首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbits were immunized with TNP-specific Lyt-1+, 2- T cell-derived, antigen-binding proteins (PCI-F) released by T cells sensitized by skin painting with picrylchloride. The resulting antiserum (anti-PCI-F) bound to PCI-F and TNP-specific factors that suppressed delayed hypersensitivity (TSF) known to be comprised of PCI-F and Lyt-2+ -derived polypeptides released by cells sensitized by injection of trinitrobenzenesulfonic acid (TNBSF). Anti-PCI-F bound to T lymphocytes and 68,000 to 72,000 m.w. T cell surface proteins but not B cells on their surface proteins. Anti-PCI-F bound to both Lyt-1+ and Lyt-2+ T cells and surface proteins. A comparison of anti-PCI-F with anti-TSF indicates that anti-TSF contains specificity for Ly-2+ T cell-derived components of TSF and T cells not present in anti-PCI-F. The possibility of multiple isotypes of T cell receptors and antigen-binding molecules is discussed.  相似文献   

2.
The interaction between Newcastle disease virus (NDV) and the suppressor cell circuit which regulates the induction phase of contact sensitivity reaction to picryl chloride (Pcl) was investigated. NDV infection impairs the activity of the T suppressor afferent cells (Ts-aff) which inhibit DNA synthesis in the draining lymph nodes of mice specifically sensitized with Pcl and the development of contact sensitivity. The inhibitory effect of NDV was evident when the virus was administered up to 2 days before or at the same time as the injection of picrylsulfonic acid; this effect required infectious virus, as NDV inactivated by ultraviolet irradiation failed to inhibit Ts-aff activity. Taken together with the previous finding that the T suppressor efferent cell is unaffected by NDV, the present results support the view that contact sensitivity reaction to picryl chloride is regulated by two distinct T-suppressor-cell circuits.  相似文献   

3.
In a previous study, we established CD8+ suppressor T cell (Ts) clone 13G2 which produced the suppressive lymphokine, interleukin-10 (IL-10). In this study, we examined what physiological activator could induce both production of IL-10 from 13G2 and the proliferation of 13G2. Both the antigenic stimulation mimicked by the anti-CD3 antibody and the T cell growth factor interleukin-2 (IL-2) induced IL-10 production from the 13G2 clone equally well. 13G2 cells proliferated remarkably with IL-2 stimulation, while anti-CD3 only slightly induced proliferation of the clone. 13G2 cells also produced IL-10 in the presence of hydroxyurea which blocked transit of cells from G1 to S phase. However, cycloheximide blocked the production of IL-10 from the Ts clone. The study demonstrates that both the anti-CD3 antibody and IL-2 induced IL-10 synthesis of the Ts clone equally well, and the proliferative response of Ts cells was induced more by IL-2 than by anti-CD3. IL-2 proved to be a good stimulator for Ts cells to produce suppressive lymphokine and to multiply their population.Abbreviation Ts suppressor T cell - Th helper T cell - Ag antigen - APC antigen presenting cell - IL interleukin - TCR T cell receptor - mAb monoclonal antibody  相似文献   

4.
Mice primed with picrylsulfonic acid (PSA) and then painted on the skin with picryl chloride produce antigen-specific T suppressor factor (TsF). In contrast unpainted primed mice fail to produce active TsF. This is not due to the absence of the antigen binding part of TsF but to the absence of a cofactor. This cofactor is (a) antigen nonspecific and occurs in potassium chloride extract of normal spleen cells. It also occurs in the 24 hr supernatant of normal cells modified by haptenisation with picryl or the unrelated NP antigen (4-hydroxy-3-nitrophenylacetyl), and in preparations of conventional TsF (PSA/PCl) from painted PSA-primed mice; (b) bears I-J determinants; and (c) is produced by Lyt-1+2(-)I-J+ cells. The antigen binding molecule occurs alone in the supernatant of PSA-primed mice. It lacks I-J determinants and has a molecular weight around 35,000 and 75,000. It is produced by Lyt-1(-)2+I-J+ cells and is only active when complemented by cofactor. However, the complementation is genetically restricted and the restriction maps to the I-J subregion of the MHC.  相似文献   

5.
B cell stimulatory factor 1 (BSF-1) (IL-4) was shown to synergize with phorbol esters or with monoclonal anti-TCR antibody in stimulation of the development of CTL from small resting murine T cells. IL-2 also synergized with PMA in such differentiation but was less effective than BSF-1. The combination of these two lymphokines with PMA had the most potent effect on the development of CTL. BSF-1 plus PMA stimulated a significant increase in the intracellular content of N-benzyloxycarbonyl-L-lysine thiobenzylester esterase, a granule-associated biochemical marker, whereas IL-2 plus PMA was only marginally effective. Depletion of L3T4+ cells did not result in the abrogation of these effects. Lyt-2+ T cells that were incubated for 72 h with BSF-1 plus PMA accumulated N-benzyloxycarbonyl-L-lysine thiobenzylester esterase and secreted this intragranular marker after interaction with immobilized anti-T cell receptor mAb. These BSF-1/PMA-stimulated Lyt-2+, L3T4- T cells were also able to kill FcR positive target cells in a retargeting assay with a mAb to murine T3 Ag, providing evidence that BSF-1 plus PMA acted directly on precursors of cytotoxic T cells.  相似文献   

6.
A monoclonal antibody (3C-7) specific for a determinant localized on the carboxy-terminus of the BSA molecule (P505-582) has been shown to cause suppression of the multispecific BSA antibody response if given i.v. before immunization. The fine binding specificity and the isotype subclass are not responsible for the suppression generated. Administration of 3C-7 i.v. results in the generation of a suppressor T cell that, when transferred into reconstituted irradiated mice, results in a diminished anti-BSA response. Suppression can be eliminated by panning T cells on idiotype (3C-7) coated plates, but not by panning on BSA, polyclonal anti-BSA antibodies, or MOPC 21. The action of the cell is antigen (BSA) specific. Idiotype-binding T cells reconstitute suppression and appear to be Lyt-1-2+. These observations demonstrate that a limited set of monoclonal antibodies directed against a single determinant on a protein molecule have the capacity to regulate the immune response to a multiplicity of determinants present on the same protein. These data support the concept of antibody-induced regulation by the induction of suppressor cells through idiotype recognition.  相似文献   

7.
The passive transfer of contact sensitivity (CS) by immune cells into normal animals requires the interaction of two distinct Ly-1+ T cells, one which is Vicia villosa lectin (VV)-nonadherent, the other which adheres to VV. Functional deletion of either cell type abrogates the adoptive transfer of CS into normal animals, whereas VV-nonadherent cells alone can transfer CS into animals pretreated with cyclophosphamide (Cy). An antigen-specific T suppressor factor, designated TNP-TsF, inhibits the transfer of CS into normal adoptive recipients. TNP-TsF mediates its suppressive activity by inducing an I-J+ subfactor (designated I-J2) from the assay population by the interaction of PC1-F (a TNP-binding subfactor of TNP-TsF) with antigen-primed Ly-2+ T cells. This I-J+ subfactor then complements TNBS-F (an antigen-nonbinding subfactor of TNP-TsF) to form an antigen-nonspecific effector molecule which suppresses DTH responses in an antigen-nonspecific fashion. We report here that TNP-TsF suppresses the adoptive transfer of CS into normal animals but not into animals pretreated with Cy. TNBS-F + I-J2, the effector complex of TNP-TsF, also suppresses the transfer of CS into normal but not Cy-treated animals. When the Ly-1 immune cells were separated into VV-adherent and -nonadherent populations, the TNBS-F + I-J2 suppressor complex suppressed the functional activity of the VV-adherent cell population, but not the VV-nonadherent cells. This suppressive activity correlates with the need for VV-adherent cells in the transfer of CS into normal but not Cy-treated recipients. When an I-J+ molecule (I-J1) from an SRBC-specific TsF was used in place of I-J2 to form a suppressor complex with TNBS-F, this TNBS-F + I-J1 TsF suppressed the transfer of CS into both normal and Cy-treated recipients. This difference in functional suppressive activity correlated with a difference in target cell specificity: TNBS-F + I-J1 suppressed the VV-nonadherent TDTH cell, whereas TNBS-F + I-J2 suppressed the VV-adherent T cell of CS. Immune cells which are transferred under conditions which do not require the VV-adherent cell for transfer are not suppressed by TNBS-F + I-J2 or TNP-TsF, but are suppressed by the TNBS-F + I-J1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The T suppressor efferent circuit in the picryl (TNP) system, which inhibits the passive transfer of contact sensitivity, involves at least two antigen-nonspecific factors. The second nonspecific T suppressor factor (ns-2) bears I-A determinants of both the alpha and the beta chain as shown by affinity chromatography on immobilized anti-I-A monoclonal antibodies. Sequential absorption shows that the determinants of the alpha and beta chain occur on the same molecular complex. No absorption was obtained with anti-I-E antibody. There are two genetic restrictions associated with ns-2--the first is in its release from the second T suppressor efferent cell (on exposure to antigen) and the second is in its inhibitory interaction with its target cell. Both are MHC restricted and matching in I-A (but not I-E, or I-J) is sufficient. The question was asked whether the I-A of the ns-2 was directly responsible for the I-A genetic restriction in its action. F1 TsF was made in (H-2k X H-2b)F1 mice by injecting picrylated parental cells intravenously and triggering the release of ns-2 with the corresponding picrylated parental cells. Both I-Ak- and I-Ab-positive ns-2 were produced and were separated by affinity chromatography on immobilized anti-I-A monoclonal antibody. The I-A phenotype of these separated ns-2 of F1 origin determines the genetic restriction in their action; i.e., I-Ak+ ns-2 only inhibits passive transfer by H-2k cells and I-Ab+ ns-2 only acts on H-2b cells. In contrast, the I-A haplotype of the picrylated cell used to induce the Ts cell which makes ns-2 is unimportant. It was concluded that the I-A on the ns-2, and not a possible recognition site for I-A, serves as a restriction element. This finding suggests that ns-2 may act directly on the I-A-restricted T cell which mediates contact sensitivity.  相似文献   

9.
We studied the mode of action of the nonspecific T suppressor factor (nsTsF-1) made in the picryl (TNP) system when T acceptor cells armed with antigen-specific TsF are triggered by antigen in the context of I-J. This suppressor factor does not inhibit the passive transfer of contact sensitivity directly, as shown by its failure to inhibit passive transfer by immune cells deprived of I-A+ cells. Its immediate target is an immune, antigen-specific, Ly-1+2-, I-A+ T cell. This cell, which may be regarded as a T suppressor effector cell (Ts-eff-2), produces nsTsF-2 when exposed sequentially to nsTsF-1 and antigen. This nsTsF subsequently inhibits the passive transfer of contact sensitivity. The action of nsTsF-2 is MHC genetically restricted. As the nsTsF-2 bears I-A determinant(s), this raises the possibility that it may act by combining with the recognition site for I-A on the T cell that mediates contact sensitivity.  相似文献   

10.
Lyt-1+2+ hapten-specific T suppressor cells (Ts) from mice injected and then painted with picryl or oxazolone derivatives produce hapten-specific T suppressor factors (TsF) in vitro. Stimulation by painting with contact sensitizer (which need not be specific) gives rise to Lyt-1-2+, I-J+, cyclophosphamide-sensitive T acceptor cells (Tacc). When the Tacc population is armed with TsF and then is exposed to specific antigen in the context of I-J-controlled determinants (antigen-presenting, haptenized spleen cells and Ts sharing the same I-J subregion), a nonspecific inhibitor of DNA synthesis (nsINH) appears in the supernatant. This inhibitor suppresses the primary DNA synthetic response to concanavalin A, lipopolysaccharide, and alloantigens in both syngeneic and allogeneic lymphocytes. The nsINH is only effective when added to lymphocyte cultures less than 8 hr after the stimulation with concanavalin A. The nsINH, however, affects neither primary nor secondary cytotoxicity in vitro. These data suggest the mouse immune system is capable of selective regulation of the response to specific antigen by the production of nonspecific soluble suppressor factor(s).  相似文献   

11.
This report defines a methodology for the production and characterization of an antigen-specific, monoclonal T cell hybrid-derived suppressor T cell factor (TsF) that suppresses the passive transfer of 2,4-dinitrofluorobenzene (DNFB) contact hypersensitivity. Fusion of T cells from BALB/c (H-2d) mice tolerized with syngeneic DNP-spleen cells to BW 5147 thymoma cells resulted in several hybrids that constitutively produce a soluble regulatory molecule. One of these hybrids, 26.10.2, was subsequently cloned, and its soluble factor was characterized with respect to its antigen specificity, biochemical nature, MHC restriction pattern, and identity of its target cell. 26.10.2 TsF suppresses the passive transfer of delayed-type hypersensitivity (DTH) mediated by DNP- but not trinitrochlorobenzene- or oxazalone-primed DTH T cells (TDH) after a 1 hr incubation at 37 degrees C. In contrast, 26.10.2 TsF had no suppressive effect on secondary in vitro DNP-specific T cell proliferative responses. 26.10.2 TsF therefore represents an antigen-specific factor with effector (efferent-acting) function. The monoclonal TsF was shown to consist of a two-chain, disulfide-bonded molecule, and to bear a receptor(s) specific for DNP and determinants encoded by the I region of the H-2 complex. Effector suppressive activity of 26.10.2 TsF was restricted by Class I H-2Dd determinants. One cellular target of this monoclonal factor was shown to be the DNP-specific TDH cell, because DNFB-primed lymph node cells from cyclophosphamide-pretreated donors (lacking Ts-auxiliary (Ts-aux) cells) were efficiently suppressed. The TsF appears to focus on passively bound, TDH receptor-associated, DNP-Class I determinants, as suggested by the observation that freshly prepared, but not overnight cultured, DNP-specific TDH cells were susceptible to suppression.  相似文献   

12.
13.
Recognition that delayed-type hypersensitivity (DTH) reactions, such as contact sensitivity (CS) in mice, are initiated by Ly-1+ T cell-derived, antigen-specific factors has led to identification of a new kind of suppressor T cell that regulates this initiation phase of CS. Regulation by these suppressor T cells is T cell isotype-like in that initiation of DTH of various antigenic specificities is suppressed, whereas, Ly-1+ T cells mediating the antigen/major histocompatibility complex-restricted, classic delayed phase of CS responses are not affected, nor are other T cell activities. This study shows that these isotype-specific suppressor T cells probably act by release of soluble, isotype-specific, suppressor factors. These isotype-specific T cell factors bind to and can be eluted from columns linked with antigen-specific Ly-1+ T cell factors that initiate CS, and are of different antigen specificities. These T cell regulating, anti-isotypic suppressor factors are derived from Lyt-2+ I-J- T cells and suppress CS-initiating T cells, but do not affect the delayed-acting T cells of CS. This is in contrast with antigen-specific T cell suppressor factors that affect the late-acting and not the early-acting T cells of CS. It is suggested that the antigen-binding, CS-initiating, T cell factors, and their regulatory, anti-isotypic T cell factors are, respectively, T cell analogues of immunoglobulin(Ig)E antibody, and IgE-binding factors, that regulate IgE antibody production by IgE+ B cells.  相似文献   

14.
Cytokines play a crucial role in the maintenance of polyclonal naive and memory T cell populations. It has previously been shown that ex vivo, the IL-7 cytokine induces the proliferation of naive recent thymic emigrants (RTE) isolated from umbilical cord blood but not mature adult-derived naive and memory human CD4(+) T cells. We find that the combination of IL-2 and IL-7 strongly promotes the proliferation of RTE, whereas adult CD4(+) T cells remain relatively unresponsive. Immunological activity is controlled by a balance between proliferation and apoptotic cell death. However, the relative contributions of IL-2 and IL-7 in regulating these processes in the absence of MHC/peptide signals are not known. Following exposure to either IL-2 or IL-7 alone, RTE, as well as mature naive and memory CD4(+) T cells, are rendered only minimally sensitive to Fas-mediated cell death. However, in the presence of the two cytokines, Fas engagement results in a high level of caspase-dependent apoptosis in both RTE as well as naive adult CD4(+) T cells. In contrast, equivalently treated memory CD4(+) T cells are significantly less sensitive to Fas-induced cell death. The increased susceptibility of RTE and naive CD4(+) T cells to Fas-induced apoptosis correlates with a significantly higher IL-2/IL-7-induced Fas expression on these T cell subsets than on memory CD4(+) T cells. Thus, IL-2 and IL-7 regulate homeostasis by modulating the equilibrium between proliferation and apoptotic cell death in RTE and mature naive and memory T cell subsets.  相似文献   

15.
A new T cell molecule defined by the mAb 143-4-2 has been identified that is involved in T cell activation. The expression of the 143-4-2-defined epitope is linked to the previously characterized Ly-6 locus and restricted to bone marrow cells and to a subset of peripheral Lyt-2+ cells. In comparison to other anti-Ly-6.2 mAb, the 143-4-2 mAb appears to be directed at an allogeneic determinant of the Ly-6.2C molecule. The anti-Ly-6.2C antibody can promote the lysis of antigen-non-bearing target cells by alloreactive CTL clones, and in the presence of cofactors (PMA or IL 2) induces a subset of Lyt-2+ cells to proliferate, perhaps through an autocrine pathway. Although the antibody described has antigen-like effects as described for anti-TcR complex reagents, studies performed with a recently derived anti-murine T3 mAb suggest that the Ly-6.2C molecule is not associated on the cell surface with components of the TcR complex. Nevertheless, cell surface expression of the TcR complex is required for optimal triggering of T cells via the Ly-6.2C molecule. Because Ly-6.2C determinants are expressed in bone marrow and not in the thymus, the possibility is considered that expression of this molecule identifies a distinct subset of extrathymically derived T cells.  相似文献   

16.
The explosive sensitivity upon the formation of molecule-cation interaction between the nitro group of 3,4-dinitropyrazole (DNP) and H+, Li+, Na+, Be2+ or Mg2+ has been investigated using the B3LYP and MP2(full) methods with the 6-311++G** and 6-311++G(2df,2p) basis sets. The bond dissociation energy (BDE) of the C3–N7 trigger bond has also been discussed for the DNP monomer and the corresponding complex. The interaction between the oxygen atom of nitro group and H+ in DNP…H+ is partly covalent in nature. The molecule-cation interaction and bond dissociation energy of the C3–N7 trigger bond follow the order of DNP…Be2+ > DNP…Mg2+ > DNP…Li+ > DNP…Na+. Except for DNP…H+, the increment of the trigger bond dissociation energy in comparison with the DNP monomer correlates well with the molecule-cation interaction energy, natural charge of the nitro group, electron density ρ BCP(C3–N7), delocalization energy E (2) and NBO charge transfer. The analyses of atoms in molecules (AIM), natural bond orbital (NBO) and electron density shifts have shown that the electron density of the nitro group shifts toward the C3–N7 trigger bond upon the formation of the molecule-cation interaction. Thus, the trigger bond is strengthened and the sensitivity of DNP is reduced.  相似文献   

17.
C3a derived from the third component of human complement was found to suppress in vitro murine anti-SRBC responses. C3a-mediated suppression occurs through the generation of nonspecific Lyt-2+ suppressor T cells. The generation of suppressor cells occurs at an early phase in the response because incubation of naive T cells with C3a for as little as 30 min results in suppression of the anti-SRBC response. The generation of suppressor T cells requires the interaction of T cells, C3a, and a Sephadex G-10-adherent cell, presumably a macrophage. Although the mechanism of action of these suppressor cells has not been elucidated, several possibilities have been eliminated. C3a-suppressor T cells do not apparently release inhibitory lymphokines, nor is helper cell activity inhibited by a 2-day co-culture with these suppressor cells. The observation that interleukin 2 (IL 2)-containing lymphokine preparations could overcome C3a-induced suppression led us to investigate the interaction of the suppressors with IL 2 producer cells. However, neither C3a nor C3a-generated suppressor T cells can block the synthesis of IL 2.  相似文献   

18.
CD28 is an Ag of 44-kDa Mr that is expressed on the membrane of the majority of human T cells and that is recognized by mAb 9.3. The functional effects of mAb 9.3 on peripheral blood T cells were studied. mAb 9.3 was not mitogenic, unless it was combined with PMA. When CD28 was cross-linked after binding of mAb 9.3 to the T cell by immobilized or soluble anti-mouse IgG, T cells proliferated in response to rIL-2, provided that monocytes were also present. The additional signal required for IL-2 responsiveness after cross-linking of CD28 could also be delivered in cultures of purified T cells by a cellfree monocyte culture supernatant. Expression of IL-2R on about 10% of the T cells was demonstrated by staining with an anti-IL-2R mAb, and was found to be largely restricted to CD4+ cells. The active compound responsible for the helper signal in the monocyte culture supernatant was identified as IL-6 because purified IL-6 (but not IL-1 beta) had similar activity and because an antiserum to IL-6 (but not an antiserum to IL-1 beta) neutralized the activity of the monocyte supernatant and blocked T cell proliferation. An anti-IL-2R antibody also completely inhibited T cell proliferation induced by the combination of mAb 9.3, IL-2, and IL-6. Our results provide evidence that cross-linking of CD28 induces functional IL-2R and that this activity is dependent on a helper signal provided by monocytes, more specifically IL-6. Moreover, our results indicate that IL-6 (previously called B cell stimulatory factor-2) is active on T cells. If a natural ligand for CD28 can be identified, the mechanism of induction of IL-2 responsiveness described here might explain how T cells become nonspecifically involved in an ongoing cellular immune reaction.  相似文献   

19.
We have analyzed the effects of NK cell stimulatory factor/IL-12, on proliferation of PBL and their subsets. IL-12 synergizes with lectins and phorbol diesters to induce proliferation of CD4+ and CD8+ peripheral blood T lymphocytes. In the case of phorbol-diester-induced proliferation, the effect of IL-12 is in part mediated by induced IL-2 production, as suggested by the observation that IL-12 enhances IL-2 production in these cultures and that anti-IL-2 antibodies inhibit proliferation. IL-12 synergizes also with anti-CD3 antibodies and with allogeneic stimulation in MLC in inducing T cell proliferation. IL-12 alone is mitogenic for preactivated T and NK lymphoblasts. This mitogenic effect is observed with similar doses of IL-12 on NK lymphoblasts as well as on CD4+ and CD8+ TCR-alpha beta+ and on TCR-gamma delta+ lymphoblasts. On TCR-alpha beta+ T lymphocytes the effect of IL-12 is always additive to that of IL-2 over a wide dose range. The same effect is observed on highly activated, actively proliferating NK cells. However, on NK and TCR-gamma delta+ lymphoblasts reverting to a resting state after stimulation and on a TCR-gamma delta+ acute leukemia-derived T cell line, IL-12 inhibits significantly the proliferation induced by moderate to high doses (10 to 100 U/ml) of IL-2. This inhibitory effect is, at least in part, indirect, and depends on IL-12-induced production of TNF. Neutralizing anti-TNF antibodies, but not anti-IFN-gamma and anti-transforming growth factor antibodies, restore by more than 70% the inhibition of proliferation induced by IL-12 in these cultures. However, TNF alone cannot mimic the inhibitory effect of IL-12 on the IL-2-induced proliferation of NK and TCR-gamma delta+ lymphoblasts, suggesting the involvement of additional mechanisms. The relevance of these findings for the biology of lymphocyte subsets mediating MHC nonrestricted cytotoxicity is discussed.  相似文献   

20.
When a murine leukemia L1210-specific Lyt-2+ T cell clone, K7L, was injected i.p. into CD2F1 mice together with L1210, the normal growth of L1210 in the peritoneal cavity of the mice at the early stage (days 0 to 5) was strongly inhibited, but L1210 grew progressively at the middle-stage (days 5 to 10), and then was rejected at the late stage (days 10 to 20). The mice thus survived for long times (more than 60 days), whereas the normal control injected with L1210 alone died within 14 days. The L1210 that grew at the middle stage in mice initially inoculated with L1210 together with K7L was a K7L-insensitive (K7L-) variant. All of eight tumor clones established from L1210-K7L- by limiting dilution was insensitive to the antitumor activity of K7L, and this property of tumor clones was stable after repeated in vitro passage. The initial depression of the L1210 growth by K7L followed by growth and rejection of the variant L1210-K7L- by the host T cell activity was then found to prepare a strong, long-lasting (more than 3 mo) immunity to protect mice against the high-dose (10(7) cells per mouse) challenge of original L1210. Corresponding to this result, definite tumor (L1210)-specific cytotoxic T lymphocyte (CTL) activity against both variant and original L1210 targets was developed by antigen (L1210) restimulation in the culture of spleen cells from these mice, but was not increased to a detectable level before L1210-K7L- variant started to grow. It was suggested that the 1210-K7L- variant and the original L1210 should have the common tumor-specific antigen that was independent of the K7L-reactive antigen, and that original L1210, whose growth was retarded by K7L, primed the host with the common antigen to be enormously boosted by the subsequently growing L1210-K7L- variant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号