首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and regulation of heterocyst and nitrogenase by fixed nitrogen sources were studied comparatively in parent and glutamine auxotrophic mutant of Anabaena cycadeae. The parent strain grew well on N2, NH+4 or glutamine while the mutant strain grew on glutamine but not on N2 or NH+4. The total lack of active glutamine synthetase in the mutant strain thus appears to be the reason for its observed lack of growth in N2 or NH+4, which explains why it is a glutamine auxotroph and at the same time shows glutamine synthetase to be the sole primary ammonia assimilating enzyme. NH+4 repression of heterocyst and nitrogenase in the mutant and the parental strains and their derepression by L-methionine-DL-sulfoximine suggest that NH+4 per se and not glutamine synthetase mediated pathway of ammonia assimilation is the initial repressor signal of heterocyst and nitrogenase in A. cycadeae.  相似文献   

2.
Adenylylation of glutamine synthetase was suppressed during derepression of nitrogenase synthesis in the presence of methionine sulfone and an excess of NH4+. Deadenylylation of glutamine synthetase was also promoted during nitrogenase derepression under the same conditions. These results are consistent with the hypothesis that the unadenylylated form of glutamine synthetase is required for derepression of nitrogenase.  相似文献   

3.
Methionine sulfoximine (MSX), an irreversible inhibitor of glutamine synthetase of Rhodopseudomonas palustris restored nitrogenase activity to cells in which nitrogenase had been completely inhibited by ammonia switch-off. After addition of MSX, there was a lag period before nitrogenase activity was fully restored. During this lag, glutamine synthetase activity progressively decreased, and near the time of its complete inhibition, nitrogenase activity resumed. Nitrogenase switch-off by ammonia thus required active glutamine synthetase. Glutamine itself caused nitrogenase inhibition whose reversal by MSX depended on the relative ratio of MSX to glutamine. Unlike ammonia, glutamine inhibited nitrogenase under conditions where glutamine synthetase activity was absent. This indicates that glutamine is the effector molecule in nitrogenase switch-off, for instance by interacting with the enzymatic system for Fe protein inactivation. The effects of glutamine and MSX were also dependent on the culture age. Possible explanation for this and for the competitive effects are a common binding site within the regulatory apparatus for nitrogenase, or, in part, within a common transport system. Some observations with MSX were extended to Rhodopseudomonas capsulata and agreed with those in R. palustris.  相似文献   

4.
P. Lindblad  B. Bergman 《Planta》1986,169(1):1-7
Nitrogen-fixing cyanobacteria inhabit the zone between the inner and outer cortex of cycad coralloid roots. In the growing tip of such roots the cyanobacterial heterocyst frequency, nitrogenase activity (C2H2-reduction) and glutamine synthetase activity (both transferase and biosynthetic) were comparable to those found in freeliving cyanobacteria. The relative level of glutamine synthetase protein and its pattern of cellular/subcellular localization in heterocysts and vegetative cells were also similar to those of free-living cyanobacteria. However, there was a progressive decline in nitrogenase activity along the coralloid root with maximum reduction occurring in the regions farthest from the growing tip. A similar but less pronounced pattern was observed for glutamine synthetase activity. Distribution of glutamine synthetase protein in cyanobacteria in the first 2–3 mm of the root tip indicated a slight decrease in the heterocysts and vegetative cells. However, the overall level of cyanobacterial glutamine synthetase protein did not change because of a drastic increase in the numbers of heterocysts, which contain a proportionally higher level of glutamine synthetase than the vegetative cells.Abbreviation GS glutamine synthetase  相似文献   

5.
NH+4 excretion was undetectable in N2-fixing cultures of Rhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH+4 to the medium. The glutamate analog, L-methionine-DL-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH+4. When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH+4. Nitrogenase activities and NH+4 production from fixed N2 were increased considerably when a combined nitrogen source, NH+4 (greater than 40 mumoles NH+4/mg cell protein in 6 days) or L-glutamate (greater than 60 mumoles NH+4/ mg cell protein in 6 days) was added to the cultures together with MSX. Biochemical analysis revealed that R. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH+4 as well as by glutamate. The results demonstrate that utilization of solar energy to photoproduce large quantities of NH+4 from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

6.
In contrast to wild-type cells, glutamine auxotrophs of the photosynthetic bacterium Rhodopseudomonas capsulata synthesize nitrogenase, produce H2 (catalyzed by nitrogenase), and continue to reduce dinitrogen to ammonia in the presence of exogenous NH4+. The glutamine synthetase activity of such mutants is less than 2% of that observed in the wild type. It appears that glutamine synthetase plays a significant role in regulation of nitrogenase synthesis in R. capsulata.  相似文献   

7.
Inhibitors of glutamine synthetase cause derepression of nitrogenase biosynthesis in the presence of NH4+ in the photosynthetic bacterium Rhodopseudomonas capsulata. A new derepressor of nitrogenase biosynthesis, β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP), is here compared with the widely used L-methionine-DL-sulfoximine (MSX). With both compounds, a quantitative correlation has been observed between inhibition of glutamine synthetase and derepression of nitrogenase biosynthesis. We also find that both MSX and ODAP inhibit nitrogenase activity in vivo in R. capsulata. The latter effect seems to be indirect and related to the previously reported reversible inhibition of nitrogenase activity in vivo by NH4+. As a control it was observed that neither NH4+ nor MSX nor ODAP inhibit nitrogenase activity in vivo in Clostridium pasteurianum.  相似文献   

8.
To investigate the role of ammonium-assimilating enzyme in heterocyst differentiation, pattern formation and nitrogen fixation, MSX-resistant and GS-impaired mutants of Anabaena 7120 were isolated using transposon (Tn5-1063) mutagenesis. Mutant Gs1 and Gs2 (impaired in GS activity) exhibited a similar rate of nitrogenase activity compared to that of the wild type under dinitrogen aerobic conditions in the presence and absence of MSX. Filaments of Gs1 and Gs2 produced heterocysts with an evenly spaced pattern in N2-grown conditions, while addition of MSX altered the interheterocyst spacing pattern in wild type as well as in mutant strains. The wild type showed complete repression of heterocyst development and nitrogen fixation in the presence of NO3 or NH4 +, whereas the mutants Gs1 and Gs2 formed heterocysts and fixed nitrogen in the presence of NO3 and NH4 +. Addition of MSX caused complete inhibition of glutamine synthetase activity in wild type but Gs1 and Gs2 remained unaffected. These results suggest that glutamine but not ammonium is directly involved in regulation of heterocyst differentiation, interheterocyst spacing pattern and nitrogen fixation in Anabaena.  相似文献   

9.
Addition of ammonium salts to N2 fixing continuous cultures of Clostridium pasteurianum caused immediate stop of nitrogenase synthesis, while the levels of glutamine synthetase, glutamate dehydrogenase and asparagine synthetase remained constant. No evidence for an interconversion of the glutamine synthetase was found. The activities of glutamate synthase in crude extracts were inversely related to the nitrogenase levels. The intracellular glutamine pool rapidly expanded during nitrogenase repression and decreased as fast during derepression while the pool sizes of all other amino acids were not strongly related to the rate of nitrogenase formation. These investigations suggest glutamine as corepressor of nitrogenase synthesis.  相似文献   

10.
The addition of exogenous L-methionine-DL-sulphoximine (MSO) to N2-fixing cultures of the blue-green alga Anabaena cylindrica results in over half of the newly fixed NH3 being released into the medium. MSO also inhibits glutamine synthetase (GS) activity, has negligible effect on alanine dehydrogenase activity, and glutamate dehydrogenase activity under N2-fixing conditions is negligible. In the presence of MSO, intracellular pools of glutamate and glutamine decrease, those of aspartate and alanine + glycine show little change, and the NH3 pool increases. MSO alleviates the inhibitory effect of exogenous NH4+ on nitrogenase synthesis and heterocyst production. The results suggest that in N2-fixing cultures of A. cylindrica the primary NH3 assimilating pathway involves GS, and probably glutamate synthase (GOGAT), and that the repressor of nitrogenase synthesis and heterocyst production is not NH4+ but is GS, GOGAT, or a product of their reactions.  相似文献   

11.
天门冬酰胺(Asn)和谷氨酰胺(Gln)对荚膜红假单孢菌固氮酶活性抑制,在表观上类似于氨关闭效应,这种抑制效应由GS参与,相似于氨抑的传感机制。中断Gln代谢的6-diazo-5-oxo-L-norleucine(DON)存在时,氨抑的持续时间延长,与此相类似,Gln抑制加剧,这可能归之于Gln的积累。但是,Gln抑制被methionine sulfoximine(MSX,GS的抑制剂)消除,消除时MSX对Gln的浓度比值约为0.2,与氨抑消除所需的MSX对氨的浓度比值相当。此外,MSX消除氨抑不为DON拮抗,表明Gln抑制固氮酶活性由GS传感。然而,不能抑制GS转谷酰基活性的methionine suffone(MSF,谷氨酸的类似物)却与MSX相同,能消除Gln和氨对固氮活性的抑制。上述观察结果也可延伸至Asn的关闭固氮酶活性效应。  相似文献   

12.
Abstract Glutamine uptake in the cyanobiont Nostoc ANTH was energy-dependent and repressed in ammonia-grown cells. l -Methionine- dl -sulphoximine (MSX), a glutamate analogue and an inhibitor of glutamine synthetase (GS), did not affect glutamine uptake whereas azaserine, an inhibitor of glutamate synthase (GOGAT) did, suggesting that GS activity is not necessarily involved in the glutamine uptake system and that increased intracellular glutamine level regulates its own uptake. Repression of glutamine uptake by ammonia did not require de novo protein synthesis but required GS activity, suggesting that ammonia itself was not the repressor signal. The derepression of the glutamine uptake system did not require GS activity but required de novo protein synthesis.  相似文献   

13.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH+4 is in equiblibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in gamma-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of gamma-glutamyl transferase activities without and with addition of 60 mM Mg2+. Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH+4, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH+4 produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

14.
Azotobacter vinelandii takes up the ammonium analog methylammonium from the external medium and metabolizes it to a less polar compound which has been identified as N-methylglutamine. The enzyme glutamine synthetase appears responsible for methylammonium metabolism in this organism and full activity of the enzyme is required for maximal rates of methylammonium uptake. L-methionine-DL-sulfoximine or L-methionine sulfone, inhibitors of glutamine synthetase activity, were shown to reduce the rate of methylammonium uptake by wild type cultures. A mutant strain with low glutamine synthetase activity was shown to be unable to carry out in vitro N-methylglutamine synthesis or in vivo uptake of methylammonium. Thus, methylammonium uptake assays may prove useful as a method of identifying mutants with altered glutamine synthetase activity.Abbreviations MSX L-methionine-DL-sulfoximine - MSF L-methionine sulfone  相似文献   

15.
Anabaena oryzae ARM 570 was examined for its growth (chlorophyll and protein), heterocyst frequency, nitrogenase (acetylene reduction) activity, ammonia excretion, and glutamine synthetase and nitrate reductase in response to two levels of urea-N vis-à-vis N2-N. Growth of cyanobacterium increased with duration of incubation. Reduction in heterocyst frequency (40%) was observed at 30 ppm of urea-N, whereas at 60 ppm of urea-N, filaments were completely devoid of heterocysts and no nitrogenase activity was observed. Maximum excretion of ammonia occurred at 30 ppm of urea-N, which was concomitant with minimum glutamine synthetase activity. These results suggested that A. oryzae could be effectively utilized in cyanobacterial biofertilizer programme even in the presence of combined nitrogen, for improving N-budget in rice cultivation.  相似文献   

16.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH4+ is in equilibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic activity of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in γ-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of γ-glutamyl transferase activities without and with addition of 60 mM Mg2+.Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH4+, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH4+ produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

17.
MSX对光合细菌GOGAT缺失突变株(Nif~-)固氮酶的诱导   总被引:1,自引:0,他引:1  
浑球红假单胞菌的谷氨酸合成酶突变株的培养物缺乏固氮活性,在加入谷氨酰胺合成酶抑制剂MSX后,固氮酶得以表达。MSX加入后对突变株的氮源多效缺陷无恢复作用,说明氮源多效缺陷与固氮酶不合成分属遗传和生理两种水平的改变。当野生型菌株的培养物中加入MSF后,固氮酶表达延迟,谷氨酰胺的加入加剧这一延迟效应。  相似文献   

18.
The addition of DL-7-azatryptophan (AZAT), a tryptophan analog, to continuous cultures of Anabaena sp. strain CA grown with 10 mM nitrate as the nitrogen source resulted in the differentiation of heterocysts. Analysis of the intracellular amino acid pools of Anabaena sp. strain CA after the addition of AZAT showed a marked decline in the intracellular glutamate pool and a slight increase in the levels of glutamine. The in vitro activity of glutamate synthase, the second enzyme involved in primary ammonia assimilation in Anabaena spp., was partially inhibited by the presence of AZAT at concentrations which are effective in triggering heterocyst formation (15% inhibition at 10 microM AZAT and up to 85% inhibition at 1.0 mM AZAT). Azaserine, a glutamine analog and potent glutamate synthase inhibitor, had no effect on the triggering of heterocyst development from undifferentiated batch and continuous cultures of Anabaena sp. strain CA. However, the presence of 1.0 microM azaserine significantly decreased the intracellular glutamate pool and increased the glutamine pool. The addition of AZAT also caused a decrease in the C-phycocyanin content of Anabaena sp. strain CA as a result of its proteolytic degradation. AZAT also had an inhibitory effect on the nitrogenase activity of Anabaena sp. strain CA. All these results suggest that AZAT causes a general nitrogen starvation of Anabaena sp. strain CA filaments, triggering heterocyst synthesis.  相似文献   

19.
Methylammonium/ammonium ion, glutamine, glutamate, arginine and proline uptake, and their assimilation as nitrogen sources, was studied in Nostoc muscorum and its glutamine synthetase-deficient mutant. Glutamine served as nitrogen source independent of glutamine synthetase activity. Glutamate was not metabolised as a nitrogen source but still inhibited nitrogenase activity and diazotrophic growth. Glutamine synthetase activity was essential for the assimilation of N2, ammonia, arginine and proline as nitrogen sources but not for the control of their transport, heterocyst formation, and production of ammonia or aminoacid dependent repressor signal for N2-fixing heterocysts. These results also suggest that glutamine synthetase serves as the sole route of ammonia assimilation and glutamine synthesis, and ammonia per se as the repressor signal for N2-fixing heterocysts and methylammonium (ammonium) transport.  相似文献   

20.
Mutations causing constitutive synthesis of glutamine synthetase (GlnC(-) phenotype) were transferred from Klebsiella aerogenes into Klebsiella pneumoniae by P1-mediated transduction. Such GlnC(-) strains of K. pneumoniae have constitutive levels of glutamine synthetase. Two of three GlnC(-) strains of K. pneumoniae studied, each containing independently isolated mutations that confer the GlnC(-) phenotype, continue to synthesize nitrogenase in the presence of NH(4) (+). One strain, KP5069, produces 30% as much nitrogenase when grown in the presence of 15 mM NH(4) (+) as in its absence. The GlnC(-) phenotype allows the synthesis of nitrogenase to continue under conditions that completely repress nitrogenase synthesis in the wild-type strain. Glutamine auxotrophs of K. pneumoniae, that do not produce catalytically active glutamine synthetase, are unable to synthesize nitrogenase during nitrogen limited growth. Complementation of K. pneumoniae Gln(-) strains by an Escherichia coli episome (F'133) simultaneously restores glutamine synthetase activity and the ability to synthesize nitrogenase. These results indicate a role for glutamine synthetase as a positive control element for nitrogen fixation in K. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号