicillata) exposed to altered gravity during parabolic aircraft flight. In microgravity, mammals typically behave as if they were upside-down and exhibit repetitive righting reflexes, which often lead to long axis rolling. Since bats, however, normally rest upside-down, we hypothesized that they would not roll in microgravity. Only one of three specimens attempted to fly during microgravity. None rolled or performed any righting maneuvers. During periods of microgravity the bats partially extended their forearms but kept their wings folded and parallel to the body. Between parabolas and occasionally during microgravity the bats groomed themselves. Both the extended limbs and autogrooming may be stress responses to the novel stimulus of altered gravity. This is the first behavioral record of Chiroptera in microgravity.  相似文献   

5.
Enhanced stress reactivity or sensitivity to chronic stress increases the susceptibility to mood pathologies such as major depression. The opioid peptide enkephalin is an important modulator of the stress response. Previous studies using preproenkephalin knockout (PENK KO) mice showed that these animals exhibit abnormal stress reactivity and show increased anxiety behavior in acute stress situations. However, the consequence of enkephalin deficiency in the reactivity to chronic stress conditions is not known. In this study, we therefore submitted wild‐type (WT) and PENK KO male mice to chronic stress conditions, using the chronic mild stress (CMS) protocol. Subsequently, we studied the CMS effects on the behavioral and hormonal level and also performed gene expression analyses. In WT animals, CMS increased the expression of the enkephalin gene in the paraventricular nucleus (PVN) of the hypothalamus and elevated the corticosterone levels. In addition, WT mice exhibited enhanced anxiety in the zero‐maze test and depression‐related behaviors in the sucrose preference and forced swim tests. Surprisingly, in PENK KO mice, we did not detect anxiety and depression‐related behavioral changes after the CMS procedure, and even measured a decreased hormonal stress response. These results indicate that PENK KO mice are resistant to the CMS effects, suggesting that enkephalin enhances the reactivity to chronic stress.  相似文献   

6.
In this study, we assessed the effects of ginsenoside Re (GRe) administration on repeated immobilization stressinduced behavioral alterations using the forced swimming test (FST), the elevated plus maze (EPM), and the active avoidance conditioning test (AAT). Additionally, we examined the effect of GRe on the central adrenergic system by observing changes in neuronal tyrosine hydroxylase (TH) immunoreactivity and brain-derived neurotrophic factor (BDNF) mRNA expression in the rat brain. Male rats received 10, 20, or 50 mg/kg GRe (i.p.) 30 min before daily exposures to repeated immobilization stress (2 h/day) for 10 days. Activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to repeated immobilization was confirmed by measuring serum levels of corticosterone (CORT) and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Repeated immobilization stress increased immobility in the FST and reduced openarm exploration in the EPM test. It also increased the probability of escape failures in the AAT test, indicating a reduced avoidance response. Daily administration of GRe during the repeated immobilization stress period significantly inhibited the stress-induced behavioral deficits in these behavioral tests. Administration of GRe also significantly blocked the increase in TH expression in the locus coeruleus (LC) and the decrease in BDNF mRNA expression in the hippocampus. Taken together, these findings indicate that administration of GRe prior to immobilization stress significantly improved helpless behaviors and cognitive impairment, possibly through modulating the central noradrenergic system in rats. These findings suggest that GRe may be a useful agent for treating complex symptoms of depression, anxiety, and cognitive impairment.  相似文献   

7.
《Hormones and behavior》2008,53(5):621-630
According to some researchers, animals show different coping styles to deal with stressful situations. In the case of social carnivores, social stress is a substantial part of the overall stress load. Previous research has established two extreme (proactive and reactive) coping styles in several animal species, but means of coping with social stress has not yet been investigated in the case of dogs. The aim of this current study was to examine whether (1) experienced working police dogs adopt different coping strategies during a short-term unexpected social challenge presented by a threatening human, (2) whether this affects post-encounter cortisol levels, and (3) whether there is an association between the cortisol response and the behavior (coping strategy) displayed during the threatening approach. Using factor analysis, we have identified three different group of dogs which were characterized by either fearfulness, aggressiveness, or ambivalence and in parallel showed specific differences in their reaction norm when threatened by an approaching stranger. This grouping also allowed to draw possible parallels between aggressiveness and the proactive behavior style and fearfulness and reactive coping style, respectively. In addition, we have revealed a third group of animals which show ambivalent behavior in a social threatening situation.  相似文献   

8.
According to some researchers, animals show different coping styles to deal with stressful situations. In the case of social carnivores, social stress is a substantial part of the overall stress load. Previous research has established two extreme (proactive and reactive) coping styles in several animal species, but means of coping with social stress has not yet been investigated in the case of dogs. The aim of this current study was to examine whether (1) experienced working police dogs adopt different coping strategies during a short-term unexpected social challenge presented by a threatening human, (2) whether this affects post-encounter cortisol levels, and (3) whether there is an association between the cortisol response and the behavior (coping strategy) displayed during the threatening approach. Using factor analysis, we have identified three different group of dogs which were characterized by either fearfulness, aggressiveness, or ambivalence and in parallel showed specific differences in their reaction norm when threatened by an approaching stranger. This grouping also allowed to draw possible parallels between aggressiveness and the proactive behavior style and fearfulness and reactive coping style, respectively. In addition, we have revealed a third group of animals which show ambivalent behavior in a social threatening situation.  相似文献   

9.
Many animals in the tropics of Africa, Asia and South America regularly visit so-called salt or mineral licks to consume clay or drink clay-saturated water. Whether this behavior is used to supplement diets with locally limited nutrients or to buffer the effects of toxic secondary plant compounds remains unclear. In the Amazonian rainforest, pregnant and lactating bats are frequently observed and captured at mineral licks. We measured the nitrogen isotope ratio in wing tissue of omnivorous short-tailed fruit bats, Carollia perspicillata, and in an obligate fruit-eating bat, Artibeus obscurus, captured at mineral licks and at control sites in the rainforest. Carollia perspicillata with a plant-dominated diet were more often captured at mineral licks than individuals with an insect-dominated diet, although insects were more mineral depleted than fruits. In contrast, nitrogen isotope ratios of A. obscurus did not differ between individuals captured at mineral lick versus control sites. We conclude that pregnant and lactating fruit-eating bats do not visit mineral licks principally for minerals, but instead to buffer the effects of secondary plant compounds that they ingest in large quantities during periods of high energy demand. These findings have potential implications for the role of mineral licks for mammals in general, including humans.  相似文献   

10.
The period of adolescence is characterized by a high vulnerability to stress and trauma, which might result in long-lasting consequences and an increased risk to develop psychiatric disorders. Using a recently developed mouse model for chronic social stress during adolescence, we studied persistent neuroendocrine and behavioral effects of chronic social stress obtained 12 months after cessation of the stressor. As a reference, we investigated immediate effects of chronic stress exposure obtained at the end of the chronic stress period. Immediately after the 7 week chronic stress period stressed animals show significantly increased adrenal weights, decreased thymus weight, increased basal corticosterone secretion and a flattened circadian rhythm. Furthermore, stressed animals display an increased anxiety-like behavior in the elevated plus maze and the novelty-induced suppression of feeding test. Hippocampal mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) mRNA levels were significantly decreased. To investigate persistent consequences of this early stressful experience, the same parameters were assessed in aged mice 12 months after the cessation of the stressor. Interestingly, we still found differences between formerly stressed and control mice in important stress-related parameters. MR expression levels were significantly lower in stressed animals, suggesting lasting, possibly epigenetic alterations in gene expression regulation. Furthermore, we observed long-term behavioral alterations in animals stressed during adolescence. Thus, we could demonstrate that chronic stress exposure during a crucial developmental time period results in long-term, persistent effects on physiological and behavioral parameters throughout life, which may contribute to an enhanced vulnerability to stress-induced diseases.  相似文献   

11.
哺乳动物的生理应激反应及其生态适应性   总被引:1,自引:0,他引:1  
应激反应是哺乳动物的基本生理现象之一。目前,与应激有关的研究主要来自生物医学和神经内分泌学。虽然Hans Selye 提出了个体对应激的普遍性适应综合症概念,但目前的研究还主要集中于应激对个体的负效应以及与应激相关的疾病研究。然而,从进化角度似乎很难理解在数亿年的进化过程中,动物应激反应仅简单地
进化为影响个体健康并导致个体患病的一种生理过程。本文从进化的角度,综述了应激反应与动物繁殖对策的关系以及个体对环境应激源的应对类型,并阐述了动物应激反应的适应和进化意义。  相似文献   

12.
《Hormones and behavior》2009,55(5):645-653
Exposure to fearful situations elicits behavioral and Hypothalamic–Pituitary–Adrenal (HPA) axis responses characteristic of the coping response of individual animals to counteract environmental challenges. The aim of this study was to investigate behavioral and corticotropic responses concomitantly following prolonged or repeated restraint stress by placing two genotypes of Japanese quail divergently selected for long (LTI) or short (STI) duration of tonic immobility (TI) in a crush cage. In our study, STI quail exhibited higher corticosterone (CORT) levels than LTI quail in response to prolonged restraint. STI quail struggled sooner and much more than LTI quail, and struggling behavior in STI quail progressively decreased during the course of restraint whereas LTI quail displayed very little struggling behavior in the crush cage. LTI quail are thus more likely to adopt a passive behavior coping strategy upon exposure to threat whereas STI quail behave more as active copers. The corticosterone responses shown by LTI and STI quail under restraint stress suggest that adrenocortical correlates of coping behavior in these genotypes of quail may be different from the coping styles previously described in other species. Repeated restraint slightly decreased CORT responses to stress in all experimental groups, but more markedly in male STI quail, whereas adrenal sensitivity and maximum adrenal corticosterone response capacity did not change in any group. On the other hand, neither behavioral habituation nor sensitization processes occurred in the context of repeated restraint in female and male LTI quail and female STI quail, whereas the decreases observed in some behavioral responses were interpreted to be the result of a habituation process in male STI quail.  相似文献   

13.
Exposure to fearful situations elicits behavioral and Hypothalamic–Pituitary–Adrenal (HPA) axis responses characteristic of the coping response of individual animals to counteract environmental challenges. The aim of this study was to investigate behavioral and corticotropic responses concomitantly following prolonged or repeated restraint stress by placing two genotypes of Japanese quail divergently selected for long (LTI) or short (STI) duration of tonic immobility (TI) in a crush cage. In our study, STI quail exhibited higher corticosterone (CORT) levels than LTI quail in response to prolonged restraint. STI quail struggled sooner and much more than LTI quail, and struggling behavior in STI quail progressively decreased during the course of restraint whereas LTI quail displayed very little struggling behavior in the crush cage. LTI quail are thus more likely to adopt a passive behavior coping strategy upon exposure to threat whereas STI quail behave more as active copers. The corticosterone responses shown by LTI and STI quail under restraint stress suggest that adrenocortical correlates of coping behavior in these genotypes of quail may be different from the coping styles previously described in other species. Repeated restraint slightly decreased CORT responses to stress in all experimental groups, but more markedly in male STI quail, whereas adrenal sensitivity and maximum adrenal corticosterone response capacity did not change in any group. On the other hand, neither behavioral habituation nor sensitization processes occurred in the context of repeated restraint in female and male LTI quail and female STI quail, whereas the decreases observed in some behavioral responses were interpreted to be the result of a habituation process in male STI quail.  相似文献   

14.
Previous research demonstrated excessive decreases in reward sensitivity and increases in harm avoidance in depressed individuals. These results straightly lead to a hypothesis that depressed patients should avoid novelty or express reduced novelty-seeking behavior. Nevertheless, literature in this regard is inconsistent. Furthermore, whether the potentially altered novelty-associated behavior is dependent on changed anxiety/fear or related to altered goal-directed approaching tendency is unclear. Here, we tested novel object-approaching behavior in a free-exploration paradigm in chronic mild stress (CMS)-induced anhedonic and stress-resistant rats respectively. Other CMS-induced, emotional behaviors were also examined in a battery of behavioral tests including novel cage, exploration, locomotor activity and elevated plus maze (EPM). We found that compared with controls, stress-resistant rats who consistently showed lower anxiety level in EPM (time in open arms) and, open-field (OF) test (time in central area) showed no sign of enhanced novel object approaching behavior. To the contrary, the anhedonic ones who did not express any sign of reduced anxiety showed paradoxically intensified novelty-approaching behavior. We concluded that reduced anxiety would not necessarily lead to enhanced novelty-seeking behavior; anhedonia coexists with anxiety-independent, increased novelty-seeking behavior. The salient paradox of coexistence of anhedonia and increased novelty-seeking behavior was critically discussed.  相似文献   

15.
Wild animals face novel environmental threats from human activities that may occur along a gradient of interactions with humans. Recent work has shown that merely living close to humans has major implications for a variety of antipredator traits and physiological responses. Here, we hypothesize that when human presence protects prey from their genuine predators (as sometimes seen in urban areas and at some tourist sites), this predator shield, followed by a process of habituation to humans, decouples commonly associated traits related to coping styles, which results in a new range of phenotypes. Such individuals are characterized by low aggressiveness and physiological stress responses, but have enhanced behavioral plasticity, boldness, and cognitive abilities. We refer to these individuals as “preactive,” because their physiological and behavioral coping style falls outside the classical proactive/reactive coping styles. While there is some support for this new coping style, formal multivariate studies are required to investigate behavioral and physiological responses to anthropogenic activities.

This Essay hypothesizes that when human presence protects wild animals from their natural predators, this predator shield decouples commonly associated traits, resulting in a new range of coping phenotypes, dubbed “preactive.”  相似文献   

16.
The Scn8a gene encodes the α-subunit of Nav1.6, a neuronal voltage-gated sodium channel. Mice homozygous for mutations in the Scn8a gene exhibit motor impairments. Recently, we described a human family with a heterozygous protein truncation mutation in SCN8A . Rather than motor impairment, neuropsychological abnormalities were more common, suggesting a role for Scn8a in a more diverse range of behaviors. Here, we characterize mice heterozygous for a null mutation of Scn8a ( Scn8a+/− mice) in a number of behavioral paradigms. We show that Scn8a+/− mice exhibit greater conditioned freezing in the Pavlovian fear conditioning paradigm but no apparent abnormalities in other learning and memory paradigms including the Morris water maze and conditioned taste avoidance paradigm. Furthermore, we find that Scn8a+/− mice exhibit more pronounced avoidance of well-lit, open environments as well as more stress-induced coping behavior. Together, these data suggest that Scn8a plays a critical role in emotional behavior in mice. Although the behavioral phenotype observed in the Scn8a+/− mice only partially models the abnormalities in the human family, we anticipate that the Scn8a+/− mice will serve as a valuable tool for understanding the biological basis of emotion and the human diseases in which abnormal emotional behavior is a primary component.  相似文献   

17.
BACKGROUND: Ethological tests of anxiety-related behaviors, such as the open field arena and elevated plus maze, are often carried out on transgenic animals in the attempt to correlate gene function with a behavioral phenotype. However, the interpretation of such tests is problematic, as it is probable that different tests measure different aspects of behavior; indeed, anxiety may not be a unitary phenomenon. Here, we address these questions by asking whether behaviors in five ethological tests of anxiety are under the influence of a common set of genes. RESULTS: Using over 1600 F2 intercross animals, we demonstrate that separate, but overlapping, genetic effects can be detected that influence different behavioral dimensions in the open field, elevated plus maze, square maze, light-dark box, and mirror chamber. We find quantitative trait loci (QTLs) on chromosomes 1, 4, and 15 that operate in four tests of anxiety but can be differentiated by their action on behavior in threatening and nonthreatening environments and by whether habituation of the animals to an aversive environment alters their influence. QTLs on chromosomes 7, 12, 14, 18, and X influenced a subset of behavioral measures. CONCLUSIONS: The chromosome 15 QTL acts primarily on avoidance behavior, the chromosome 1 QTL influences exploration, and the QTL on chromosome 4 influences activity. However, the effects of loci on other chromosomes are not so readily reconciled with our current understanding of the psychology of anxiety. Genetic effects on behaviors in these tests are more complex than expected and may not reflect an influence on anxiety.  相似文献   

18.
Prenatal Restraint Stress (PRS) in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy) on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS ("PRS rats") showed increased anxiety-like behavior in the elevated plus maze (EPM), a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females.  相似文献   

19.
Vasopressin, a peptide hormone functioning also as a neurotransmitter, neuromodulator and regulator of the stress response is considered to be one of the factors related to the development and course of depression. In the present study, we have tested the hypothesis that congenital deficit of vasopressin in Brattleboro rats leads to attenuated depression-like behavior in tests modeling different symptoms of depression. In addition, hypothalamic-pituitary-adrenocortical axis activity was investigated. Vasopressin deficient rats showed signs of attenuated depression-like behavior in forced swimming and sucrose preference tests, while their behavior on elevated plus maze was unchanged. Vasopressin deficiency had no influence on basal levels of ACTH and corticosterone and had only mild impact on hormonal activation in response to forced swimming and plus-maze exposure. However, vasopressin deficient animals showed higher level of dexamethasone induced suppression of corticosterone response to restraint stress and higher basal levels of corticotropin-releasing hormone mRNA in the hypothalamic paraventricular nucleus. In conclusion, present data obtained in vasopressin deficient rats show that vasopressin is involved in the development of depression-like behavior, in particular of the coping style and anhedonia. Moreover, behavioral and endocrine responses were found to be dissociated. We suggest that brain vasopressinergic circuits distinct from those regulating the HPA axis are involved in generating depression-like behavior.  相似文献   

20.
A major challenge in neuroscience is relating neuronal activity to animal behavior. In olfaction limited techniques are available for these correlation studies in freely moving animals. To solve this problem, we developed an olfactory behavioral assay in head-restrained mice where we can monitor behavioral responses with high temporal precision. Mice were trained on a go/no-go operant conditioning paradigm to discriminate simple monomolecular odorants, as well as complex odorants such as binary mixtures of monomolecular odorants or natural odorants. Mice learned to discriminate both simple and complex odors in a few hundred trials with high accuracy. We then compared the discrimination performance of head-restrained mice to the performance observed in freely moving mice. Discrimination accuracies were comparable in both behavioral paradigms. In addition, discrimination times were measured while the animals performed well. In both tasks, mice discriminated simple odors in a few hundred milliseconds and took additional time to discriminate the complex mixtures. In conclusion, mice showed similar and efficient discrimination behavior while head-restrained compared with freely moving mice. Therefore, the head-restrained paradigm offers a relevant approach to monitor neuronal activity while animals are actively engaged in olfactory discrimination behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号