首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Buchnera aphidicola is a prokaryotic endosymbiont found in specialized cells of the aphid Schizaphis graminum. Many of the previously cloned B. aphidicola genes are preceded by a poor ribosome-binding site. Ribosomal protein S1 (RpsA) allows the translation of messenger RNAs that lack or have a poor ribosome binding site. We have cloned and sequenced a 4.5-kilobase (kb) B. aphidicola DNA fragment containing four open reading frames corresponding to aroA–rpsA–himD–tpiA. The deduced amino acid sequence of B. aphidicola RpsA was 75% identical to that of the Escherichia coli protein. The major difference was in the number of basic amino acids, which were present in higher numbers in B. aphidicola RpsA. Antiserum to E. coli RpsA was prepared and used to detect B. aphidicola RpsA in cell-free extracts of aphids. During the first 12 days of aphid growth there is a slight decrease in the amount of RpsA per unit of aphid weight. The three additional genes found on the 4.5-kb DNA fragment encoded for proteins involved in aromatic amino acid biosynthesis (aroA), DNA bending (himD), and carbohydrate metabolism (tpiA). The presence of these genes in B. aphidicola is additional evidence of its similarity to free-living bacteria.  相似文献   

2.
3.
The ssyF29 mutation, originally selected as an extragenic suppressor of a protein export defect, has been mapped within the rpsA gene encoding ribosomal protein S1. Here, we examine the nature of this mutation and its effect on translation. Sequencing of the rpsA gene from the ssyF mutant has revealed that, due to an IS10R insertion, its product lacks the last 92 residues of the wild-type S1 protein corresponding to one of the four homologous repeats of the RNA-binding domain. To investigate how this truncation affects translation, we have created two series of Escherichia coli strains (rpsA(+) and ssyF) bearing various translation initiation regions (TIRs) fused to the chromosomal lacZ gene. Using a beta-galactosidase assay, we show that none of these TIRs differ in activity between ssyF and rpsA(+) cells, except for the rpsA TIR: the latter is stimulated threefold in ssyF cells, provided it retains at least ca. 90 nucleotides upstream of the start codon. Similarly, the activity of this TIR can be severely repressed in trans by excess S1, again provided it retains the same minimal upstream sequence. Thus, the ssyF stimulation requires the presence of the rpsA translational autogenous operator. As an interpretation, we propose that the ssyF mutation relieves the residual repression caused by normal supply of S1 (i.e., that it impairs autogenous control). Thus, the C-terminal repeat of the S1 RNA-binding domain appears to be required for autoregulation, but not for overall mRNA recognition.  相似文献   

4.
Ribosomal protein S1, the product of the essential rpsA gene, consists of six imperfect repeats of the same motif. Besides playing a critical role in translation initiation on most mRNAs, S1 also specifically autoregulates the translation of its own messenger. ssyF29 is a viable rpsA allele that carries an IS10R insertion within the coding sequence, resulting in a protein lacking the last motif (S1DeltaC). The growth of ssyF29 cells is slower than that of wild-type cells. Moreover, translation of a reporter rpsA-lacZ fusion is specifically stimulated, suggesting that the last motif is necessary for autoregulation. However, in ssyF29 cells the rpsA mRNA is also strongly destabilized; this destabilization, by causing S1DeltaC shortage, might also explain the observed slow-growth and autoregulation defect. To fix this ambiguity, we have introduced an early stop codon in the rpsA chromosomal gene, resulting in the synthesis of the S1DeltaC protein without an IS10R insertion (rpsADeltaC allele). rpsADeltaC cells grow much faster than their ssyF29 counterparts; moreover, in these cells S1 autoregulation and mRNA stability are normal. In vitro, the S1DeltaC protein binds mRNAs (including its own) almost as avidly as wild-type S1. These results demonstrate that the last S1 motif is dispensable for translation and autoregulation: the defects seen with ssyF29 cells reflect an IS10R-mediated destabilization of the rpsA mRNA, probably due to facilitated exonucleolytic degradation.  相似文献   

5.
RpsA, also known as ribosomal protein S1, is an essential protein required for translation initiation of mRNAs when their Shine-Dalgarno sequence is degenerated (Sorensen et al. 1998). In addition, RpsA of Mycobacterium tuberculosis (M. tb) is involved in trans-translation, which is an effective system mediated by tmRNA-SmpB to release stalled ribosomes from mRNA in the presence of rare codons (Keiler 2008). Shi et al. found that POA binds to RpsA of Mtb and disrupts the formation of RpsA–tmRNA complex (Shi et al. 2011) and mutations at the C-terminus of RpsA confer PZA resistance. The previous work reported the pyrazinoic acid-binding domain of RpsA (Yang et al. Mol Microbiol 95:791–803, 2015). However, the HSQC spectra of the isolated S1 domain does not overlap with that of MtRpsA280-438, suggesting that substantial interactions occur between the flexible C-terminus and the S1 domain in MtRpsA .To further study the PZA resistance and how substantial interactions influence/affect protein structure, using heteronuclear NMR spectroscopy, we have completed backbone and side-chain 1H, 15N, 13C chemical shift assignments of MtRpsA280-438 which contains S1 domain and the flexible C-terminus. These NMR resonance assignments provide the framework for detailed characterization of the solution-state protein structure determination, dynamic studies of this domain, as well as NMR-based drug discovery efforts.  相似文献   

6.
Pyrazinamide (PZA) is a first‐line drug for tuberculosis (TB) treatment and is responsible for shortening the duration of TB therapy. The mode of action of PZA remains elusive. RpsA, the ribosomal protein S1 of Mycobacterium tuberculosis (Mtb), was recently identified as a target of PZA based on its binding activity to pyrazinoic acid (POA), the active form of PZA. POA binding to RpsA led to the inhibition of trans‐translation. However, the nature of the RpsA–POA interaction remains unknown. Key questions include why POA exhibits an exquisite specificity to RpsA of Mtb and how RpsA mutations confer PZA resistance. Here, we report the crystal structures of the C‐terminal domain of RpsA of Mtb and its complex with POA, as well as the corresponding domains of two RpsA variants that are associated with PZA resistance. Structural analysis reveals that POA binds to RpsA through hydrogen bonds and hydrophobic interactions, mediated mainly by residues (Lys303, Phe307, Phe310 and Arg357) that are essential for tmRNA binding. Conformational changes induced by mutation or sequence variation at the C‐terminus of RpsA abolish the POA binding activity. Our findings provide insights into the mode of action of PZA and molecular basis of PZA resistance associated with RpsA mutations.  相似文献   

7.
Translation initiation region (TIR) of the rpsA mRNA encoding ribosomal protein S1 is one of the most efficient in Escherichia coli despite the absence of a canonical Shine-Dalgarno-element. Its high efficiency is under strong negative autogenous control, a puzzling phenomenon as S1 has no strict sequence specificity. To define sequence and structural elements responsible for translational efficiency and autoregulation of the rpsA mRNA, a series of rpsA'-'lacZ chromosomal fusions bearing various mutations in the rpsA TIR was created and tested for beta-galactosidase activity in the absence and presence of excess S1. These in vivo results, as well as data obtained by in vitro techniques and phylogenetic comparison, allow us to propose a model for the structural and functional organization of the rpsA TIR specific for proteobacteria related to E.coli. According to the model, the high efficiency of translation initiation is provided by a specific fold of the rpsA leader forming a non-contiguous ribosome entry site, which is destroyed upon binding of free S1 when it acts as an autogenous repressor.  相似文献   

8.
The influence of rhizosphere/rhizoplane culture conditions on the ability of various rhizobia to bind soybean seed lectin (SBL) was examined. Eleven strains of the soybean symbiont, Rhizobium japonicum, and six strains of various heterologous Rhizobium species were cultured in root exudate of soybean (Glycine max [L.] Merr.) and in association with roots of soybean seedlings which were growing either hydroponically or in montmorillonite clay soil amendment (Turface). All 11 of the R. japonicum strains developed biochemically specific receptors for the lectin when cultured under these conditions, whereas six of the 11 did not develop such receptors when cultured in synthetic salts medium. Two cowpea strains also developed receptors for SBL. The other four heterologous strains of rhizobia gave no evidence of biochemically specific SBL binding in either synthetic salts media or rhizosphere/rhizoplane cultures. These results demonstrate that the environment provided by plant roots is an important factor in the development of specific lectin receptors on the cell surface of R. japonicum.  相似文献   

9.
Acacia mangium and Paraserianthes falcataria are leguminous tree species widely grown for timber in Indonesia and other tropical countries, yet little is known about the identity of their rhizobial symbionts. Polymerase chain reaction-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the 16S rRNA gene was used along with sequencing to assess the diversity of 57 rhizobia isolated from nodules of A. mangium and P. falctaria in Indonesia. In total, 26 rhizobia isolated from A. mangium were analysed by PRS and sequencing. The PRS patterns indicated that 12 (46%) clustered with Bradyrhizobium elkanii , 13 (50%) with B. lianoningense / japonicum and one (4%) with Mesorhizobium loti . Thirty-one isolates were analysed from P. falcataria : five (16%) clustered with B. elkanii and 26 (84%) with B. lianoningense / japonicum. These results were confirmed by phylogenetic analysis of sequences. Intraspecific diversity of the 16S rRNA genes from rhizobia nodulating A. mangium and P. falcataria revealed by PRS was low, only one genotype was found within the isolates that clustered with B. elkanii and two within the B. liaoningense / japonicum group. These Bradyrhizobium species are apparently ubiquitous throughout the Indonesian archipelago and it is clear why the two tree species are able to successfully establish outside their native range without the need for inoculation with indigenous rhizobia.  相似文献   

10.
The cowpea (Vigna unguiculata L.), peanut (Arachis hypogaea L.), and mung bean (Vigna radiata L.) belong to a group of plants known as the "cowpea miscellany" plants, which are widely cultivated throughout the tropic and subtropical zones of Africa and Asia. However, the phylogeny of the rhizobial strains that nodulate these plants is poorly understood. Previous studies have isolated a diversity of rhizobial strains from cowpea miscellany hosts and have suggested that, phylogenetically, they are from different species. In this work, the phylogeny of 42 slow-growing rhizobial strains, isolated from root nodules of cowpea, peanut, and mung bean from different geographical regions of China, was investigated using sequences from the 16S rRNA, atpD and glnII genes, and the 16S-23S rRNA intergenic spacer. The indigenous rhizobial strains from the cowpea miscellany could all be placed in the genus Bradyrhizobium , and Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense were the main species. Phylogenies derived from housekeeping genes were consistent with phylogenies generated from the ribosomal gene. Mung bean rhizobia clustered only into B. liaoningense and B. yuanmingense and were phylogenetically less diverse than cowpea and peanut rhizobia. Geographical origin was significantly reflected in the phylogeny of mung bean rhizobia. Most cowpea rhizobia were more closely related to the 3 major groups B. liaoningense, B. yuanmingense, and Bradyrhizobium elkanii than to the minor groups Bradyrhizobium japonicum or Bradyrhizobium canariense . However, most peanut rhizobia were more closely related to the 2 major groups B. liaoningense and B. yuanmingense than to the minor group B. elkanii.  相似文献   

11.
pH对土壤中土著快、慢生大豆根瘤菌结瘤的影响   总被引:17,自引:2,他引:17  
1 引  言土壤 pH对根瘤菌结瘤的影响一直是微生物学和微生物生态学研究的内容之一[4] .在对大豆根瘤菌的研究中 ,早期的研究主要集中于生长慢、产碱的大豆慢生根瘤菌 (Bradyrhizobiumjaponicum) [1,2 ] .1982年 ,Keyser等[3] 报道了一类生长快、产酸的大豆根瘤菌 ,并命名为费氏中华根瘤菌 (Sinorhzobium fredi i) .由于它们在生理特性方面存在着明显的差异 ,其结瘤能力以及环境的生物、物理和化学等因素对结瘤的影响一直受到广泛的重视 .本文研究了偏酸、偏碱的 pH对费氏中华根瘤菌…  相似文献   

12.
Mutants have been constructed by deleting regions of the gene rpsA for ribosomal protein S1, which had been cloned in plasmid pACYC184. The mutant genes were analyzed for their ability to complement an S1 amber mutant containing a temperature-sensitive suppressor. Another series of mutants was constructed using the tac promoter plasmid pKK223-3, and the effect of the mutant proteins was analyzed in a strain wild type for rpsA. The gene products of all mutants were identified by the immunoblotting technique. Plasmids with a mutant rpsA gene which do not or only poorly complement the S1 amber mutation cause drastic growth reduction, whereas the overall protein synthesis is affected to different extents depending on the site of the deletion. Mutants which express S1 fragments comprising at least the NH2-terminal 100 amino acids stimulate or inhibit the synthesis of certain cellular proteins. The amount of chromosomal coded S1 was reduced by each mutant plasmid. Our data suggest that S1 has a general regulatory role during protein biosynthesis.  相似文献   

13.
Transducing lambda phages have been isolated that carry segments of the Escherichia coli chromosome in the aspC region, 20.5 min on the E. coli map. One of these phages, lambda aspC2, carries rpsA, the structural gene for the ribosomal protein S1. A three kilobase fragment from this phage, cloned into either the plasmid pACYC184 or the plasmid pBR322, was found to express S1. In cells carrying the rpsA gene on the high copy number plasmid pBR322 the rate of rpsA mRNA synthesis was increased 40-fold, whereas the rate of protein S1 synthesis was doubled, in comparison with these rates in an rpsA haploid.  相似文献   

14.
采用PCR-RFLP技术在不同水平上鉴定大豆根瘤菌   总被引:2,自引:0,他引:2  
采用16S rRNA基因PCR扩增与限制性酶切片段多态性分析(RFLP)技术对选自弗氏中华根瘤菌(S.fredii)、大豆慢生根瘤菌(B.japonicum)和埃氏慢生根瘤菌(B.elkanii)的19株代表菌进行了比较分析,根据用3种限制性内切酶的RFLP分析结果,可将供试菌株分为S.fredii,B.japonicum, B.elkanii Ⅱ和B.elkanii Ⅱa等4种基因型。各类菌株之间没有交叉,因此本研究采用的PCR-RFLP技术不失为一种快速鉴别大豆根瘤菌的新方法。采用本技术已将分离自中国的22株快生菌和19株慢生菌分别鉴定为S.frediiB.japonicum。对供试参比菌株和野生型菌株进行的16S~23S基因间隔DNA(IGS)的PCR-RFLP分析结果表明:S.frediiB.japonicum菌株的IGS长度不同,所有供试S.fredii菌株的IGS为2.1 kb,而供试B.japonicum菌株则为2.0 kb。依据RFLP的差异,可将来自中国两个不同地区的S.fredii株区分为2个基因型,而来自中国东北黑龙江地区的19株B.japonicum菌株则可分为11个基因型。对上述野生型菌株还进行了REP-PCR和ERIC-PCR分析并确定其具有菌株水平的特异性。  相似文献   

15.
江汉平原及其周边地区花生根瘤菌的遗传多样性   总被引:15,自引:3,他引:12  
采用RAPD分析技术和16S-23S rRNA间隔区段(IGS)RFLP分析,分别对分离自江汉平原及其周缘地区的花生根瘤菌进行了遗传多样性和系统发育研究。结果表明,全部供试验菌分别在48%和50%的相似性水平分为Ⅰ、Ⅱ两群,供试花生根瘤菌与参比菌株B.japonicum和B.elkanii聚在群I,参比菌株Rhizobium Sinorhizobium,Mesorhizobium和Agrobacterium聚在群Ⅱ。供试花生根瘤菌的遗传多样性及其在系统发育中的地位主要受地域因素的影响,来自江汉平原中心地带天门和潜江的菌株在76%以上的相似性水平上聚在一起,处于周边地带的武汉和荆州,由于其特定的地理因素的影响。菌株的多样性更为丰富,部分菌株在分类上与其它地域的菌株相互融合,并在较高的相似水平存在一定摆动性,来自外缘随州的菌株,表现了明显的地理分隔作用,其在系统演化中的地位相对独立,总体上从平原腹地到外缘地区。根瘤菌地理分隔作用逐渐明显,在平原外缘的交接地带,根瘤菌的多样性最为丰富。  相似文献   

16.
Thirty-six strains of slow-growing rhizobia isolated from nodules of four woody legumes endemic to the Canary islands were characterised by 16S rDNA PCR-RFLP analyses (ARDRA) and LMW RNA profiling, and compared with reference strains representing Bradyrhizobium japonicum, B. elkanii, B. liaoningense, and two unclassified Bradyrhizobium sp. (Lupinus) strains. Both techniques showed similar results, indicating the existence of three genotypes among the Canarian isolates. Analysis of the combined RFLP patterns obtained with four endonucleases, showed the existence of predominant genotype comprising 75% of the Canarian isolates (BTA-1 group) and the Bradyrhizobium sp. (Lupinus) strains. A second genotype was shared by nine Canarian isolates (BGA-1 group) and the B. japonicum and B. liaoningense reference strains. The BES-5 strain formed an independent group, as also did the B. elkanii reference strains. LMW RNA profile analysis consistently resolved the same three genotypes detected by 16S ARDRA among the Canarian isolates, and suggested that all these isolates are genotypically more related to B. japonicum than to B. elkanii or B. liaoningense. Cluster analysis of the combined 16S ARDRA and LMW RNA profiles resolved the BTA-1 group with the Bradyrhizobium sp. (Lupinus) strains, and the BES-5 isolate, as a well separated sub-branch of the B. japonicum cluster. Thus, the two types of analyses indicated that the isolates related to BTA-1 conform a group of bradyrhizobial strains that can be clearly distinguishable from representatives of the tree currently described Bradyrhizobium species. No correlation between genotypes, host legumes, and geographic location was found.  相似文献   

17.
黄土高原地区大豆根瘤菌的遗传多样性和系统发育   总被引:2,自引:0,他引:2  
【目的】研究黄土高原地区大豆根瘤菌的遗传多样性和系统发育。【方法】采用BOX-PCR、16S rDNAPCR-RFLP、16S-23S IGS PCR-RFLP和16S rRNA基因序列分析方法对分离自我国黄土高原地区4个省的15个地区的130株大豆根瘤菌及部分参比菌株进行了遗传多样性和系统发育分析。【结果】BOX-PCR反映的菌株多样性最丰富,形成的遗传群最多,16S rDNA PCR-RFLP方法在属、种水平上聚群较好,16S-23S IGSPCR RFLP反映的多样性介于BOX-PCR和16S rDNA PCR-RFLP之间,能够较好地反映出属、种和亲缘关系很近的菌株间的差异,3种方法聚类分析结果基本一致,可将所有供试菌株分为两大类群,中华根瘤菌属(Sinorhizobium)和慢生根瘤菌属(Bradyrhizobium)。从系统发育来看,供试的快生大豆根瘤菌为费氏中华根瘤菌(Sinorhizobium fredii),慢生大豆根瘤菌为日本慢生大豆根瘤菌(Bradyrhizobium japonicum)和辽宁慢生根瘤菌(Bradyrhizobium liaoningense)。【结论】我国黄土高原地区大豆根瘤菌具有较丰富的遗传多样性,S.fredii优势种,慢生大豆根瘤菌仅占10%,同时,分离到2株B.liaoningense。  相似文献   

18.
19.
Immunoreactive egg glycoproteins of Schistosoma mansoni, S. haematobium, and S. japonicum which are genus- and species-specific, or react with sera of patients infected with other parasites, have been identified. Egg proteins were labeled with Iodine-125, and the concanavalin A-binding glycoproteins were immunoprecipitated with sera of patients infected with one of four species of Schistosoma or Trichinella spiralis, Taenia solium, Echinococcus granulosus, Entamoeba histolytica, or Wuchereria bancrofti. These immunoprecipitates were analyzed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Despite the strikingly different patterns of glycoproteins of the African species, the antibody immune responses of patients infected with S. mansoni and S. haematobium were found to be so similar that differentiation could not be established. In contrast, sera of patients infected with S. japonicum, S. mekongi, or parasites not of the genus Schistosoma, immunoprecipitated fewer of the major S. mansoni or S. haematobium glycoproteins. Likewise, antibody immune responses of patients infected with the Oriental schistosomes (S. japonicum and S. mekongi) could not be differentiated. Only a few quantitative differences were noted between our S. mansoni egg glycoprotein extract and a standardized soluble egg antigen extract. This study provides an explanation for the extensive cross-reactivity observed in diagnostic assays which utilize various fractions of schistosomal egg extracts as the antigen.  相似文献   

20.
Feedback regulation of the Bradyrhizobium japonicum nodulation genes   总被引:2,自引:1,他引:1  
Lipochitin Nod signals are produced by rhizobia and are required for the establishment of a nitrogen-fixing symbiosis with a legume host. The nodulation genes encode products required for the synthesis of this signal and are induced in response to plant-produced flavonoid compounds. The addition of chitin and lipo-chitin oligomers to Bradyrhizobium japonicum cultures resulted in a significant reduction in the expression of a nod–lacZ fusion. Intracellular expression of NodC, encoding a chitin synthase, also reduced nod gene expression. In contrast, expression of the ChiB chitinase increased nod gene expression. The chain length of the oligosaccharide was important in feedback regulation, with chitotetraose molecules the best modulators of nod gene expression. Feedback regulation is mediated by the induction of nolA by chitin, resulting in elevated levels of the repressor protein, NodD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号