首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated in a flavivirus model (tick-borne encephalitis virus) the mechanisms of fusion inhibition by monoclonal antibodies directed to the different domains of the fusion protein (E) and to different sites within each of the domains by using in vitro fusion assays. Our data indicate that, depending on the location of their binding sites, the monoclonal antibodies impaired early or late stages of the fusion process, by blocking the initial interaction with the target membrane or by interfering with the proper formation of the postfusion structure of E, respectively. These data provide new insights into the mechanisms of flavivirus fusion inhibition by antibodies and their possible contribution to virus neutralization.  相似文献   

2.
Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.  相似文献   

3.
The Flavivirus genus of the Flaviviridae family includes 70 enveloped single-stranded-RNA positive-sense viruses transmitted by arthropods. Among these viruses, there are a relevant number of human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV), Langat virus (LGTV) and Omsk hemorrhagic fever (OHFV). The flavivirus envelope (E) protein is a dominant antigen inducing immunologic responses in infected hosts and eliciting virus-neutralizing antibodies. The domain III (DIII) of E protein contains a panel of important epitopes that are recognized by virus-neutralizing monoclonal antibodies. Peptides of the DIII have been used with promising results as antigens for flavivirus serologic diagnosis and as targets for immunization against these viruses. We review here some important aspects of the molecular structure of the DIII as well as its use as antigens for serologic diagnosis and immunization in animal models.  相似文献   

4.
A number of flaviviruses are important human pathogens, including yellow fever, dengue, West Nile, Japanese encephalitis, and tick-borne encephalitis (TBE) viruses. Infection with or immunization against any of these viruses induces a subset of antibodies that are broadly flavivirus cross-reactive but do not exhibit significant cross-neutralization. Nevertheless, these antibodies can efficiently bind to the major envelope protein (E), which is the main target of neutralizing and protective antibodies because of its receptor-binding and membrane fusion functions. The structural basis for this phenomenon is still unclear. In our studies with TBE virus, we have provided evidence that such cross-reactive antibodies are specific for a cluster of epitopes that are partially occluded in the cage-like assembly of E proteins at the surfaces of infectious virions and involve-but are not restricted to-amino acids of the highly conserved internal fusion peptide loop. Virus disintegration leads to increased accessibility of these epitopes, allowing the cross-reactive antibodies to bind with strongly increased avidity. The cryptic properties of these sites in the context of infectious virions can thus provide an explanation for the observed lack of efficient neutralizing activity of broadly cross-reactive antibodies, despite their specificity for a functionally important structural element in the E protein.  相似文献   

5.
C W Mandl  C Kunz    F X Heinz 《Journal of virology》1991,65(8):4070-4077
A poly(A) tail was identified on the 3' end of the prototype tick-borne encephalitis (TBE) virus strain Neudoerfl. This is in contrast to the general lack of poly(A) in the genomic RNAs of mosquito-borne flaviviruses analyzed so far. Analysis of several closely related strains of TBE virus, however, revealed the existence of two different types of 3' noncoding (NC) regions. One type (represented by strain Neudoerfl) is only 114 nucleotides long and carries a 3'-terminal poly(A) structure. This was also found in several TBE virus strains isolated from different geographic regions over a period of almost 30 years. The other type (represented by strain Hypr) is 461 nucleotides long and not polyadenylated. The sequence homology between the two types of TBE virus 3' NC regions terminates at a specific position 81 nucleotides after the stop codon. The second type of 3' NC region more closely resembles the common flavivirus pattern, including the potential for the formation of a 3'-terminal hairpin structure. However, it lacks primary sequence elements that are conserved among other flavivirus genomes.  相似文献   

6.
The largest cyanogen bromide fragment (GP-14,5; coordinates 78-176) of E protein belonging to the envelope of the tick-borne encephalitis (TBE) virus (Far Eastern subtype, strain Sofjin) interacted with five out of twelve E-specific monoclonal antibodies (MAbs). Having compared; efficiencies of some MAbs binding to the antigens of TBE viruses of Far Eastern and West European subtypes and primary structures of analogous peptides of these viruses, we suggested the epitopes of these MAbs to be located in the vicinity of 89 and/or 116-th amino acid residues of E protein. Effect of denaturing agents and reduction followed by carboxymethylation on the protein E antigenic properties was studied.  相似文献   

7.
The flavivirus membrane fusion machinery, like that of many other enveloped viruses, is triggered by the acidic pH in endosomes after virus uptake by receptor-mediated endocytosis. It has been hypothesized that conserved histidines in the class II fusion protein E of these viruses function as molecular switches and, by their protonation, control the fusion process. Using the mutational analysis of recombinant subviral particles of tick-borne encephalitis virus, we provide direct experimental evidence that the initiation of fusion is crucially dependent on the protonation of one of the conserved histidines (His323) at the interface between domains I and III of E, leading to the dissolution of domain interactions and to the exposure of the fusion peptide. Conserved histidines located outside this critical interface were found to be completely dispensable for triggering fusion.  相似文献   

8.
The aim of this study was prediction of epitopes and medically important structural properties of protein E of Alkhurma hemorrhagic fever virus (AHFV) and comparing these features with two closely relates viruses, i.e. Kyasanur Forest disease virus (KFDV) and Tick-borne encephalitis virus (TBEV) by bioinformatics tools. Prediction of evolutionary distance, localization, sequence of signal peptides, C, N O glycosylation sites, transmembrane helices (TMHs), cysteine bond positions and B cell and T cell epitopes of E proteins were performed. 2D-MH, Virus-PLoc, Signal-CF, EnsembleGly, MemBrain, DiANNA, BCPREDS and MHCPred servers were applied for the prediction. According to the results, the evolutionary distance of E protein of AHFV and two other viruses was almost equal. In all three proteins of study, residues 1-35 were predicted as signal sequences and one asparagine was predicted to be glycosylated. Results of prediction of transmembrane helices showed one TMH at position 444-467 and the other one at position 476-490. Twelve cysteines were potentially involved to form six disulfide bridges in the proteins. Four parts were predicted as B cell epitopes in E protein of AHFV. One epitope was conserved between three proteins of study. The only conserved major histocompatibility complex (MHC) binding epitope between three viruses was for DRB0401 allele. As there are not much experimental data available about AHFV, computer-aided study and comparison of E protein of this virus with two closely related flaviviruses can help in better understanding of medical properties of the virus.  相似文献   

9.
Flaviviruses comprise a number of important human pathogens including yellow fever, dengue, West Nile, Japanese encephalitis and tick-borne encephalitis viruses. They are small enveloped viruses that enter cells by receptor-mediated endocytosis and release their nucleocapsid into the cytoplasm by fusing their membrane with the endosomal membrane. The fusion event is triggered by the acidic pH in the endosome and is mediated by the major envelope protein E. Based on the atomic structures of the pre- and post-fusion conformations of E, a fusion model has been proposed that includes several steps leading from the metastable assembly of E at the virion surface to membrane merger and fusion pore formation trough conversion of E into a stable trimeric post-fusion conformation. Using recombinant subviral particles of tick-borne encephalitis virus as a model, we have defined individual steps of the molecular processes underlying the flavivirus fusion mechanisms. This includes the identification of a conserved histidine as being part of the pH sensor in the fusion protein that responds to the acidic pH and thus initiates the structural transitions driving fusion.  相似文献   

10.
The exposure of the flavivirus tick-borne encephalitis (TBE) virus to an acidic pH is necessary for virus-induced membrane fusion and leads to a quantitative and irreversible conversion of the envelope protein E dimers to trimers. To study the structural requirements for this oligomeric rearrangement, the effect of low-pH treatment on the oligomeric state of different isolated forms of protein E was investigated. Full-length E dimers obtained by solubilization of virus with the detergent Triton X-100 formed trimers at low pH, whereas truncated E dimers lacking the stem-anchor region underwent a reversible dissociation into monomers without forming trimers. These data suggest that the low-pH-induced rearrangement in virions is a two-step process involving a reversible dissociation of the E dimers followed by an irreversible formation of trimers, a process which requires the stem-anchor portion of the protein. This region contains potential amphipathic alpha-helical and conserved structural elements whose interactions may contribute to the rearrangements which initiate the fusion process.  相似文献   

11.
Complementary DNA fragments (nucleotides 935–1475, 1091–1310, and 935–1193) encoding the N-terminal portion of glycoprotein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human, were cloned. Recombinant polypeptides of glycoprotein E (E1–180, E53–126, and E1–86) of the WNV having amino acid sequences corresponding to the cloned cDNA fragments and mimicking the main functional regions of domains I and II of surface glycoprotein E were purified by affinity chromatography. According to ELISA and Western blotting, 12 types of monoclonal antibodies (MAbs) raised in our laboratory against recombinant polypeptide E1–180 recognized the WNV glycoprotein E. This is indicative of similarity between the antigenic structures of the short recombinant polypeptides and corresponding regions of the glycoprotein. Analysis of interactions of the MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus revealed at least six epitopes within domains I and II of the WNV protein E. We found at least seven MAb types against the region between amino acid residues (aa) 86 and 126 of domain II, which contains the peptide responsible for fusion of the virus and cell membranes (residues 98–110). The epitope for antireceptor MAbs 10H10 was mapped within the 53–86 aa region of domain II of WNV protein E, which is evidence for the spatial proximity of the fusion peptide and the coreceptor of protein E (residues 53–86) for cellular laminin-binding protein (LBP). The X-ray pattern of protein E suggests that the bc loop (residues 73–89) of domain II interacts with LBP and, together with the cd loop (fusion peptide), determines the initial stages of flavivirus penetration into the cell.  相似文献   

12.
Flaviviruses such as West Nile, Japanese encephalitis, and tick-borne encephalitis (TBEV) viruses are important neurotropic human pathogens, causing a devastating and often fatal neuroinfection. Here, we demonstrate that incorporation into the viral genome of a target sequence for cellular microRNAs expressed in the central nervous system (CNS) enables alteration of the neurovirulence of the virus and control of the neuropathogenesis of flavivirus infection. As a model virus for this type of modification, we used a neurovirulent chimeric tick-borne encephalitis/dengue virus (TBEV/DEN4) that contained the structural protein genes of a highly pathogenic TBEV. The inclusion of just a single target copy for a brain tissue-expressed mir-9, mir-124a, mir-128a, mir-218, or let-7c microRNA into the TBEV/DEN4 genome was sufficient to prevent the development of otherwise lethal encephalitis in mice infected intracerebrally with a large dose of virus. Viruses bearing a complementary target for mir-9 or mir-124a were highly restricted in replication in primary neuronal cells, had limited access into the CNS of immunodeficient mice, and retained the ability to induce a strong humoral immune response in monkeys. This work suggests that microRNA targeting to control flavivirus tissue tropism and pathogenesis might represent a rational approach for virus attenuation and vaccine development.  相似文献   

13.
Propagation of the flavivirus tick-borne encephalitis virus in BHK-21 cells selected for mutations within the large surface glycoprotein E that increased the net positive charge of the protein. In the course of 16 independent experiments, 12 different protein E mutation patterns were identified. These were located in all three of the structural domains and distributed over almost the entire upper and lateral surface of protein E. The mutations resulted in the formation of local patches of predominantly positive surface charge. Recombinant viruses carrying some of these mutations in a defined genetic backbone showed heparan sulfate (HS)-dependent phenotypes, resulting in an increased specific infectivity and binding affinity for BHK-21 cells, small plaque formation in porcine kidney cells, and significant attenuation of neuroinvasiveness in adult mice. Our results corroborate the notion that the selection of attenuated HS binding mutants is a common and frequent phenomenon during the propagation of viruses in cell culture and suggest a major role for HS dependence in flavivirus attenuation. Recognition of this principle may be of practical value for designing attenuated flavivirus strains in the future.  相似文献   

14.
The yellow fever (YF) 17D vaccine is a live attenuated virus, and its genetic manipulation constitutes a new platform for vaccine development. In this article we review one of the possible approaches to enable this development, which is the insertion of foreign protein epitopes into different locations of the genome. We describe the three-dimensional (3D) modeling of the YF 17D virus E protein structure based on tick-borne encephalitis (TBE) and the identification of a potential insertion site located at the YF 17D fg loop. Further 3D analysis revealed that it is possible to accommodate inserts of different sizes and amino acid composition in the flavivirus E protein fg loop. We demonstrate that seven YF 17D viruses bearing foreign epitopes that vary in sequence and length show differential growth characteristics in cell culture. The testing of recombinant viruses for mouse neurovirulence suggests that insertions at the 17D E protein fg loop do not compromise the attenuated phenotypes of YF 17D virus, further confirming the potential use of this site for the development of new live attenuated 17D virus-based vaccines.  相似文献   

15.
The collection of eight rat and mouse hybridomas secreting the high affinity monoclonal antibodies to glycoprotein E1 of the Venezuelan equine encephalomyelitis has been obtained. The antigenic structure of E1 protein has been studied with the use of these antibodies for the strains Trinidad, TC-83 and 230 of the virus. Antigenic map of glycoprotein E1 based on competition radioimmunoanalysis is proposed. Five sites are mapped including eight epitopes binding monoclonal antibodies. Antibodies to sites E1-1, E1-3 and E1-5 are crossreactive in interaction with the virus of Venezuelan equine encephalomyelitis, while antibodies to site E1-5 interact also with the virus of tick-borne encephalitis. Antibodies to site E1-1 possess the protective effect and lack the neutralizing effect in tissue cultures. Antibodies to all sites of E1 protein are devoid of ability to neutralize the Venezuelan equine encephalitis virus.  相似文献   

16.
Fragments cDNA (nt 935-1475, 1091-1310, 935-1193) encoding N-terminal part of protein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human were obtained and cloned. Recombinant polypeptides of glycoprotein E (E1-86, E53-126, E1-180) of the WNV with corresponding amino acid sequence to the cloned fragments of cDNA and modeling the epitopes of domains I and II of surface glycoprotein E were purified by affinity chromatography. Twelve types of monoclonal antibodies (MAbs) created in our laboratory against recombinant polypeptide E1-180 interact with glycoprotein E of the WNV as results of Western blot and ELISA that is demonstrating an similarity of chemical structure of short recombinant polypeptides and corresponding amino acid sequence regions of WNV protein E. Analysis of interactions of MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus let us reveal no less than six epitopes within domains I and II of glycoprotein E of the WNV. No less than seven types of MAbs to 86-126 aa region of the domain II were found where located peptide providing fusion of virus--cell membranes (98-110 aa). The epitope for anti-receptor MAbs 10H10 within 53-86 aa region of domain II of protein E of the WNV was mapped and it shows that the fusion peptide and co-receptor of protein E for cellular laminin-binding protein (LBP) are spatial nearness. X-ray model of protein E let us suppose that bc-loop (73-89 aa) of domain II interacts with LBP and together with cd-loop (fusion peptide) determines an initial stages of penetration virions into cell.  相似文献   

17.
The fusion of enveloped viruses with cellular membranes is mediated by proteins that are anchored in the lipid bilayer of the virus and capable of triggered conformational changes necessary for driving fusion. The flavivirus envelope protein E is the only known viral fusion protein with a double membrane anchor, consisting of two antiparallel transmembrane helices (TM1 and TM2). TM1 functions as a stop-transfer sequence and TM2 as an internal signal sequence for the first nonstructural protein during polyprotein processing. The possible role of this peculiar C-terminal helical hairpin in membrane fusion has not been investigated so far. We addressed this question by studying TM mutants of tick-borne encephalitis virus (TBEV) recombinant subviral particles (RSPs), an established model system for flavivirus membrane fusion. The engineered mutations included the deletion of TM2, the replacement of both TM domains (TMDs) by those of the related Japanese encephalitis virus (JEV), and the use of chimeric TBEV-JEV membrane anchors. Using these mutant RSPs, we provide evidence that TM2 is not just a remnant of polyprotein processing but, together with TM1, plays an active role in fusion. None of the TM mutations, including the deletion of TM2, affected early steps of the fusion process, but TM interactions apparently contribute to the stability of the postfusion E trimer and the completion of the merger of the membranes. Our data provide evidence for both intratrimer and intertrimer interactions mediated by the TMDs of E and thus extend the existing models of flavivirus membrane fusion.  相似文献   

18.
The envelope glycoprotein (E) of West Nile virus (WNV) undergoes a conformational rearrangement triggered by low pH that results in a class II fusion event required for viral entry. Herein we present the 3.0-A crystal structure of the ectodomain of WNV E, which reveals insights into the flavivirus life cycle. We found that WNV E adopts a three-domain architecture that is shared by the E proteins from dengue and tick-borne encephalitis viruses and forms a rod-shaped configuration similar to that observed in immature flavivirus particles. Interestingly, the single N-linked glycosylation site on WNV E is displaced by a novel alpha-helix, which could potentially alter lectin-mediated attachment. The localization of histidines within the hinge regions of E implicates these residues in pH-induced conformational transitions. Most strikingly, the WNV E ectodomain crystallized as a monomer, in contrast to other flavivirus E proteins, which have crystallized as antiparallel dimers. WNV E assembles in a crystalline lattice of perpendicular molecules, with the fusion loop of one E protein buried in a hydrophobic pocket at the DI-DIII interface of another. Dimeric E proteins pack their fusion loops into analogous pockets at the dimer interface. We speculate that E proteins could pivot around the fusion loop-pocket junction, allowing virion conformational transitions while minimizing fusion loop exposure.  相似文献   

19.
20.
The current model of flavivirus membrane fusion is based on atomic structures of truncated forms of the viral fusion protein E in its dimeric prefusion and trimeric postfusion conformations. These structures lack the two transmembrane domains (TMDs) of E as well as the so-called stem, believed to be involved in an intra- and intermolecular zippering reaction within the E trimer during the fusion process. In order to gain experimental evidence for the functional role of the stem in flavivirus membrane fusion, we performed a mutagenesis study with recombinant subviral particles (RSPs) of tick-borne encephalitis virus, which have fusion properties similar to those of whole infectious virions and are an established model for viral fusion. Mutations were introduced into the stem as well as that part of E predicted to interact with the stem during zippering, and the effect of these mutations was analyzed with respect to fusion peptide interactions with target cells, E protein trimerization, trimer stability, and membrane fusion in an in vitro liposome fusion assay. Our data provide evidence for a molecular interaction between a conserved phenylalanine at the N-terminal end of the stem and a pocket in domain II of E, which appears to be essential for the positioning of the stem in an orientation that allows zippering and the formation of a structure in which the TMDs can interact as required for efficient fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号