首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triparanol, an inhibitor of desmosterol Delta24 reductase, produces a high rate of limb malformations in rat fetuses exposed at gestational day 10 (gd 10) to a single oral dose (150-200 mg/kg) given to the pregnant dam. AY9944, another efficient distal inhibitor of cholesterol biosynthesis that blocks dehydrocholesterol Delta7 reductase, produces a similar degree of cholesterol depletion but fewer malformations. Gas liquid chromatography-mass spectrometry (GC-MS) profiling of the sterols in the serum of the dams and in extracted embryos shows that in addition to desmosterol Delta24 reductase inhibition the conversion of Delta8 to Delta7 unsaturated sterols is also blocked by Triparanol. Therefore, the inhibitor induces the accumulation of desmosterol (Delta8 cholesten-3beta-ol, 8-dehydrocholesterol) and zymosterol (Delta8, Delta24 cholestadien-3beta-ol) in embryo tissues. The high concentration of the teratogenic drug assayed in the embryos at three successive gestational days (10-30 micro g/g) is thought to cause the blockade in both Delta24 reductase and Delta8-Delta7 isomerase, which results in the particular profile of aberrant sterols. Comparison of the animal model with human syndromes, including limb osseous and skeleton perturbations, suggests a combination of desmosterol and Delta8 unsaturated sterols as being involved in the deleterious influence on limb bone formation.  相似文献   

2.
THE EFFECT OF HYPOCHOLESTEREMIC AGENTS ON MYELINOGENESIS   总被引:4,自引:1,他引:3  
Abstract— Three drugs known to inhibit biosynthesis of cholesterol, Clofibrate, 20, 25-diazacholesterol and AY-9944 were administered by stomach intubation to suckling rats. At weaning the rats were killed and subcellular fractions, including myelin, were prepared from the brains and spinal cords and analysed for sterol content. Central nervous tissue fractions from Clofibrate-treated rats showed some decrease in total sterols, but the sterol species were qualitatively normal. AY-9944 given to rats caused high amounts of 7-dehydro-cholesterol to accumulate in all brain and spinal cord fractions with the highest amounts (32–38 percent of total sterols) in myelin. In diazasterol-treated rats desmosterol reached 48 per cent of the sterols of myelin. A group of rats was allowed to survive after the final drug intake (21 days) and their brain and spinal cord sterol content followed up to 60 days. At 30 days the proportion of dehydrocholesterol or desmosterol comprised over half the total myelin sterol. By 60 days of age the 7-dehydrocholesterol had almost completely disappeared from all fractions while substantial amounts of desmosterol were retained in myelin. Myelination was retarded by treatment with AY-9944 and 20, 25-diazasterol, possibly by the limited amount of sterols available. The metabolism of the abnormal myelin constituents in drug-treated animals is discussed in relation to the molecular structure of the myelin membrane.  相似文献   

3.
Cholesterol and its precursors, namely 7-dehydrocholesterol, desmosterol and lathosterol are important biochemical markers of cholesterol biosynthesis, and their quantification in body fluids is useful for the diagnosis of cholesterol biosynthesis pathway disorders. A rapid and sensitive gas chromatographic–mass spectrometric method was developed and validated for quantitative analysis of five sterols (cholesterol, 7-dehydrocholesterol, desmosterol, lathosterol and sitosterol) in amniotic fluid. The method was linear for all compounds (r2 > 0.99), and intra and inter-assay coefficients of variation were typically below 5%, and inaccuracy was within a ±12% interval. The method was applied to 330 amniotic fluid samples, grouped by gestational age between 13 and 22 weeks of pregnancy, in order to establish reference intervals for sterols in this specimen. The obtained concentrations (μmol/L) for each sterol was as follows: 22.1758 ± 4.2716 at 13 weeks and 78.5082 ± 12.9041 at 22 weeks for cholesterol; 0.0039 ± 0.0007 at 13 weeks and 0.1150 ± 0.0212 at 22 weeks for 7-dehydrocholesterol; 0.1562 ± 0.0406 at 13 weeks and 0.7691 ± 0.0821 at 22 weeks for desmosterol; 0.0272 ± 0.0035 at 13 weeks and 0.8551 ± 0.1791 at 22 weeks for lathosterol; and 0.0404 ± 0.0039 at 13 weeks and 0.2326 ± 0.0386 at 22 weeks for sitosterol. The method was also applied to one pathological sample that showed decreased levels of cholesterol, and higher concentration of 7-dehydrocholesterol, which is consistent with a 7-dehydrocholesterol-reductase deficiency. Our results showed that as long as pregnancy goes on, the concentrations of cholesterol and precursors increase in amniotic fluid, which is related to the increased need for cholesterol by the fetus. The reference range of each sterol in amniotic fluid was calculated at different gestational ages and will be useful for the interpretation and validation of biochemical prenatal diagnosis of inborn errors of sterol biosynthesis.  相似文献   

4.
The sterol composition of Palaemon adspersus is studied. It is established that the nonsaponifiable fraction of Palaemon adspersus contains cholesterol, 7-dehydrocholesterol, desmosterol, substance "240" and inconsiderable amounts of other still nonidentified sterols.  相似文献   

5.
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.  相似文献   

6.
Phospholipids and sterols are known to have multiple functions in reproductive tissue of mammals. High concentrations of the cholesterol precursor desmosterol have been described in testis, epididymis, and spermatozoa of various species. These findings and the recent discovery of some cholesterol precursors as meiosis-activating sterols suggest important functions of cholesterol precursors in fertility. Many sterol intermediates appear from the 19-step conversion of lanosterol, the first sterol synthesized in the cascade of cholesterol synthesis, to cholesterol. The biochemical basis of the genetically inherited Smith-Lemli-Opitz syndrome has been described as a defective conversion of 7-dehydrocholesterol to cholesterol. Since this discovery, interest has focused on this special cholesterol precursor. Here, we report high concentrations of 7- and 8-dehydrocholesterol in caput epididymidis and spermatozoa derived from caput epididymidis of Sprague-Dawley and Wistar rats, which comprised up to 30% of total sterols. In contrast to caput epididymidis, 7- and 8-dehydrocholesterol were barely detected in cauda epididymidis or testis. Desmosterol increased several times from caput to cauda epididymidis.This is the first report of the natural appearance of high concentrations of dehydrocholesterols in mammalian tissue, and it underlines the putative importance of cholesterol precursors in reproductive tissue.  相似文献   

7.
Cholesterol crystals treated with an aqueous solution of sodium oleate give rise to cylindrical lamellar associations which appear under the microscope as rapidly growing tubes. Myelin forms are also obtained with other membrane sterols (desmosterol, cholestanol, 7-dehydrocholesterol) but not with lanosterol, a metabolic precursor of cholesterol, nor with the catabolic products of cholesterol (coprosterol, cholecalciferol, pregnenolone). The structural requirements for obtaining myelin tubes from sterols and sodium oleate closely agree with the results obtained by studying sterol-lecithin associations using other experimental techniques (unimolecular films at the air/water interface and permeability of liposomes), association of sterols with an erythrocyte protein and cholesterol liquid crystals.  相似文献   

8.
Eukaryotic cells require sterols to achieve normal structure and function of their plasma membranes, and deviations from normal sterol composition can perturb these features and compromise cellular and organism viability. The Smith-Lemli-Opitz syndrome (SLOS) is a hereditary metabolic disease involving cholesterol (CHOL) deficiency and abnormal accumulation of the CHOL precursor, 7-dehydrocholesterol (7DHC). In this study, the interactions of CHOL and the related sterols desmosterol (DES) and 7DHC with l-alpha-dipalmitoylphosphatidylcholine (DPPC) monolayers were compared. Pressure-area isotherms and fluorescence microscopy were used to study DPPC monolayers containing 0, 10, 20, or 30 mol% sterol. Similar behavior was noted for CHOL- and DES-containing DPPC monolayers with both techniques. However, while 7DHC gave isotherms similar to those obtained with the other sterols, microscopy indicated limited domain formation with DPPC, indicating that 7DHC packs somewhat differently in DPPC membranes compared to CHOL and DES. These results are discussed in relation to SLOS pathobiology.  相似文献   

9.
LM cell growth and membrane lipid adaptation to sterol structure   总被引:2,自引:0,他引:2  
Using a sterol auxotroph of the LM cell mouse fibroblast, we demonstrate that relatively few cholesterol analogues can substitute for cholesterol as a growth factor. The auxotroph grows normally on desmosterol and trans-22-dehydrocholesterol and at reduced rates on dihydrocholesterol, campesterol, and 22,23-dihydrobrassicasterol. It does not grow with beta-sitosterol, stigmasterol, ergosterol, or cis-22-dehydrocholesterol when the sterol is present as sole supplement but does grow at normal rates when the analogue is supplied with suboptimal amounts of cholesterol. Two contrasting types of membrane lipid changes are observed in cells grown on cholesterol analogues. In cells grown with dihydrocholesterol, a marked increase in desaturation and elongation of fatty acids is noted. Conversely, when cells are grown with cis-22-dehydrocholesterol, desaturation and elongation of fatty acids are severely curtailed. Cells grown on alkyl sterols respond like cells grown on cis-22-dehydrocholesterol but in a less pronounced fashion. The effects of sterol substitution in mammalian cells versus in lower eukaryotes are compared, and an explanation for the secondary changes in fatty acid composition in terms of phospholipid phase behavior is suggested.  相似文献   

10.
Biosynthesis of squalene and sterols by rat aorta   总被引:1,自引:0,他引:1  
The synthesis of nonsaponifiable compounds from radioactive mevalonate by segments of adult rat aorta was studied in vitro. The labeled products consisted largely of substances with the chromatographic and chemical behavior of squalene, lanosterol, lathosterol, and cholesterol. Even after 3 or 4 hr of incubation, the incorporation of mevalonate into squalene was higher than its incorporation into C(27) sterols; cholesterol contained less than 20% of the radioactivity in the total sterols. Lanosterol was the most highly labeled sterol. The level of radioactivity in lathosterol was comparable to the level in cholesterol. Small amounts of radioactivity were found in other sterols. Material with the same mobility on TLC as 7-dehydrocholesterol had less radioactivity than cholesterol, but more than sterols with the mobility of desmosterol. The results of measurements made after short periods of incubation showed that squalene and lanosterol became labeled before the other nonsaponifiable compounds.  相似文献   

11.
Cytochrome P450 (P450 or CYP) 46A1 is expressed in brain and has been characterized by its ability to oxidize cholesterol to 24S-hydroxycholesterol. In addition, the same enzyme is known to further oxidize 24S-hydroxycholesterol to the 24,25- and 24,27-dihydroxy products, as well as to catalyze side-chain oxidations of 7α-hydroxycholesterol and cholestanol. As precursors in the biosynthesis of cholesterol, 7-dehydrocholesterol has not been found to be a substrate of P450 46A1 and desmosterol has not been previously tested. However, 24-hydroxy-7-dehydrocholesterol was recently identified in brain tissues, which prompted us to reexamine this enzyme and its potential substrates. Here we report that P450 46A1 oxidizes 7-dehydrocholesterol to 24-hydroxy-7-dehydrocholesterol and 25-hydroxy-7-dehydrocholesterol, as confirmed by LC-MS and GC-MS. Overall, the catalytic rates of formation increased in the order of 24-hydroxy-7-dehydrocholesterol < 24-hydroxycholesterol < 25-hydroxy-7-dehydrocholesterol from their respective precursors, with a ratio of 1:2.5:5. In the case of desmosterol, epoxidation to 24S,25-epoxycholesterol and 27-hydroxylation was observed, at roughly equal rates. The formation of these oxysterols in the brain may be of relevance in Smith-Lemli-Opitz syndrome, desmosterolosis, and other relevant diseases, as well as in signal transduction by lipids.  相似文献   

12.
Insects are unable to synthesize sterols and require exogenous sterol sources for their normal development and reproduction. A few exceptions are insects associated with symbiotic yeasts or fungi. We analyzed sterols by GC-MS in two anobiid beetles (Lasioderma serricorne and Stegobium paniceum), their intracellular yeast-like symbiotes (YLS), and their diets in order to clarify the sterols synthesized by YLS and the metabolic pathways of the sterols in the beetles. Several C(27), C2(8), and C(29) saturated and unsaturated sterols were identified; the predominant sterols were cholesterol and 7-dehydrocholesterol in the anobiid beetles and ergosterol in the YLS. Most sterols detected in YLS were those known in the late pathway of the ergosterol biosynthesis in yeasts and most of the sterols in the beetles appear to be intermediate metabolites from YLS sterols to 7-dehydrocholesterol. The anobiid beetles appear to use ergosterol and 5-dihydroergosterol as sources for 7-dehydrocholesterol.  相似文献   

13.
The ability of sterols other than cholesterol (CHOL) to support membrane functions in membranes that normally contain CHOL as the primary, if not sole, sterol may be due, in part, to how well such sterols can mimic CHOL's behavior and physical properties in membranes. We compared the mixing properties of CHOL, 7-dehydrocholesterol (7DHC), and desmosterol (DES) in egg phosphatidylcholine-sterol monolayer films containing 10, 20, and 30 mol percent sterol, measuring pressure-area isotherms on a Langmuir-Blodgett trough with the aqueous, buffered subphase maintained at 37 degrees C. Under the conditions employed, the pressure-area isotherms for all three sterols were similar, with 7DHC exhibiting slightly larger molecular areas on the water surface at all compositions. These results are discussed in the context of the ability of sterols such as 7DHC and DES to substitute structurally and functionally for CHOL in biological membranes.  相似文献   

14.
Lateral pressure profiles have been suggested to play a significant role in many cellular membrane processes by affecting, for example, the activation of membrane proteins through changes in their conformational state. This may be the case if the lateral pressure profile is altered due to changes in molecular composition surrounding the protein. In this work, we elucidate the effect of varying sterol type on the lateral pressure profile, an issue of topical interest due to lipid rafts and their putative role for membrane protein functionality. We find that the lateral pressure profile is altered when cholesterol is replaced by either desmosterol, 7-dehydrocholesterol, or ketosterol. The observed changes in the lateral pressure profile are notable and important since desmosterol and 7-dehydrocholesterol are the immediate precursors of cholesterol along its biosynthetic pathway. The results show that the lateral pressure profile and the resulting elastic behavior of lipid membranes are sensitive to the sterol type, and support a mechanism where changes in protein conformational state are facilitated by changes in the lateral pressure profile. From a structural point of view, the results provide compelling evidence that despite seemingly minor differences, sterols are characterized by structural specificity.  相似文献   

15.
The biochemical quantification of sterols in insects has been difficult because only small amounts of tissues can be obtained from insect bodies and because sterol metabolites are structurally related. We have developed a highly specific and sensitive quantitative method for determining of the concentrations of seven sterols—7-dehydrocholesterol, desmosterol, cholesterol, ergosterol, campesterol, stigmasterol, and β-sitosterol—using a high performance liquid chromatography–atmospheric pressure chemical ionization–tandem mass spectrometry (HPLC/APCI-MS/MS). The sterols were extracted from silkworm larval tissues using the Bligh and Dyer method and were analyzed using HPLC/APCI-MS/MS with selected reaction monitoring, using cholesterol-3,4-13C2 as an internal standard. The detection limits of the method were between 12.1 and 259 fmol. The major sterol in most silkworm larval tissues was cholesterol, whereas only small quantities of the dietary sterols were detected. Thus, a simple, sensitive, and specific method was successfully developed for the quantification of the sterol concentrations in each tissue of an individual silkworm larva. This method will be a useful tool for investigating to molecular basis of sterol physiology in insects, facilitating the quantification of femtomole quantities of sterols in biological samples.  相似文献   

16.
Smith-Lemli-Opitz syndrome (SLOS) is a hereditary disorder in which a defective gene encoding 7-dehydrocholesterol reductase causes the accumulation of noncholesterol sterols, such as 7- and 8-dehydrocholesterol. Using rigorous analytical methods in conjunction with a large collection of authentic standards, we unequivocally identified numerous noncholesterol sterols in 6 normal and 17 SLOS blood samples. Plasma or erythrocytes were saponified under oxygen-free conditions, followed by multiple chromatographic separations. Individual sterols were identified and quantitated by high performance liquid chromatography (HPLC), Ag(+)-HPLC, gas chromatography (GC), GC-mass spectrometry, and nuclear magnetic resonance. As a percentage of total sterol content, the major C(27) sterols observed in the SLOS blood samples were cholesterol (12;-98%), 7-dehydrocholesterol (0.4;-44%), 8-dehydrocholesterol (0.5;-22%), and cholesta-5,7,9(11)-trien-3beta-ol (0.02;-5%), whereas the normal blood samples contained <0.03% each of the three noncholesterol sterols. SLOS and normal blood contained similar amounts of lathosterol (0.05;-0.6%) and cholestanol (0.1;-0.4%) and approximately 0.003;-0.1% each of the Delta(8), Delta(8(14)), Delta(5,8(14)), Delta(5,24), Delta(6,8), Delta(6,8(14)), and Delta(7,24) sterols.The results are consistent with the hypothesis that the Delta(8(14)) sterol is an intermediate of cholesterol synthesis and indicate the existence of undescribed aberrant pathways that may explain the formation of the Delta(5,7,9(11)) sterol. 19-Norcholesta-5,7,9-trien-3beta-ol was absent in both SLOS and normal blood, although it was routinely observed as a GC artifact in fractions containing 8-dehydrocholesterol. The overall findings advance the understanding of SLOS and provide a methodological model for studying other metabolic disorders of cholesterol synthesis.  相似文献   

17.
The resumption of meiosis is regulated by meiosis-preventing and meiosis-activating substances in testes and ovaries. Certain C29 precursors of cholesterol are present at elevated levels in gonadal tissue, but the mechanism by which these meiosis-activating sterols (MAS) accumulate has remained an unresolved question. Here we report that progestins alter cholesterol synthesis in HepG2 cells and rat testes to increase levels of major MAS (FF-MAS and T-MAS). These C29 sterols accumulated as a result of inhibition of Delta24-reduction and 4alpha-demethylation. Progesterone, pregnenolone, and 17alpha-OH-pregnenolone were potent inhibitors of Delta24-reduction in an in vitro cell assay and led to the accumulation of desmosterol, a Delta5,24 sterol precursor of cholesterol. A markedly different effect was observed for 17alpha-OH-progesterone, which caused the accumulation of sterols associated with inhibition of 4alpha-demethylation. The flux of 13C-acetate into lathosterol and cholesterol was decreased by progestins as measured by isotopomer spectral analysis, whereas newly synthesized MAS accumulated. The combined evidence that MAS concentrations can be regulated by physiological levels of progestins and their specific combination provides a plausible explanation for the elevated concentration of MAS in gonads and suggests a new role for progestins in fertility.  相似文献   

18.
An inhibition of human fibroblast sphingomyelinase by cholesterol and 7-dehydrocholesterol is shown. This effect is obtained for cholesterol and 7-dehydrocholesterol/sphingomyelin molar ratios above 0.1. Diffusion measurements performed on mixed liposomes demonstrated for cholesterol/sphingomyelin and 7-dehydrocholesterol/sphingomyelin molar ratios above 0.1 a sharp increase in diffusion intensity. The mechanism of the inhibition of sphingomyelinase by sterols is discussed in relation to the physical state of the substrate. A possible involvement of this phenomenon in sphingomyelin accumulation observed in aging or in atheroma is discussed.  相似文献   

19.
The ESR of 7- and 16-doxylstearic spin-labeled fatty acids (7NS and 16NS, respectively) reveal the distinct influence of cholesterol or cholesterol precursor analogue, delta7-dehydrocholesterol, on the molecular ordering and the fluidity of lipid mixtures containing sphingomyelin (SM). The phase-separation of sphingomyelin domains mixed within fluid glycerophospholipids (phosphatidylethanolamine and phosphatidylserine) can be followed by ESR as a function of the temperature and in the presence of sterols [cholesterol (CHOL) or 7-dehydrocholesterol (DHCHOL)]. The time scale of spin-label exchange among phases is appropriate to follow the occurrence of the specific sphingomyelin/sterol association forming liquid ordered (Lo) microdomains which separate from the fluid surrounding phase Lalpha. Sphingomyelin embedded within the fluid bilayer associates with both sterols below 36 degrees C to give a phase Lo traceable by ESR in the form of a highly anisotropic component. Above 36 degrees C, the contribution in the ESR spectrum, of the Lo phase formed by 7-dehydrocholesterol with sphingomyelin is reduced by contrast with cholesterol forming a temperature-stable liquid ordered phase up to 42 degrees C. The consequences of this destabilization of the SM/sterol microdomains are envisioned in the biosynthesis defect where the precursor 7-dehydrocholesterol substitutes, for a significant part, the embryonic cell cholesterol.  相似文献   

20.
In rat sciatic nerve, the 7-dehydrocholesterol content decreased dramatically during the postnatal period and slowly during adulthood and aging. In contrast, the 7-dehydrodesmosterol content peaked at 14 days and was nearly undetectable after 60 days. The desmosterol content peaked at 21 days and was nearly undetectable after 1 year. The cholesterol content increased up to 21 days and remained nearly constant thereafter. In brain (in contrast to sciatic nerve), 7-dehydrodesmosterol and desmosterol contents decreased dramatically during development and slightly during adulthood and aging; the 7-dehydrocholesterol content peaked at 21 days and remained constant during aging. Only 7-dehydrocholesterol was dramatically more concentrated in PNS than in CNS. In brain, the cholesterol/7-dehydrocholesterol ratio increased during development and remained stable after 6 months. In contrast, in sciatic nerve, this ratio continuously increased during development and aging (950-fold between 5 days and 18 months). Thus, the cholesterol/7-dehydrocholesterol ratio is a useful biochemical index of development and aging in the PNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号