共查询到20条相似文献,搜索用时 0 毫秒
1.
Shvartsman SY Hagan MP Yacoub A Dent P Wiley HS Lauffenburger DA 《American journal of physiology. Cell physiology》2002,282(3):C545-C559
We describe a mechanism for context-dependent cell signaling mediated by autocrine loops with positive feedback. We demonstrate that the composition of the extracellular medium can critically influence the intracellular signaling dynamics induced by extracellular stimuli. Specifically, in the epidermal growth factor receptor (EGFR) system, amplitude and duration of mitogen-activated protein kinase (MAPK) activation are modulated by the positive-feedback loop formed by the EGFR, the Ras-MAPK signaling pathway, and a ligand-releasing protease. The signaling response to a transient input is short-lived when most of the released ligand is lost to the cellular microenvironment by diffusion and/or interaction with an extracellular ligand-binding component. In contrast, the response is prolonged or persistent in a cell that is efficient in recapturing the endogenous ligand. To study functional capabilities of autocrine loops, we have developed a mathematical model that accounts for ligand release, transport, binding, and intracellular signaling. We find that context-dependent signaling arises as a result of dynamic interaction between the parts of an autocrine loop. Using the model, we can directly interpret experimental observations on context-dependent responses of autocrine cells to ionizing radiation. In human carcinoma cells, MAPK signaling patterns induced by a short pulse of ionizing radiation can be transient or sustained, depending on cell type and composition of the extracellular medium. On the basis of our model, we propose that autocrine loops in this, and potentially other, growth factor and cytokine systems may serve as modules for context-dependent cell signaling. 相似文献
2.
Homeostatic signaling: the positive side of negative feedback 总被引:4,自引:0,他引:4
Turrigiano G 《Current opinion in neurobiology》2007,17(3):318-324
Synaptic homeostasis provides a means for neurons and circuits to maintain stable function in the face of perturbations such as developmental or activity-dependent changes in synapse number or strength. These forms of plasticity are thought to utilize negative feedback signaling to sense some aspect of activity, compare this with an internal set point, and then adjust synaptic properties to keep activity close to this set point. However, the molecular identity of these signaling components has not been firmly established. Recent work suggests that there are likely to be multiple forms of synaptic homeostasis, mediated by distinct signaling pathways and with distinct expression mechanisms. These include presynaptic forms that depend on retrograde signaling to presynaptic Ca(2+) channels, and postsynaptic forms influenced by BDNF, TNFalpha and Arc signaling. Current challenges include matching signaling elements to their functions (i.e. as detectors of activity, as part of the set-point mechanism and/or as effectors of synaptic change), and fitting these molecular candidates into a unified view of the signaling pathways that underlie synaptic homeostasis. 相似文献
3.
Bacteria use two-component systems (TCSs) to sense environmental conditions and change gene expression in response to those conditions. To amplify cellular responses, many bacterial TCSs are under positive feedback control, i.e. increase their expression when activated. Escherichia coli Mg2+ -sensing TCS, PhoPQ, in addition to the positive feedback, includes a negative feedback loop via the upregulation of the MgrB protein that inhibits PhoQ. How the interplay of these feedback loops shapes steady-state and dynamical responses of PhoPQ TCS to change in Mg2+ remains poorly understood. In particular, how the presence of MgrB feedback affects the robustness of PhoPQ response to overexpression of TCS is unclear. It is also unclear why the steady-state response to decreasing Mg2+ is biphasic, i.e. plateaus over a range of Mg2+ concentrations, and then increases again at growth-limiting Mg2+. In this study, we use mathematical modeling to identify potential mechanisms behind these experimentally observed dynamical properties. The results make experimentally testable predictions for the regime with response robustness and propose a novel explanation of biphasic response constraining the mechanisms for modulation of PhoQ activity by Mg2+ and MgrB. Finally, we show how the interplay of positive and negative feedback loops affects the network’s steady-state sensitivity and response dynamics. In the absence of MgrB feedback, the model predicts oscillations thereby suggesting a general mechanism of oscillatory or pulsatile dynamics in autoregulated TCSs. These results improve the understanding of TCS signaling and other networks with overlaid positive and negative feedback. 相似文献
4.
5.
6.
Modeling genetic switches with positive feedback loops 总被引:3,自引:0,他引:3
In this paper, we develop a new methodology to design synthetic genetic switch networks with multiple genes and time delays, by using monotone dynamical systems. We show that the networks with only positive feedback loops have no stable oscillation but stable equilibria whose stability is independent of the time delays. In other words, such systems have ideal properties for switch networks and can be designed without consideration of time delays, because the systems can be reduced from functional spaces to Euclidian spaces. Therefore, we can ensure that the designed switches function correctly even with uncertain delays. We first prove the basic properties of the genetic networks composed of only positive feedback loops, and then propose a procedure to design the switches, which drastically simplifies analysis of the switches and makes theoretical analysis and design tractable even for large-scaled systems. Finally, to demonstrate our theoretical results, we show biologically plausible examples by designing a synthetic genetic switch with experimentally well investigated lacI, tetR, and cI genes for numerical simulation. 相似文献
7.
Kramer S Okabe M Hacohen N Krasnow MA Hiromi Y 《Development (Cambridge, England)》1999,126(11):2515-2525
Extracellular factors such as FGF and EGF control various aspects of morphogenesis, patterning and cellular proliferation in both invertebrates and vertebrates. In most systems, it is primarily the distribution of these factors that controls the differential behavior of the responding cells. Here we describe the role of Sprouty in eye development. Sprouty is an extracellular protein that has been shown to antagonize FGF signaling during tracheal branching in Drosophila. It is a novel type of protein with a highly conserved cysteine-rich region. In addition to the embryonic tracheal system, sprouty is also expressed in other tissues including the developing eye imaginal disc, embryonic chordotonal organ precursors and the midline glia. In each of these tissues, EGF receptor signaling is known to participate in the control of the correct number of neurons or glia. We show that, in all three tissues, the loss of sprouty results in supernumerary neurons or glia, respectively. Furthermore, overexpression of sprouty in wing veins and ovarian follicle cells, two other tissues where EGF signaling is required for patterning, results in phenotypes that resemble the loss-of-function phenotypes of Egf receptor. These results suggest that Sprouty acts as an antagonist of EGF as well as FGF signaling pathways. These receptor tyrosine kinase-mediated pathways may share not only intracellular signaling components but also extracellular factors that modulate the strength of the signal. 相似文献
8.
Jessica Ausborn Harald Wolf Wolfgang Stein 《Journal of computational neuroscience》2009,27(2):245-257
In many rhythmic behaviors, phasic sensory feedback modifies the motor pattern. This modification is assumed to depend on
feedback sign (positive vs. negative). While on a phenomenological level feedback sign is well defined, many sensory pathways
also process antagonistic, and possibly contradictory, sensory information. We here model the locust flight pattern generator
and proprioceptive feedback provided by the tegula wing receptor to test the functional significance of sensory pathways processing
antagonistic information. We demonstrate that the tegula provides delayed positive feedback via interneuron 301, while all
other pathways provide negative feedback. Contradictory to previous assumptions, the increase of wing beat frequency when
the tegula is activated during flight is due to the positive feedback. By use of an abstract model we reveal that the regulation
of motor pattern frequency by sensory feedback critically depends on the interaction of positive and negative feedback, and
thus on the weighting of antagonistic pathways. 相似文献
9.
ABSTRACT: BACKGROUND: Feedback loops, both positive and negative are embedded in the Mitogen Activated Protein Kinase (MAPK) cascade. In the three layer MAPK cascade, both feedback loops originate from the terminal layer and their sites of action are either of the two upstream layers. Recent studies have shown that the cascade uses coupled positive and negative feedback loops in generating oscillations. Two plausible designs of coupled positive and negative feedback loops can be elucidated from the literature; in one design the positive feedback precedes the negative feedback in the direction of signal flow and vice-versa in another. But it remains unexplored how the two designs contribute towards triggering oscillations in MAPK cascade. Thus it is also not known how amplitude, frequency, robustness or nature (analogous/digital) of the oscillations would be shaped by these two designs. RESULTS: We built two models of MAPK cascade that exhibited oscillations as function of two underlying designs of coupled positive and negative feedback loops. Frequency, amplitude and nature (digital/analogous) of oscillations were found to be differentially determined by each design. It was observed that the positive feedback emerging from an oscillating MAPK cascade and functional in an external signal processing module can trigger oscillations in the target module, provided that the target module satisfy certain parametric requirements. The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. It revealed that the fate of oscillations in the MAPK cascade is governed by the feedback designs. Oscillations were unaffected due to nuclear compartmentalization owing to one design but were completely abolished in the other case. CONCLUSION: The MAPK cascade can utilize two distinct designs of coupled positive and negative feedback loops to trigger oscillations. The amplitude, frequency and robustness of the oscillations in presence or absence of nuclear compartmentalization were differentially determined by two designs of coupled positive and negative feedback loops. A positive feedback from an oscillating MAPK cascade was shown to induce oscillations in an external signal processing module, uncovering a novel regulatory aspect of MAPK signal processing. 相似文献
10.
11.
12.
Cells in diverse organisms can store the information of previous environmental conditions for long periods of time. This form of cellular memory adjusts the cell's responses to future challenges, providing fitness advantages in fluctuating environments. Many biological functions, including cellular memory, are mediated by specific recurring patterns of interactions among proteins and genes, known as ‘network motifs.’ In this review, we focus on three well-characterized network motifs — negative feedback loops, positive feedback loops, and feedforward loops, which underlie different types of cellular memories. We describe the latest studies identifying these motifs in various molecular processes and discuss how the topologies and dynamics of these motifs can enable memory encoding and storage. 相似文献
13.
Sulfs are secreted sulfatases that catalyse removal of sulfate from Heparan Sulfate Proteoglycans (HSPGs) in the extracellular space. These enzymes are well known to regulate a number of crucial signalling pathways during development. In this study, we report that DSulfatase-1 (DSulf1), the unique Drosophila Sulf protein, is a regulator of Hedgehog (Hh) signalling during wing development. DSulf1 activity is required in both Hh source and Hh receiving cells for proper positioning of Hh target gene expression boundaries. As assessed by loss- and gain-of-function experiments in specific compartments, DSulf1 displays dual functions with respect to Hh signalling, acting as a positive regulator in Hh producing cells and a negative regulator in Hh receiving cells. In either domain, DSulf1 modulates Hh distribution by locally lowering the concentration of the morphogen at the apical pole of wing disc cells. Thus, we propose that DSulf1, by its desulfation catalytic activity, lowers Hh/HSPG interaction in both Hh source and target fields, thereby enhancing Hh release from its source of production and reducing Hh signalling activity in responding cells. Finally, we show that Dsulf1 pattern of expression is temporally regulated and depends on EGFR signalling, a Hh-dependent secondary signal in this tissue. Our data reveal a novel Hh regulatory feedback loop, involving DSulf1, which contributes to maintain and stabilise expression domains of Hh target genes during wing disc development. 相似文献
14.
Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds 总被引:1,自引:0,他引:1
Mariko Nonogaki Khadidiatou Sall Eiji Nambara Hiroyuki Nonogaki 《The Plant journal : for cell and molecular biology》2014,78(3):527-539
Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9‐cis‐epoxycarotenoid dioxygenase (NCED), a rate‐limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA‐stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE‐binding factor) expression in Arabidopsis Columbia‐0 seeds, which caused 9‐ to 73‐fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non‐dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre‐harvest sprouting during crop production, and therefore contributes to translational biology. 相似文献
15.
16.
Fernando López-Caamal Richard H. Middleton Heinrich J. Huber 《Journal of mathematical biology》2014,68(3):609-645
Positive feedback loops are common regulatory elements in metabolic and protein signalling pathways. The length of such feedback loops determines stability and sensitivity to network perturbations. Here we provide a mathematical analysis of arbitrary length positive feedback loops with protein production and degradation. These loops serve as an abstraction of typical regulation patterns in protein signalling pathways. We first perform a steady state analysis and, independently of the chain length, identify exactly two steady states that represent either biological activity or inactivity. We thereby provide two formulas for the steady state protein concentrations as a function of feedback length, strength of feedback, as well as protein production and degradation rates. Using a control theory approach, analysing the frequency response of the linearisation of the system and exploiting the Small Gain Theorem, we provide conditions for local stability for both steady states. Our results demonstrate that, under some parameter relationships, once a biological meaningful on steady state arises, it is stable, while the off steady state, where all proteins are inactive, becomes unstable. We apply our results to a three-tier feedback of caspase activation in apoptosis and demonstrate how an intermediary protein in such a loop may be used as a signal amplifier within the cascade. Our results provide a rigorous mathematical analysis of positive feedback chains of arbitrary length, thereby relating pathway structure and stability. 相似文献
17.
18.
Kim D Kwon YK Cho KH 《BioEssays : news and reviews in molecular, cellular and developmental biology》2007,29(1):85-90
Cellular circuits have positive and negative feedback loops that allow them to respond properly to noisy external stimuli. It is intriguing that such feedback loops exist in many cases in a particular form of coupled positive and negative feedback loops with different time delays. As a result of our mathematical simulations and investigations into various experimental evidences, we found that such coupled feedback circuits can rapidly turn on a reaction to a proper stimulus, robustly maintain its status, and immediately turn off the reaction when the stimulus disappears. In other words, coupled feedback loops enable cellular systems to produce perfect responses to noisy stimuli with respect to signal duration and amplitude. This suggests that coupled positive and negative feedback loops form essential signal transduction motifs in cellular signaling systems. 相似文献
19.
Alexandra Surcel Yee-Seir Kee Tianzhi Luo Douglas N. Robinson 《Seminars in cell & developmental biology》2010,21(9):866-873
Cytokinesis is emerging as a control system defined by interacting biochemical and mechanical modules, which form a system of feedback loops. This integrated system accounts for the regulation and kinetics of cytokinesis furrowing and demonstrates that cytokinesis is a whole-cell process in which the global and equatorial cortices and cytoplasm are active players in the system. Though originally defined in Dictyostelium, features of the control system are recognizable in other organisms, suggesting a universal mechanism for cytokinesis regulation and contractility. 相似文献
20.
Ziv Radisavljevic 《Journal of cellular physiology》2013,228(3):522-524
A positive feedback loops induce extreme robustness in metastatic cancer, relapsed leukemia, myeloma or lymphoma. The loops are generated by the signaling interactome networks of autocrine and paracrine elements from cancer hypoxic microenvironment. The elements of the networks are signaling proteins synthesized in hypoxic microenvironment such as the vascular endothelial growth factor, HIF‐1α, hepatocyte growth factor, and molecules nitric oxide and H2O2. The signals from upstream or rebound downstream pathways are amplified by the short or wide positive feedback loops, hyperstimulating AKT‐inducing cancer extreme robustness. Targeting the phosphorylated AKT locus by an oxidant/antioxidant modulation induces collapse of positive feedback loops and establishment of negative feedback loops leading to stability of the system and disappearance of cancer extreme robustness. This is a new principle for the conversion of cancer positive loops into negative feedback loops by the locus chemotherapy. J. Cell. Physiol. 228: 522–524, 2013. © 2012 Wiley Periodicals, Inc. 相似文献