首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of epithelial Na(+) channel (ENaC) activity by high concentrations of extracellular Na(+) is referred to as Na(+) self-inhibition. We investigated the effects of external Zn(2+) on whole cell Na(+) currents and on the Na(+) self-inhibition response in Xenopus oocytes expressing mouse alphabetagamma ENaC. Na(+) self-inhibition was examined by analyzing inward current decay from a peak current to a steady-state current following a fast switching of a low Na(+) (1 mm) bath solution to a high Na(+) (110 mm) solution. Our results indicate that external Zn(2+) rapidly and reversibly activates ENaC in a dose-dependent manner with an estimated EC(50) of 2 microm. External Zn(2+) in the high Na(+) bath also prevents or reverses Na(+) self-inhibition with similar affinity. Zn(2+) activation is dependent on extracellular Na(+) concentration and is absent in ENaCs containing gammaH239 mutations that eliminate Na(+) self-inhibition and in alphaS580Cbetagamma following covalent modification by a sulfhydryl-reactive reagent that locks the channels in a fully open state. In contrast, external Ni(2+) inhibition of ENaC currents appears to be additive to Na(+) self-inhibition when Ni(2+) is present in the high Na(+) bath. Pretreatment of oocytes with Ni(2+) in a low Na(+) bath also prevents the current decay following a switch to a high Na(+) bath but rendered the currents below the control steady-state level measured in the absence of Ni(2+) pretreatment. Our results suggest that external Zn(2+) activates ENaC by relieving the channel from Na(+) self-inhibition, and that external Ni(2+) mimics or masks Na(+) self-inhibition.  相似文献   

2.
Na(+) transport across epithelia is mediated in part by the epithelial Na(+) channel ENaC. Previous work indicates that Na(+) is an important regulator of ENaC, providing a negative feedback mechanism to maintain Na(+) homeostasis. ENaC is synthesized as an inactive precursor, which is activated by proteolytic cleavage of the extracellular domains of the alpha and gamma subunits. Here we found that Na(+) regulates ENaC in part by altering proteolytic activation of the channel. When the Na(+) concentration was low, we found that the majority of ENaC at the cell surface was in the cleaved/active state. As Na(+) increased, there was a dose-dependent decrease in ENaC cleavage and, hence, ENaC activity. This Na(+) effect was dependent on Na(+) permeation; cleavage was increased by the ENaC blocker amiloride and by a mutation that decreases ENaC activity (alpha(H69A)) and was reduced by a mutation that activates ENaC (beta(S520K)). Moreover, the Na(+) ionophore monensin reversed the effect of the inactivating mutation (alpha(H69A)) on ENaC cleavage, suggesting that intracellular Na(+) regulates cleavage. Na(+) did not alter activity of Nedd4-2, an E3 ubiquitin ligase that modulates ENaC cleavage, but Na(+) reduced ENaC cleavage by exogenous trypsin. Our findings support a model in which intracellular Na(+) regulates cleavage by altering accessibility of ENaC cleavage sites to proteases and provide a molecular explanation for the earlier observation that intracellular Na(+) inhibits Na(+) transport via ENaC (Na(+) feedback inhibition).  相似文献   

3.
The paper reviews the evidence for apparent sodium-dependent copper (Cu) uptake across epithelia such as frog skin, fish gills and vertebrate intestine. Potential interactions between Na(+) and Cu during transfer through epithelial cells is rationalized into the major steps of solute transfer: (i) adsorption on to the apical/mucosal membrane, (ii) import in to the cell (iii) intracellular trafficking, and (iv) export from the cell to the blood. Interactions between Na(+) and Cu transport are most likely during steps (i) and (ii). These ions have similar mobilities (lambda) in solution (lambda, Na(+), 50.1; Cu(2+), 53.6 cm(2) Int. ohms(-1) equiv(-1)); consequently, Cu(2+) may compete equally with Na(+) for diffusion to membrane surfaces. We present new data on the Na(+) binding characteristics of the gill surface (gill microenvironment) of rainbow trout. The binding characteristics of Na(+) and Cu(2+) to the external surface of trout gills are similar with saturation of ligands at nanomolar concentrations of solutes. At the mucosal/apical membrane of several epithelia (fish gills, frog skin, vertebrate intestine), there is evidence for both a Cu-specific channel (CTR1 homologues) and Cu leak through epithelial Na(+) channels (ENaC). Cu(2+) slows the amiloride-sensitive short circuit current (I(sc)) in frog skin, suggesting Cu(2+) binding to the amiloride-binding site of ENaC. We present examples of data from the isolated perfused catfish intestine showing that Cu uptake across the whole intestine was reduced by 50% in the presence of 2 mM luminal amiloride, with 75% of the overall inhibition attributed to an amiloride-sensitive region in the middle intestine. Removal of luminal Na(+) produced more variable results, but also reduced Cu uptake in catfish intestine. These data together support Cu(2+) modulation of ENaC, but not competitive entry of Cu(2+) through ENaC. However, in situations where external Na(+) is only a few millimoles (fish gills, frogs in freshwater), Cu(2+) leak through ENaC is possible. CTR1 is a likely route of Cu(2+) entry when external Na(+) is higher (e.g. intestinal epithelia). Interactions between Na(+) and Cu ions during intracellular trafficking or export from the cell are unlikely. However, effects of intracellular chloride on the Cu-ATPase or ENaC indicate that Na(+) might indirectly alter Cu flux. Conversely, Cu ions inhibit basolateral Na(+)K(+)-ATPase and may increase [Na(+)](i).  相似文献   

4.
The activities of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel and the amiloride-sensitive epithelial Na(+) channel (ENaC) are acutely coordinated in the sweat duct. However, the mechanisms responsible for cross-talk between these ion channels are unknown. Previous studies indicated that luminal pH of sweat ducts varies over 3 pH units and that the cytoplasmic pH affects both CFTR and ENaC. Therefore, using basolaterally alpha-toxin-permeabilized apical membrane preparations of sweat ducts as an experimental system, we tested the hypothesis that the cytosolic pH may mediate the cross-talk between CFTR and ENaC. We showed that while luminal pH had no effect, cytosolic pH acutely affected ENaC activity. That is, acidic pH inhibited, while basic pH activated, ENaC. pH regulation of ENaC appears to be independent of CFTR or endogenous kinase activities because basic pH independently stimulated ENaC (1) in normal ducts even when CFTR was deactivated, (2) in CF ducts that lack CFTR in the plasma membranes and (3) after blocking endogenous kinase activity with staurosporine. Considering the evidence of Na(+)/H(+) exchange (NHE) activity as shown by the expression of mRNA and function of NHE in the basolateral membrane of the sweat duct, we postulate that changes in cytosolic Na(+) ([Na(+)]( i )) may alter cytosolic pH (pH( i )) as salt loads into the cell during electrolyte absorption. These changes may play a role in coordinating the activities of ENaC and CFTR during transepithelial salt transport.  相似文献   

5.
The role of cytoskeletal elements in volume regulation was studied in trout hepatocytes by investigating changes in F-actin distribution during anisotonic exposure and assessing the impact of cytoskeleton disruption on volume regulatory responses. Hypotonic challenge caused a significant decrease in the ratio of cortical to cytoplasmic F-actin, whereas this ratio was unaffected in hypertonic saline. Disruption of microfilaments with cytochalasin B (CB) or cytochalasin D significantly slowed volume recovery following hypo- and hypertonic exposure in both attached and suspended cells. The decrease of net proton release and the intracellular acidification elicited by hypotonicity were unaltered by CB, whereas the increase of proton release in hypertonic saline was dramatically reduced. Because amiloride almost completely blocked the hypertonic increase of proton release and cytoskeleton disruption diminished the associated increase of intracellular pH (pH(i)), we suggest that F-actin disruption affected Na(+)/H(+) exchanger activity. In line with this, pH(i) recovery after an ammonium prepulse was significantly inhibited in CB-treated cells. The increase of cytosolic Na(+) under hypertonic conditions was not diminished but, rather, enhanced by F-actin disruption, presumably due to inhibited Na(+)-K(+)-ATPase activity and stimulated Na(+) channel activity. The elevation of cytosolic Ca(2+) in hypertonic medium was significantly reduced by CB. Altogether, our results indicate that the F-actin network is of crucial importance in the cellular responses to anisotonic conditions, possibly via interaction with the activity of ion transporters and with signalling cascades responsible for their activation. Disruption of microtubules with colchicine had no effect on any of the parameters investigated.  相似文献   

6.
Epithelial Na(+) channels (ENaC) participate in the regulation of extracellular fluid volume homeostasis and blood pressure. Channel activity is regulated by both extracellular and intracellular Na(+). The down-regulation of ENaC activity by external Na(+) is referred to as Na(+) self-inhibition. We investigated the structural determinants of Na(+) self-inhibition by expressing wild-type or mutant ENaCs in Xenopus oocytes and analyzing changes in whole-cell Na(+) currents following a rapid increase of bath Na(+) concentration. Our results indicated that wild-type mouse alphabetagammaENaC has intrinsic Na(+) self-inhibition similar to that reported for human, rat, and Xenopus ENaCs. Mutations at His(239) (gammaH239R, gammaH239D, and gammaH239C) in the extracellular loop of the gammaENaC subunit prevented Na(+) self-inhibition whereas mutations of the corresponding His(282) in alphaENaC (alphaH282D, alphaH282R, alphaH282W, and alphaH282C) significantly enhanced Na(+) self-inhibition. These results suggest that these two histidine residues within the extracellular loops are crucial structural determinants for Na(+) self-inhibition.  相似文献   

7.
The epithelial Na(+) channel, ENaC, is exposed to a wide range of proton concentrations in the kidney, lung, and sweat duct. We, therefore, tested whether pH alters ENaC activity. In Xenopus oocytes expressing human alpha-, beta-, and gammaENaC, amiloride-sensitive current was altered by protons in the physiologically relevant range (pH 8.5-6.0). Compared with pH 7.4, acidic pH increased ENaC current, whereas alkaline pH decreased current (pH(50) = 7.2). Acidic pH also increased ENaC current in H441 epithelia and in human primary airway epithelia. In contrast to human ENaC, pH did not alter rat ENaC current, indicating that there are species differences in ENaC regulation by protons. This resulted predominantly from species differences in gammaENaC. Maneuvers that lock ENaC in a high open-probability state ("DEG" mutation, proteolytic cleavage) abolished the effect of pH on human ENaC, indicating that protons alter ENaC current by modulating channel gating. Previous work showed that ENaC gating is regulated in part by extracellular Na(+) ("Na(+) self-inhibition"). Based on several observations, we conclude that protons regulate ENaC by altering Na(+) self-inhibition. First, protons reduced Na(+) self-inhibition in a dose-dependent manner. Second, ENaC regulation by pH was abolished by removing Na(+) from the extracellular bathing solution. Third, mutations that alter Na(+) self-inhibition produced corresponding changes in ENaC regulation by pH. Together, the data support a model in which protons modulate ENaC gating by relieving Na(+) self-inhibition. We speculate that this may be an important mechanism to facilitate epithelial Na(+) transport under conditions of acidosis.  相似文献   

8.
Epithelial Na(+) channels (ENaCs) play an essential role in the regulation of body fluid homeostasis. Certain transition metals activate or inhibit the activity of ENaCs. In this study, we examined the effect of extracellular Cu(2+) on human ENaC expressed in Xenopus oocytes and investigated the structural basis for its effects. External Cu(2+) inhibited human αβγ ENaC with an estimated IC(50) of 0.3 μM. The slow time course and a lack of change in the current-voltage relationship were consistent with an allosteric (non pore-plugging) inhibition of human ENaC by Cu(2+). Experiments with mixed human and mouse ENaC subunits suggested that both the α and β subunits were primarily responsible for the inhibitory effect of Cu(2+) on human ENaC. Lowering bath solution pH diminished the inhibition by Cu(2+). Mutations of two α, two β, and two γ His residues within extracellular domains significantly reduced the inhibition of human ENaC by Cu(2+). We identified a pair of residues as potential Cu(2+)-binding sites at the subunit interface between thumb subdomain of αhENaC and palm subdomain of βhENaC, suggesting a counterclockwise arrangement of α, β, and γ ENaC subunits in a trimeric channel complex when viewed from above. We conclude that extracellular Cu(2+) is a potent inhibitor of human ENaC and binds to multiple sites within the extracellular domains including a subunit interface.  相似文献   

9.
Na(+) transport via epithelial Na(+) channel (ENaC) occurs across many epithelial surfaces and plays a key role in regulating salt and water absorption. In this study, we have examined the effects of cytosolic Na(+) and Cl(-) on ENaC activity by patch clamping single channel recording method in mouse cortical collecting duct cells (M1). Cytosolic Na(+) exerts its effect in change of ENaC open probability (Po). High cytosolic Na(+) significantly reduces ENaC Po. No change in channel conductance by cytosolic Na(+) is observed. However, decrease of cytosolic Cl(-) concentration significantly increases channel conductance and ENaC Po. This effect is due to the right shift of ENaC I-V curve to positive membrane potential. The virtue of ENaC conductance remains the same. Cl(-) channels like CFTR and VRAC are unlikely to be involved in this regulation. The results suggest that cytosolic Cl(-) could serve as a mediator to regulate ENaC activity, in accordance with the activities of Cl(-) channels.  相似文献   

10.
The Ca(2+) release-activated Ca(2+) (CRAC) channel is the most well documented of the store-operated ion channels that are widely expressed and are involved in many important biological processes. However, the regulation of the CRAC channel by intracellular or extracellular messengers as well as its molecular identity is largely unknown. Specifically, in the absence of extracellular divalent cations it becomes permeable to monovalent cations with a larger conductance, however this monovalent cation current inactivates rapidly by an unknown mechanism. Here we found that Ca(2+) dissociation from a site on the extracellular side of the CRAC channel is responsible for the inactivation of its Na(+) current, and Ca(2+) occupancy of this site otherwise potentiates its Ca(2+) as well as Na(+) currents. This Ca(2+)-dependent potentiation is required for the normal functioning of CRAC channels.  相似文献   

11.
The amiloride-sensitive epithelial sodium channel (ENaC), a multimeric plasma membrane protein composed of alpha-, beta-, and gamma-ENaC subunits, mediates Na(+) reabsorption in epithelial tissues, including the distal nephron, colon, lung, and secretory glands, and plays a critical role in pathophysiology of essential hypertension and cystic fibrosis (CF). The function of ENaC is tightly regulated by signals elicited by aldosterone, vasopressin, agents that increase intracellular cAMP levels, ions, ion channels, G-protein-coupled mechanisms, and cytoskeletal proteins. In this paper, the effects of Ca(2+) on the expression of the human ENaC subunits expressed in human embryonic kidney cells (HEK-293 cells) were examined. Incubation of cells with increased extracellular Ca(2+) and treatment of cells with A23187 and thapsigargin stimulated the expression of the monomeric ENaC subunits. Treatment of cells with Ca(2+)-chelating agents, EGTA and BAPTA-AM, reduced the levels of ENaC subunit expression. The pulse-chase experiments suggested that a rise in the intracellular Ca(2+) increases the ENaC subunit expression. Immunoblot analysis using the anti-ubiquitin antibody indicated that ENaC undergoes ubiquitination. A correlation between the processes that regulate ENaC function with the intracellular Ca(2+) was discussed.  相似文献   

12.
The activity of the cardiac Na(+)/Ca(2+) exchanger (NCX1.1) undergoes continuous modulation during the contraction-relaxation cycle because of the accompanying changes in the electrochemical gradients for Na(+) and Ca(2+). In addition, NCX1.1 activity is also modulated via secondary, ionic regulatory mechanisms mediated by Na(+) and Ca(2+). In an effort to evaluate how ionic regulation influences exchange activity under pulsatile conditions, we studied the behavior of the cloned NCX1.1 during frequency-controlled changes in intracellular Na(+) and Ca(+) (Na(i)(+) and Ca(i)(2+)). Na(+)/Ca(2+) exchange activity was measured by the giant excised patch-clamp technique with conditions chosen to maximize the extent of Na(+)- and Ca(2+)-dependent ionic regulation so that the effects of variables such as pulse frequency and duration could be optimally discerned. We demonstrate that increasing the frequency or duration of solution pulses leads to a progressive decline in pure outward, but not pure inward, Na(+)/Ca(2+) exchange current. However, when the exchanger is permitted to alternate between inward and outward transport modes, both current modes exhibit substantial levels of inactivation. Changes in regulatory Ca(2+), or exposure of patches to limited proteolysis by alpha-chymotrypsin, reveal that this "coupling" is due to Na(+)-dependent inactivation originating from the outward current mode. Under physiological ionic conditions, however, evidence for modulation of exchange currents by Na(i)(+)-dependent inactivation was not apparent. The current approach provides a novel means for assessment of Na(+)/Ca(2+) exchange ionic regulation that may ultimately prove useful in understanding its role under physiological and pathophysiological conditions.  相似文献   

13.
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na(+) regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na(+) intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na(+) regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na(+) feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na(+) retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD.  相似文献   

14.
We examined the effect of angiotensin II (ANG II) on epithelial Na(+) channel (ENaC) in the rat cortical collecting duct (CCD) with single-channel and the perforated whole cell patch-clamp recording. Application of 50 nM ANG II increased ENaC activity, defined by NP(o) (a product of channel numbers and open probability), and the amiloride-sensitive whole cell Na currents by twofold. The stimulatory effect of ANG II on ENaC was absent in the presence of losartan, suggesting that the effect of ANG II on ENaC was mediated by ANG II type 1 receptor. Moreover, depletion of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM failed to abolish the stimulatory effect of ANG II on ENaC but inhibiting protein kinase C (PKC) abolished the effect of ANG II, suggesting that the effect of ANG II was the result of stimulating Ca(2+)-independent PKC. This notion was also suggested by the experiments in which stimulation of PKC with phorbol ester derivative mimicked the effect of ANG II and increased amiloride-sensitive Na currents in the principal cell, an effect that was not abolished by treatment of the CCD with BAPTA-AM. Also, inhibition of NADPH oxidase (NOX) with diphenyleneiodonium chloride abolished the stimulatory effect of ANG II on ENaC and application of superoxide donors, pyrogallol or xanthine and xanthine oxidase, significantly increased ENaC activity. Moreover, addition of ANG II or H(2)O(2) diminished the arachidonic acid (AA)-induced inhibition of ENaC in the CCD. We conclude that ANG II stimulates ENaC in the CCD through a Ca(2+)-independent PKC pathway that activates NOX thereby increasing superoxide generation. The stimulatory effect of ANG II on ENaC may be partially the result of blocking AA-induced inhibition of ENaC.  相似文献   

15.
Amiloride-sensitive epithelial Na(+) channels (ENaCs) can be formed by different combinations of four homologous subunits, named α, β, γ, and δ. In addition to providing an apical entry pathway for transepithelial Na(+) reabsorption in tight epithelia such as the kidney distal tubule and collecting duct, ENaCs are also expressed in nonepithelial cells, where they may play different functional roles. The δ-subunit of ENaC was originally identified in humans and is able to form amiloride-sensitive Na(+) channels alone or in combination with β and γ, generally resembling the canonical kidney ENaC formed by α, β, and γ. However, δ differs from α in its tissue distribution and channel properties. Despite the low sequence conservation between α and δ (37% identity), their similar functional characteristics provide an excellent model for exploring structural correlates of specific ENaC biophysical and pharmacological properties. Moreover, the study of cellular mechanisms modulating the activity of different ENaC subunit combinations provides an opportunity to gain insight into the regulation of the channel. In this review, we examine the evolution of ENaC genes, channel subunit composition, the distinct functional and pharmacological features that δ confers to ENaC, and how this can be exploited to better understand this ion channel. Finally, we briefly consider possible functional roles of the ENaC δ-subunit.  相似文献   

16.
The epithelial Na(+) channel ENaC is a key player in the maintenance of whole body Na(+) balance, and consequently of blood pressure. It is tightly regulated by numerous signaling pathways including ubiquitylation via the ubiquitin-protein ligase Nedd4-2. This mechanism is itself under the control of several kinases, which phosphorylate Nedd4-2, thereby interfering with ENaC/Nedd4-2 interaction, or by Usp2-45, which binds to and deubiquitylates ENaC. Another, different regulatory mechanism concerns the proteolytic activation of ENaC, during which the channel is cleaved on its luminal side by intracellular convertases such as furin, and further activated by extracellular proteases such as CAP-1. This process is regulated as well but the underlying mechanisms are not understood. Previously, evidence was provided that the ubiquitylation status of ENaC may affect the cleavage of the channel. When ubiquitylation of ENaC was reduced, either by co-expressing Usp2-45, or mutating either the ENaC PY-motifs (i.e. the binding sites for Nedd4-2) or intracellular lysines (i.e. ubiquitylation sites), the level of channel cleavage was increased. Here we demonstrate that lysine-mutated ENaC channels are not ubiquitylated at the cell surface, are preferentially cleaved, and Usp2-45 does not affect their cleavage efficiency. We further show by limited proteolysis that the intracellular ubiquitylation status of ENaC affects the extracellular conformation of αENaC, by demonstrating that non-ubiquitylated channels are more efficiently cleaved when treated with extracellularly added trypsin or chymotrypsin. These results present a new paradigm in which an intracellular, post-translational modification (e.g. ubiquitylation) of a transmembrane protein can affect its extracellular conformation.  相似文献   

17.
Transepithelial transport of Na(+) across the lung epithelium via amiloride-sensitive Na(+) channels (ENaC) regulates fluid volume in the lung lumen. Activators of AMP-activated protein kinase (AMPK), the adenosine monophosphate mimetic AICAR, and the biguanide metformin decreased amiloride-sensitive apical Na(+) conductance (G(Na+)) in human H441 airway epithelial cell monolayers. Cell-attached patch-clamp recordings identified two distinct constitutively active cation channels in the apical membrane that were likely to contribute to G(Na+): a 5-pS highly Na(+) selective ENaC-like channel (HSC) and an 18-pS nonselective cation channel (NSC). Substituting NaCl with NMDG-Cl in the patch pipette solution shifted the reversal potentials of HSC and NSC, respectively, from +23 mV to -38 mV and 0 mV to -35 mV. Amiloride at 1 microM inhibited HSC activity and 56% of short-circuit current (I(sc)), whereas 10 microM amiloride partially reduced NSC activity and inhibited a further 30% of I(sc). Neither conductance was associated with CNG channels as there was no effect of 10 microM pimoside on I(sc), HSC, or NSC activity, and 8-bromo-cGMP (0.3-0.1 mM) did not induce or increase HSC or NSC activity. Pretreatment of H441 monolayers with 2 mM AICAR inhibited HSC/NSC activity by 90%, and this effect was reversed by the AMPK inhibitor Compound C. All three ENaC proteins were identified in the apical membrane of H441 monolayers, but no change in their abundance was detected after treatment with AICAR. In conclusion, activation of AMPK with AICAR in H441 cell monolayers is associated with inhibition of two distinct amiloride-sensitive Na(+)-permeable channels by a mechanism that likely reduces channel open probability.  相似文献   

18.
The amiloride-sensitive epithelial Na(+) channel (ENaC) is essential for fluid clearance from the airways. An experimental animal model with a reduced expression of ENaC, the alpha-ENaC transgenic rescue mouse, is prone to develop edema under hypoxia exposure. This strongly suggests an involvement of ENaC in the pathogenesis of pulmonary edema. To investigate the pathogenesis of this type of edema, primary cultures of tracheal cells from these mice were studied in vitro. An ~60% reduction in baseline amiloride-sensitive Na(+) transport was observed, but the pharmacological characteristics and physiological regulation of the channel were similar to those observed in cells from wild-type mice. Aprotinin, an inhibitor of serine proteases, blocked 50-60% of the basal transepithelial current, hypoxia induced downregulation of Na(+) transport, and beta-adrenergic stimulation was effective to stimulate Na(+) transport after the hypoxia-induced decrease. When downregulation of ENaC activity (such as observed under hypoxia) is added to a low "constitutive" ENaC expression, the resulting reduced Na(+) transport rate may be insufficient for airway fluid clearance and favor pulmonary edema.  相似文献   

19.
Active Na(+) absorption by alveolar ENaC is the main driving force of liquid clearance at birth and lung edema resorption in adulthood. We have demonstrated previously that long-term modulation of KvLQT1 and K(ATP) K(+) channel activities exerts sustained control in Na(+) transport through the regulation of ENaC expression in primary alveolar type II (ATII) cells. The goal of the present study was: 1) to investigate the role of the α-ENaC promoter, transfected in the A549 alveolar cell line, in the regulation of ENaC expression by K(+) channels, and 2) to determine the physiological impact of K(+) channels and ENaC modulation on fluid clearance in ATII cells. KvLQT1 and K(ATP) channels were first identified in A549 cells by PCR and Western blotting. We showed, for the first time, that KvLQT1 activation by R-L3 (applied for 24h) increased α-ENaC expression, similarly to K(ATP) activation by pinacidil. Conversely, pharmacological KvLQT1 and K(ATP) inhibition or silencing with siRNAs down-regulated α-ENaC expression. Furthermore, K(+) channel blockers significantly decreased α-ENaC promoter activity. Our results indicated that this decrease in promoter activity could be mediated, at least in part, by the repressor activity of ERK1/2. Conversely, KvLQT1 and K(ATP) activation dose-dependently enhanced α-ENaC promoter activity. Finally, we noted a physiological impact of changes in K(+) channel functions on ERK activity, α-, β-, γ-ENaC subunit expression and fluid absorption through polarized ATII cells. In summary, our results disclose that K(+) channels regulate α-ENaC expression by controlling its promoter activity and thus affect the alveolar function of fluid clearance.  相似文献   

20.
Efficient clearance of mucus and inhaled pathogens from the lung is dependent on an optimal airway surface liquid (ASL) volume, which is maintained by the regulated transport of sodium and chloride across the airway epithelium. Accumulating evidence suggests that impaired mucus clearance in cystic fibrosis (CF) airways is a result of ASL depletion caused by excessive Na(+) absorption through the epithelial sodium channel (ENaC). However, the cellular mechanisms that result in increased ENaC activity in CF airways are not completely understood. Recently, proteases were shown to modulate the activity of ENaC, but the relevance of this mechanism to the physiologic regulation of ASL volume is unknown. Using primary human airway epithelial cells, we demonstrate that: (i) protease inhibitors are present in the ASL and prevent the activation of near-silent ENaC, (ii) when the ASL volume is increased, endogenous protease inhibitors become diluted, allowing for proteolytic activation of near-silent channels, and (iii) in CF, the normally present near-silent pool of ENaC is constitutively active and the alpha subunit undergoes increased proteolytic processing. These findings indicate that the ASL volume modulates the activity of ENaC by modification of the serine protease-protease inhibitor balance and that alterations in this balance contribute to excessive Na(+) absorption in cystic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号