首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate genetic variation in susceptibility to organophosphate insecticides within natural populations of Drosophila melanogaster, we conducted an analysis of variance for mortality data sets of isofemale lines (10-286 lines) used in the previous studies. Susceptibility of isofemale lines to the three organophosphate insecticides was continuously distributed within each natural population, ranging from susceptible to resistant. Analysis of variance showed highly significant variation among isofemale lines in susceptibility to each insecticide for each natural population. Significant genetic variances in susceptibility to the three chemicals were estimated for the Katsunuma population; 0.0529-0.2722 for malathion, 0.0492-0.1603 for prothiophos, and 0.0469-0.1696 for fenitrothion. Contrary to the consistent seasonal tendency towards an increase in mean susceptibility in the fall, reported in the previous study, genetic variances in susceptibility to the three organophosphates did not change significantly in 1997 but tended to increase by 2- to 5-times in 1998. We tested whether both the observed situations, maintenance and increase in genetic variance in organophosphate resistance, can be generated under circumstances in which the levels of resistance to the three organophosphates tended to decrease, by conducting a simulation analysis, based on the hypothesis that resistant genotypes have lower fitnesses than susceptible ones under the density-independent condition. The simulation analysis generally explained the pattern in the mean susceptibility and genetic variances in susceptibility to the three organophosphates, observed in the Katsunuma population of D. melanogaster. It was suggested that the differences in the frequencies of resistance genes in the summer population could affect the patterns in genetic variance in organophosphate resistance in the fall population.  相似文献   

2.
To investigate the genetic basis of the seasonal fluctuations in resistance to three organophosphates, observed within a natural population of Drosophila melanogaster (Meigen), we compared the intrinsic rate of increase, generation time and net reproduction rate among chromosome substitution lines derived from a resistant and a susceptible line, obtained from this natural population. There was significant variation among substituted lines; lines possessing the third chromosome from the resistant line, which confers resistance to the three organophosphates, generally showed lower mean values of these fitness measures. Chromosomal analyses also indicated significant negative contributions of the third chromosome from the resistant line. However, significant positive contributions of the interactions among chromosomes from the resistant line to these fitness measures were also detected. We further conducted a local stability analysis, in which each chromosome-substituted line was assumed to be introduced at a low frequency into the initial susceptible population. It was demonstrated that the resistance factor(s) on the third chromosome tend to decrease in their frequency under both density-independent and juvenile density-regulated conditions. Based on these results, a possible explanation for the seasonal fluctuations in resistance to the three organophosphates observed in the natural population was proposed.  相似文献   

3.

Key message

Provide evidence that the Brassica B genome chromosome B3 carries blackleg resistance gene, and also the B genome chromosomes were inherited several generations along with B. napus chromosomes.

Abstract

Blackleg disease caused by fungus Leptosphaeria maculans causes significant yield losses in Brassica napus. Brassica carinata possesses excellent resistance to this disease. To introgress blackleg resistance, crosses between B. napus cv. Westar and B. carinata were done. The interspecific-hybrids were backcrossed twice to Westar and self-pollinated three times to produce BC2S3 families. Doubled haploid lines (DH1) were produced from one blackleg resistant family. SSR markers were used to study the association between B genome chromosome(s) and blackleg resistance. The entire B3 chromosome of B. carinata was associated with blackleg resistance in DH1. A second DH population (DH2) was produced from F1s of resistant DH1 lines crossed to blackleg susceptible B. napus cv. Polo where resistance was found to be associated with SSR markers from the middle to bottom of the B3 and top of the B8 chromosomes. The results demonstrated that the B3 chromosome carried gene(s) for blackleg resistance. Genomic in situ hybridization (GISH) and GISH-like analysis of the DH2 lines revealed that susceptible lines, in addition to B. napus chromosomes, possessed one pair of B genome chromosomes (2n = 40), while resistant lines had either one (2n = 40) or two pairs (2n = 42) of B chromosomes. The molecular and GISH data suggested that the B chromosome in the susceptible lines was B7, while it was difficult to confirm the identity of the B chromosomes in the resistant lines. Also, B chromosomes were found to be inherited over several generations along with B. napus chromosomes.  相似文献   

4.

Key message

Kaempferol 3- O -sinapoyl-sophoroside 7- O -glucoside was putatively identified as the major component of a characteristic HPLC peak previously correlated with the reduction of cabbage seedpod weevil larval infestation in a novel canola genotype.

Abstract

The cabbage seedpod weevil (Ceutorhynchus obstrictus [Marsham]) (CSPW) is a serious pest of brassicaceous oilseed crops such as canola in both Europe and more recently in North America. At present, the only control strategy against CSPW is the application of insecticides. As an alternative more environmentally-friendly control strategy, we developed novel canola germplasm resistant to weevil attack through introgression of Sinapis alba DNA into Brassica napus by making the wide cross followed by embryo rescue and backcrossing to the B. napus parent. We have previously characterized resistant canola lines by metabolic profiling and were able to correlate reduction of larval infestation to the presence of a characteristic HPLC peak. In this study, we have putatively identified the major component in the peak using mass spectrometry as kaempferol 3-O-sinapoyl-sophoroside 7-O-glucoside (KSSG). We have also identified quantitative trait loci (QTL) associated with this HPLC peak in a mapping population consisting of more than 200 individual doubled haploid (DH) lines derived from a cross between CSW428 (the resistant parent) and SC030686 (the susceptible parent). This QTL accounted for approximately 9.5 % of the phenotypic variation in KSSG content. The observation that only one QTL was identified as surpassing the LOD threshold of 3.0 suggests that both parents may possess the positive alleles for other QTL that have not been detected in our study. This finding also indicates a complex regulatory mechanism for KSSG levels and provides an appropriate explanation for the large transgressive segregation observed in the DH lines of the QTL mapping population.  相似文献   

5.
In this study, we attempted to elucidate the two resistance factors conferring resistance to organophosphates within the Katsunuma population of Drosophila melanogaster (Meigen), one of which has been mapped on the second chromosome and the other on the third chromosome. With regard to the second chromosome factor, we tested susceptibility to malathion of 54 recombinant inbred lines with recombination between ltd and vg. Analyses of variance (ANOVAs) showed highly significant variation in susceptibility to malathion between recombinant lines. In addition, susceptibility of the second-chromosome resistant line to malathion was increased with additional application of piperonyl butoxide, suggesting a member of the Cyp gene family located between ltd and vg. With regard to the third-chromosome factor, we conducted inhibition assays of acetylcholinesterase (AChE) with respect to fenitroxon and carbaryl, to evaluate the contribution of mutated AChE to organophosphate resistance within the Katsunuma population. I 50 values of resistant lines, isolated from this population, were about 15 times higher for fenitroxon, and about two times higher for carbaryl, than those of susceptible lines, suggesting the contribution of mutated AChE to organophosphate resistance within the Katsunuma population. We further investigated the genetic variation in the acetylcholinesterase (Ace) gene within the newly collected Katsunuma population, by using the allele-specific polymerase chain reaction (PCR) approach, and revealed that within this population there were high frequencies of resistant-type mutations at three sites in the Ace gene, which play critical roles in altering sensitivity of AChE to organophosphate and carbamate insecticides.  相似文献   

6.
7.
8.

Key message

Identified SSR markers ( Xcfd49 and Xbarc183 ) linked with stem rust resistance for efficient use in marker-assisted selection and stacking of resistance genes in wheat breeding programs.

Abstract

More than 80 % of the worldwide wheat (Triticum aestivum L.) area is currently sown with varieties susceptible to the Ug99 race group of stem rust fungus. However, wheat lines Niini, Tinkio, Coni, Pfunye, Blouk, and Ripper have demonstrated Ug99 resistance at the seedling and adult plant stages. We mapped stem rust resistance in populations derived from crosses of a susceptible parent with each of the resistant lines. The segregation of resistance in each population indicated the presence of a single gene. The resistance gene in Niini mapped to short arm of chromosome 6D and was flanked by SSR markers Xcfd49 at distances of 3.9 cM proximal and Xbarc183 8.4 cM distal, respectively. The chromosome location of this resistance was validated in three other populations: PBW343/Coni, PBW343/Tinkio, and Cacuke/Pfunye. Resistance initially postulated to be conferred by the SrTmp gene in Blouk and Ripper was also linked to Xcfd49 and Xbarc183 on 6DS, but it was mapped proximal to Xbarc183 at a similar position to previously mapped genes Sr42 and SrCad. Based on the variation in diagnostic marker alleles, it is possible that Niini and Pfunye may carry different resistance genes/alleles. Further studies are needed to determine the allelic relationships between various genes located on chromosome arm 6DS. Our results provide valuable molecular marker and genetic information for developing Ug99 resistant wheat varieties in diverse germplasm and using these markers to tag the resistance genes in wheat breeding.  相似文献   

9.

Key message

A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis.

Abstract

Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.  相似文献   

10.

Key message

A new gene for adult plant leaf rust resistance in wheat was mapped to chromosome 3BL. This gene was designated as Lr77.

Abstract

‘Santa Fe’ is a hard red winter cultivar that has had long-lasting resistance to the leaf rust fungus, Puccinia triticina. The objective of this study was to determine the chromosome location of the adult plant leaf rust resistance in Santa Fe wheat. A partial backcross line of ‘Thatcher’ (Tc) wheat with adult plant leaf rust resistance derived from Santa Fe was crossed with Thatcher to develop a Thatcher//Tc*2/Santa Fe F6 recombinant inbred line (RIL) population. The RIL population and parental lines were evaluated for segregation of leaf rust resistance in three field plot tests and in an adult plant greenhouse test. A genetic map of the RIL population was constructed using 90,000 single-nucleotide polymorphism (SNP) markers with the Illumina Infinium iSelect 90K wheat bead array. A significant quantitative trait locus for reduction of leaf rust severity in all four tests was found on chromosome 3BL that segregated as a single adult plant resistance gene. The RILs with the allele from the resistant parent for SNP marker IWB10344 had lower leaf rust severity and a moderately resistant to moderately susceptible response compared to the susceptible RILs and Thatcher. The gene derived from Santa Fe on chromosome 3BL was designated as Lr77. Kompetitive allele-specific polymerase chain reaction assay markers linked to Lr77 on 3BL should be useful for selection of wheat germplasm with this gene.
  相似文献   

11.

Key message

Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes.

Abstract

Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE–S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE–S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.
  相似文献   

12.

Key message

Using association and linkage mapping, two SNP markers closely linked to the SBWMV resistance gene on chromosome 5D were identified and can be used to select the gene in breeding.

Abstract

Soil-borne wheat mosaic virus (SBWMV) disease is a serious viral disease of winter wheat growing areas worldwide. SBWMV infection can significantly reduce grain yield up to 80 %. Developing resistant wheat cultivars is the only feasible strategy to reduce the losses. In this study, wheat Infinium iSelect Beadchips with 9 K wheat SNPs were used to genotype an association mapping population of 205 wheat accessions. Six new SNPs from two genes were identified to be significantly associated with the gene for SBWMV resistance on chromosome 5D. The SNPs and Xgwm469, an SSR marker that has been reported to be associated with the gene, were mapped close to the gene using F6-derived recombinant inbred lines from the cross between a resistant parent ‘Heyne’ and a susceptible parent ‘Trego’. Two representative SNPs, wsnp_CAP11_c209_198467 and wsnp_JD_c4438_5568170, from the two linked genes in wheat were converted into KBioscience Competitive Allele-Specific Polymerase assays and can be easily used in marker-assisted selection to improve wheat resistance to SBWMV in breeding.  相似文献   

13.
To investigate the relationship between resistance to organophosphate insecticides and fitness components, we first measured resistance to three organophosphates, malathion, prothiophos, and fenitrothion, and productivity, a measure of fitness components, for each of the isofemale lines from the same natural population of Drosophila melanogaster (Meigen). Pearson correlation coefficients indicated that positive correlations among resistance to the organophosphates and negative correlations between resistance to each of the organophosphates and the productivity existed within the natural population. We further investigated the genetic basis of the correlations among resistance to the organophosphates and the productivity, by using chromosome-substituted lines between a resistant and a susceptible inbred line established from the same natural population. Chromosomal analyses indicated that the third chromosome from the resistant line exhibited not only significant, positive effects on resistance to all of the organophosphates tested but also a significant negative effect on the productivity, suggesting positive genetic correlations between resistance to each organophosphate and negative genetic correlations between resistance to each organophosphate and the productivity. In addition, a significant negative effect on the productivity was also detected from the second chromosome, which did not exhibit significant major effects on resistance to the organophosphates. This suggests that fitness components of resistant lines could be also affected by factors independent of insecticide resistance. The dynamics of genetic variation in resistance to the organophosphates within the natural population of D. melanogaster are discussed from the standpoint of negative genetic correlations between resistance to the organophosphates and the productivity.  相似文献   

14.
To investigate the genetic basis of cross-resistance to insecticides, we conducted genetic analyses of resistance to three organophosphate insecticides, malathion, prothiophos, and fenitrothion. After isofemale lines resistant and susceptible to all of the three organophosphates had been screened from natural populations of Drosophila melanogaster (Meigen), chromosomal analyses were performed by using chromosome-substituted lines between the resistant and the susceptible lines. The chromosomal analyses revealed that both the second and the third chromosomes contributed to resistance to the organophosphates, suggesting that this resistant line possessed at least two factors for organophosphate resistance. However, the relative contribution of each chromosome was different in resistance to different organophosphates. We further carried out genetic mapping of a resistance factor for each organophosphate on each of the two chromosomes. Each resistance factor was mapped to the position of each chromosome, about II-62 and III-50. Results of the chromosomal analyses and the genetic mapping revealed that at least two resistance factors exhibiting different patterns of cross-resistance to the organophosphates existed within a natural population of D. melanogaster. Based on this research, genetic variation in insecticide resistance within natural populations and complex as well as simple aspects of the mechanism of cross-resistance are discussed.  相似文献   

15.

Key Message

This is the first report on genetic analysis and genome mapping of major dominant genes for near non-host resistance to barley crown rust ( Puccinia coronata var. hordei ) in common wheat.

Abstract

Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley (Hordeum vulgare L.) in the Great Plain regions of the United States. However, a few genotypes of common wheat (Triticum aestivum L.) were susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown rust resistance in wheat, a susceptible winter wheat accession PI 350005 was used in crosses with two resistant wheat varieties, Chinese Spring and Chris. Analysis of F1 plants and F2 populations from these two crosses indicated that crown rust resistance is controlled by one and two dominant genes in Chris and Chinese Spring, respectively. To determine the chromosome location of the resistance gene Cr1 in Chris, a set of 21 monosomic lines derived from Chris was used as female parents to cross with a susceptible spring type selection (SSTS35) derived from the PI 350005/Chris cross. Monosomic analysis indicated that Cr1 is located on chromosome 5D in Chris and one of the crown rust resistance genes is located on chromosome 2D in Chinese Spring. The other gene in Chinese Spring is not on 5D and thus is different from Cr1. Molecular linkage analysis and QTL mapping using a population of 136 doubled haploid lines derived from Chris/PI 350005 further positioned Cr1 between SSR markers Xwmc41-2 and Xgdm63 located on the long arm of chromosome 5D. Our study suggests that near non-host resistance to crown rust in these different common wheat genotypes is simply inherited.  相似文献   

16.
Some studies report that ammonia is an important factor of disease development in tobacco plants and various post-harvest fruits. Four tobacco (Nicotiana tabacum L.) varieties resistant or susceptible to Alternaria alternata (Fries) Keissler, a tobacco pathogenic fungus, were used to investigate whether there are differences in ammonia accumulation and the related metabolism of senescing leaves. The results showed that: (a) the leaves of susceptible varieties had significantly higher apoplastic [NH 4 + ], pH, and ammonia emission potential (??-values) than resistant varieties during the period from 40 to 60 days of leaf age; (b) leaf tissue [NH 4 + ] and total N concentrations in the tobacco varieties were not in line with their susceptibility or resistance to disease; (c) the increases in the apoplastic pH, ??-values, and leaf [NH 4 + ] occurred in parallel with a significant decline in glutamine synthetase activity. Compared with the resistant varieties, apoplastic pH values and ?? values were increased more rapidly in the susceptible varieties due to a steeper decline in glutamine synthetase activity and a slower increase in glutamate dehydrogenase activity. In conclusion, NH3 accumulation or NH3-dependent alkalinization rather than [NH 4 + ] and total N appears to be mainly attributed to the enhanced susceptibility of tobacco plants to A. alternata.  相似文献   

17.

Key message

The predicted future yield potential of hybrids was competitive with lines in the near future, but on a long term the competitiveness of hybrids depends on a number of factors.

Abstract

The change from line to hybrid breeding in autogamous crops is a recent controversial discussion among scientists and breeders. Our objectives were to employ wheat as a model to: (1) deliver a theoretical framework for the comparison of the selection gain of hybrid versus line breeding; (2) elaborate key parameters affecting selection gain in this comparison; (3) and evaluate the potential to modify these parameters in applied breeding programs. We developed a prediction model for future yield potential in both breeding methods as the sum of the population mean and the expected selection gain. The expected selection gain was smaller in hybrid than in line breeding and depended strongly on the hybrid seed production costs and the genetic variance available in hybrid versus line breeding. Owing to heterosis, the predicted future yield potential of hybrids was competitive with lines in the near future. On a long term, however, the competitiveness of hybrid compared to line breeding is questionable and depends on a number of factors. However, market specifications and political reasons might justify the current high interest in hybrid wheat breeding.  相似文献   

18.

Background and aims

Enhanced aluminum (Al) resistance has been observed in dicots over-expressing enzymes involved in organic acid synthesis; however, this approach for improving Al resistance has not been investigated in monocots. Among the cereals, oat (Avena sativa L.) is considered to be Al resistant, but the basis of resistance is not known.

Methods

A hydroponic assay and hematoxylin staining for Al accumulation in roots were used to evaluate Al resistance in 15 oat cultivars. Malate and citrate release from roots was measured over a 24?h period. A malate dehydrogenase gene, neMDH, from alfalfa (Medicago sativa L.) was used to transform oat.

Results

Oat seedlings were highly resistant to Al, as a concentration of 325?μM AlK(SO4)2 was needed to cause a 50% decrease in root growth. Most oat cultivars tested are naturally resistant to high concentrations of Al and effectively excluded Al from roots. Al-dependent release of malate and Al-independent release of citrate was observed. Al resistance was enhanced in a transgenic oat line with the highest accumulation of neMDH protein. However, overall root growth of this line was reduced and expression of neMDH in transgenic oat did not enhance malate secretion.

Conclusions

Release of malate from oat roots was associated with Al resistance, which suggests that malate plays a role in Al resistance of oat. Over-expression of alfalfa neMDH enhanced Al resistance in some lines but was not effective alone for crop improvement.  相似文献   

19.

Purpose

E-waste is the most rapidly growing problem throughout the world, which has serious future concerns over its management and recycling. This article proposes a simple approach for future e-waste projection which can be obtained by using life-span data of various electronic items along with incorporation of population statistics.

Methods

For this purpose, 7-year sales data of electronic items were collected, which is then used to generate various mathematical equations. These mathematical relations are then modified by incorporating life-span and population data.

Results and discussion

By comparing sales data with their life-span (average) and population statistics, future e-waste can be quantified both in terms of specified area under investigation and proposed estimation area. The following equation is thus proposed: E - waste In terms of quantity = m Waste projection year ? Life - span ? Initial data collection year + C × Population of estimation area Population of study area $$ \begin{array}{c}\mathrm{E}-\mathrm{waste}\;\\ {}\left(\mathrm{In}\ \mathrm{terms}\ \mathrm{of}\ \mathrm{quantity}\right)=\left[m\left\{\mathrm{Waste}\;\mathrm{projection}\;\mathrm{year}-\mathrm{Life}-\mathrm{span}\right\}-\mathrm{Initial}\ \mathrm{data}\ \mathrm{collection}\ \mathrm{year}+C\right]\times \frac{\mathrm{Population}\ \mathrm{of}\ \mathrm{estimation}\ \mathrm{area}}{\mathrm{Population}\ \mathrm{of}\ \mathrm{study}\ \mathrm{area}\ }\end{array} $$ Where m and C can be obtained from plotting year-wise sales data over Excel sheet.

Conclusions

Local as well as global projection of future e-waste can be possible with the help of final equation.  相似文献   

20.

Key message

Oat crown rust is one of the most damaging diseases of oat. We identified a new source of resistance and developed KASP and TaqMan markers for selection in breeding programs.

Abstract

A new highly effective resistance to oat crown rust (Puccinia coronata f. sp. avenae) was identified in the diploid oat Avena strigosa PI 258731 and introgressed into hexaploid cultivated oat. Young plants with this resistance show moderate susceptibility, whereas older plant tissues and adult plants are resistant with no virulent isolates encountered in over 8 years of testing. Resistance was incorporated into hexaploid oat by embryo rescue, colchicine chromosome doubling followed by backcrosses with a hexaploid parent, and selection for stable transmission of resistance. To mitigate flag leaf and panicle chlorosis/necrosis associated with the resistance, crosses were made with derived resistant lines to breeding lines of divergent parentage followed by selection. Subsequently, two F2 sister lines, termed MNBT1020-1 and MNBT1021-1, were identified in which the chlorosis/necrosis was reduced. These two lines performed well in replicated multi-location state trials in 2015 and 2016 out-yielding all cultivar entries. Segregating F2:3 plants resulting from crosses of MNBT lines to susceptible parents were genotyped with the oat 6K SNP array, and SNP loci with close linkage to the resistance were identified. KASP assays generated from linked SNPs showed accurate discrimination of the resistance in derivatives of the resistant MNBT lines crossed to susceptible breeding lines. A TaqMan marker was developed and correctly identified homozygous resistance in over 95% of 379 F4 plants when rust was scored in F4:5 plants in the field. Thus, a novel highly effective resistance and associated molecular markers are available for use in breeding, genetic analysis, and functional studies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号