首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TILLING. Traditional mutagenesis meets functional genomics   总被引:21,自引:0,他引:21       下载免费PDF全文
Most of the genes of an organism are known from sequence, but most of the phenotypes are obscure. Thus, reverse genetics has become an important goal for many biologists. However, reverse-genetic methodologies are not similarly applicable to all organisms. In the general strategy for reverse genetics that we call TILLING (for Targeting Induced Local Lesions in Genomes), traditional chemical mutagenesis is followed by high-throughput screening for point mutations. TILLING promises to be generally applicable. Furthermore, because TILLING does not involve transgenic modifications, it is attractive not only for functional genomics but also for agricultural applications. Here, we present an overview of the status of TILLING methodology, including Ecotilling, which entails detection of natural variation. We describe public TILLING efforts in Arabidopsis and other organisms, including maize (Zea mays) and zebrafish. We conclude that TILLING, a technology developed in plants, is rapidly being adopted in other systems.  相似文献   

2.
Chemical mutagenesis has been the workhorse of traditional genetics, but it has not been possible to determine underlying rates or distributions of mutations from phenotypic screens. However, reverse-genetic screens can be used to provide an unbiased ascertainment of mutation statistics. Here we report a comprehensive analysis of approximately 1900 ethyl methanesulfonate (EMS)-induced mutations in 192 Arabidopsis thaliana target genes from a large-scale TILLING reverse-genetic project, about two orders of magnitude larger than previous such efforts. From this large data set, we are able to draw strong inferences about the occurrence and randomness of chemically induced mutations. We provide evidence that we have detected the large majority of mutations in the regions screened and confirm the robustness of the high-throughput TILLING method; therefore, any deviations from randomness can be attributed to selectional or mutational biases. Overall, we detect twice as many heterozygotes as homozygotes, as expected; however, for mutations that are predicted to truncate an encoded protein, we detect a ratio of 3.6:1, indicating selection against homozygous deleterious mutations. As expected for alkylation of guanine by EMS, >99% of mutations are G/C-to-A/T transitions. A nearest-neighbor bias around the mutated base pair suggests that mismatch repair counteracts alkylation damage.  相似文献   

3.
Food security is a global concern and substantial yield increases in crops are required to feed the growing world population. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. Targeting Induced Local Lesions in Genomes(TILLING), which combines traditional chemical mutagenesis with high‐throughput genome‐wide screening for point mutations in desired genes, offers a powerful way to create novel mutant alleles for both functional genomics and improvement of crops. TILLING is generally applicable to genomes whether small or large, diploid or evenallohexaploid, and shows great potential to address the major challenge of linking sequence information to the function of genes and to modulate key traits for plant breeding. TILLING has been successfully applied in many crop species and recent progress in TILLING is summarized below, especially on the developments in mutation detection technology, application of TILLING in gene functional studies and crop breeding. The potential of TILLING/EcoTILLING for functional genetics and crop improvement is also discussed. Furthermore, a small‐scale forward strategy including backcross and selfing was conducted to release the potential mutant phenotypes masked in M2(or M3) plants.  相似文献   

4.

Background

Targeting Induced Local Lesions in Genomes (TILLING) is a powerful reverse genetics approach for functional genomics studies. We used high-throughput sequencing, combined with a two-dimensional pooling strategy, with either minimum read percentage with non-reference nucleotide or minimum variance multiplier as mutation prediction parameters, to detect genes related to abiotic and biotic stress resistances. In peanut, lipoxygenase genes were reported to be highly induced in mature seeds infected with Aspergillus spp., indicating their importance in plant-fungus interactions. Recent studies showed that phospholipase D (PLD) expression was elevated more quickly in drought sensitive lines than in drought tolerant lines of peanut. A newly discovered lipoxygenase (LOX) gene in peanut, along with two peanut PLD genes from previous publications were selected for TILLING. Additionally, two major allergen genes Ara h 1 and Ara h 2, and fatty acid desaturase AhFAD2, a gene which controls the ratio of oleic to linoleic acid in the seed, were also used in our study. The objectives of this research were to develop a suitable TILLING by sequencing method for this allotetraploid, and use this method to identify mutations induced in stress related genes.

Results

We screened a peanut root cDNA library and identified three candidate LOX genes. The gene AhLOX7 was selected for TILLING due to its high expression in seeds and roots. By screening 768 M2 lines from the TILLING population, four missense mutations were identified for AhLOX7, three missense mutations were identified for AhPLD, one missense and two silent mutations were identified for Ara h 1.01, three silent and five missense mutations were identified for Ara h 1.02, one missense mutation was identified for AhFAD2B, and one silent mutation was identified for Ara h 2.02. The overall mutation frequency was 1 SNP/1,066 kb. The SNP detection frequency for single copy genes was 1 SNP/344 kb and 1 SNP/3,028 kb for multiple copy genes.

Conclusions

Our TILLING by sequencing approach is efficient to identify mutations in single and multi-copy genes. The mutations identified in our study can be used to further study gene function and have potential usefulness in breeding programs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1348-0) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Functional genomics tools provide researchers with the ability to apply high-throughput techniques to determine the function and interaction of a diverse range of genes. Mutagenised plant populations are one such resource that facilitate gene characterisation. They allow complex physiological responses to be correlated with the expression of single genes in planta, through either reverse genetics where target genes are mutagenised to assay the affect, or through forward genetics where populations of mutant lines are screened to identify those whose phenotype diverges from wild type for a particular trait. One limitation of these types of populations is the prevalence of gene redundancy within plant genomes, which can mask the affect of individual genes. Activation or enhancer populations, which not only provide knock-out but also dominant activation mutations, can facilitate the study of such genes.

Results

We have developed a population of almost 50,000 activation tagged A. thaliana lines that have been archived as individual lines to the T3 generation. The population is an excellent tool for both reverse and forward genetic screens and has been used successfully to identify a number of novel mutants. Insertion site sequences have been generated and mapped for 15,507 lines to enable further application of the population, while providing a clear distribution of T-DNA insertions across the genome. The population is being screened for a number of biochemical and developmental phenotypes, provisional data identifying novel alleles and genes controlling steps in proanthocyanidin biosynthesis and trichome development is presented.

Conclusion

This publicly available population provides an additional tool for plant researcher's to assist with determining gene function for the many as yet uncharacterised genes annotated within the Arabidopsis genome sequence http://aafc-aac.usask.ca/FST. The presence of enhancer elements on the inserted T-DNA molecule allows both knock-out and dominant activation phenotypes to be identified for traits of interest.  相似文献   

6.
7.
TILLING技术在植物功能基因组及育种中的应用   总被引:2,自引:0,他引:2  
汪得凯  孙宗修  陶跃之 《遗传学报》2006,33(11):957-964
随着拟南芥、水稻等模式植物基因组测序计划的全面完成,数据库中大量的DNA序列需要进行功能注释,而用传统的正向遗传学进行基因克隆和近年来发展的反向遗传学(如插入突变、反义RNA、RNAi等技术)方法已不能适应基因组学的发展需求,因此,研发大规模、高通量的基因功能分析方法成为当务之急。TILLING技术(Targeting induced local lesions in genomes)就是在基因组生物学大背景下出现的一种全新的反向遗传学技术。TILLING技术的基本步骤是通过化学诱变方法产生一系列点突变,经过PCR扩增放大和变性复性过程产生异源双链DNA分子,再通过特异性酶切和双色电泳分析识别异源双链中错配碱基,从而检测出突变发生的准确位置。由于具有高通量、大规模、高灵敏度和自动化等特点,能够适应植物功能基因组学研究的要求,TILLING技术已经和即将在功能基因组领域发挥越来越重要的作用。TILLING技术应用于已测序完成的拟南芥和水稻中的突变位点检测并取得了巨大成功;TILLING技术应用于农作物的品种改良,可以帮助实现快速、定向改良作物的品种,同时由于TILLING采用的化学诱变技术与传统诱变育种并无二致,因此在作物改良中采用TILLING技术不存在外源基因转入引发的转基因作物(GMO)争论;由TILLING技术发展来的EcoTILLING技术,具有通量高、成本低、定位准确等优点,可以很好地进行多态性检测和研究基因的功能,已成为开展物种DNA多态性检测和不同物种演替进化研究的有力工具。本文简要介绍了TILLING的原理及操作步骤,讨论了TILLING技术的特点和优点及TILLING技术的应用前景。  相似文献   

8.

Background

Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics approach to directly identify point mutations in specific genes of interest in genomic DNA from a large chemically mutagenized population. Classical TILLING processes, based on enzymatic detection of mutations in heteroduplex PCR amplicons, are slow and labor intensive.

Results

Here we describe a new TILLING strategy in zebrafish using direct next generation sequencing (NGS) of 250bp amplicons followed by Paired-End Low-Error (PELE) sequence analysis. By pooling a genomic DNA library made from over 9,000 N-ethyl-N-nitrosourea (ENU) mutagenized F1 fish into 32 equal pools of 288 fish, each with a unique Illumina barcode, we reduce the complexity of the template to a level at which we can detect mutations that occur in a single heterozygous fish in the entire library. MiSeq sequencing generates 250 base-pair overlapping paired-end reads, and PELE analysis aligns the overlapping sequences to each other and filters out any imperfect matches, thereby eliminating variants introduced during the sequencing process. We find that this filtering step reduces the number of false positive calls 50-fold without loss of true variant calls. After PELE we were able to validate 61.5% of the mutant calls that occurred at a frequency between 1 mutant call:100 wildtype calls and 1 mutant call:1000 wildtype calls in a pool of 288 fish. We then use high-resolution melt analysis to identify the single heterozygous mutation carrier in the 288-fish pool in which the mutation was identified.

Conclusions

Using this NGS-TILLING protocol we validated 28 nonsense or splice site mutations in 20 genes, at a two-fold higher efficiency than using traditional Cel1 screening. We conclude that this approach significantly increases screening efficiency and accuracy at reduced cost and can be applied in a wide range of organisms.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1263-4) contains supplementary material, which is available to authorized users.  相似文献   

9.
TILLING (for Targeting Induced Local Lesions IN Genomes) is a well-established method for identifying plants carrying point mutations in genes of interest. A traditional TILLING project requires a significant investment of time and resources to establish the mutant population and screening infrastructure. Here, we describe a modified TILLING procedure that substantially reduces the investment needed to perform mutation screening. Our motivation for developing iTILLING was to make it practical for individual laboratories to rapidly perform mutation screens using specialized genetic backgrounds. With iTILLING, M2 seeds are collected in bulk from the mutagenized population of plants, greatly reducing the labor needed to manage the mutant lines. Growth of the M2 seedlings for mutation screening, tissue collection, and DNA extraction are all performed in 96-well format. Mutations are then identified using high-resolution melt-curve analysis of gene-specific polymerase chain reaction products. Individual plants carrying mutations of interest are transferred from the 96-well growth plates to soil. One scientist can complete an iTILLING screen in less than 4 months. As a proof-of-principle test, we applied iTILLING to Arabidopsis (Arabidopsis thaliana) plants that were homozygous for the mekk1-1 (for MAPK/ERK kinase kinase 1) mutation and also carried a MEKK1 rescue construct. The goal of our screen was to identify mutations in the closely linked MEKK2 and MEKK3 loci. We obtained five mutations in MEKK2 and seven mutations in MEKK3, all located within 20 kb of the mekk1-1 T-DNA insertion. Using repeated iterations of the iTILLING process, mutations in three or more tandemly duplicated genes could be generated.The process of reverse genetics has been widely used by plant biologists to study gene function. In Arabidopsis (Arabidopsis thaliana), three approaches that have been used to generate populations of plants for reverse genetic analysis are insertional mutagenesis (Wisman et al., 1998; Alonso et al., 2003), fast neutron mutagenesis to induce deletions (Li et al., 2001), and chemical mutagenesis to induce point mutations (McCallum et al., 2000). In order to find individual plants carrying point mutations of interest, a process called TILLING (for Targeting Induced Local Lesions IN Genomes) was developed whereby genes are screened for mutations using a PCR-based assay (McCallum et al., 2000). Although originally developed for use with Arabidopsis, the TILLING process has been subsequently applied to a wide range of plants, including barley (Hordeum vulgare; Caldwell et al., 2004), Brassica napus (Wang et al., 2008), Brassica oleracea (Himelblau et al., 2009), Brassica rapa (Stephenson et al., 2010), Lotus japonicus (Perry et al., 2009), maize (Zea mays; Till et al., 2004), Medicago truncatula (Le Signor et al., 2009), oat (Avena sativa; Chawade et al., 2010), pea (Pisum sativum; Triques et al., 2007), potato (Solanum tuberosum; Elias et al., 2009), rice (Oryza sativa; Till et al., 2007), sorghum (Sorghum bicolor; Xin et al., 2008), soybean (Glycine max; Cooper et al., 2008), tomato (Solanum lycopersicum ; Gady et al., 2009), and wheat (Triticum aestivum; Dong et al., 2009). TILLING has also been used in Drosophila (Winkler et al., 2005), zebrafish (Wienholds et al., 2003), and Caenorhabditis elegans (Gilchrist et al., 2006).The chemical mutagen most commonly used to create the mutant populations used for TILLING is ethyl methanesulfonate (EMS). When working with plants, seeds are soaked in EMS to induce mutations throughout the genome. Mutagenized seeds are then planted on soil, and the resulting plants are grown to maturity to produce M2 seeds, which are collected from the plants individually or in small pools. Next, M2 seed samples from each individual plant are germinated and grown to produce tissue from which DNA can be extracted. The resulting large collection of ordered DNA samples and the corresponding M2 seeds constitute the infrastructure of a TILLING population. PCR-based screening can then be used to find individual plants in the population carrying mutations in genes of interest (McCallum et al., 2000). Once established, this type of TILLING infrastructure can serve the needs of an entire research community through a fee-for-service screening operation (Colbert et al., 2001; Martín et al., 2009).Several different strategies have been developed for identifying the mutations present in a TILLING population, but all of them involve detecting heteroduplex PCR products. A heteroduplex is formed when a mixture of wild-type and mutant PCR products are melted and reannealed, resulting in DNA duplexes that contain a single-base mismatch. TILLING was originally described using denaturing HPLC to identify mutations based on the differential retention times of heteroduplexes and homoduplexes in the chromatography column (McCallum et al., 2000). TILLING has since been modified so that endonucleases are used to cleave PCR products containing a heteroduplex. Cleavage products are then separated via gel electrophoresis to identify banding patterns indicative of mutations (Colbert et al., 2001).More recently, high-resolution melting analysis of PCR products has been used to identify heteroduplexes when performing TILLING (Dong et al., 2009; Gady et al., 2009). High-resolution melting analysis was originally developed for use in clinical settings to identify known single-nucleotide polymorphisms and small insertions/deletions potentially linked to genetic diseases (Erali et al., 2008). With high-resolution melting, the mismatch in a heteroduplex is visualized as a melting event that occurs more rapidly or at a lower temperature than the corresponding homoduplex. Montgomery et al. (2007) demonstrated that mutation scanning with high-resolution melting is a robust technique with greater than 95% sensitivity in distinguishing heteroduplexes from homoduplexes. It has also been observed that the sensitivity with which mutations in PCR products can be identified using DNA melting analysis depends on the resolution of the instrumentation used for collecting the melt-curve data (Zhou et al., 2005; Herrmann et al., 2006).Although traditional TILLING is a high-throughput method for mutation screening, the establishment of the initial screening population and the corresponding ordered DNA samples requires a substantial up-front investment of time and money. Because of this situation, TILLING resources are available for only two genetic backgrounds in Arabidopsis: wild-type Columbia-0 and Landsberg erecta (Greene et al., 2003; Martín et al., 2009). If a scientist is interested in identifying mutations in a more specialized genetic background, the costs associated with establishing a TILLING population can be prohibitive. Therefore, we were interested in determining if a modified version of the TILLING process could be developed that would substantially reduce the investment of time and resources necessary to perform mutation screening. The individualized TILLING procedure, or iTILLING, which we describe in this paper provides one solution to this challenge.  相似文献   

10.

Background

Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening.

Methodology/Principal Findings

To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect.

Conclusions/Significance

We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.  相似文献   

11.
TILLING (Targeting induced local lesions in genomes) is a general reverse-genetic strategy that is used to locate an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and cost-effective detection of induced point mutations in populations of chemically mutagenized individuals. The technique can be applied not only to model organisms but also to economically important organisms in plants. Owing to its full of advantages such as simple procedure, high sensitivity, and high efficiency, TILLING provides a powerful approach for gene discovery, DNA polymorphism assessment, and plant improvement. Coupled with other genomic resources, TILLING and EcoTILLING can be used immediately as a haplotyping tool in plant breeding for identifying allelic variation in genes exhibiting expression correlating with phenotypes and establishing an allelic series at genetic loci for the traits of interest in germplasm or induced mutants.  相似文献   

12.

Background

Array-based comparative genomic hybridization (aCGH) is a high-throughput method for measuring genome-wide DNA copy number changes. Current aCGH methods have limited resolution, sensitivity and reproducibility. Microarrays for aCGH are available only for a few organisms and combination of aCGH data with expression data is cumbersome.

Results

We present a novel method of using commercial oligonucleotide expression microarrays for aCGH, enabling DNA copy number measurements and expression profiles to be combined using the same platform. This method yields aCGH data from genomic DNA without complexity reduction at a median resolution of approximately 17,500 base pairs. Due to the well-defined nature of oligonucleotide probes, DNA amplification and deletion can be defined at the level of individual genes and can easily be combined with gene expression data.

Conclusion

A novel method of gene resolution analysis of copy number variation (graCNV) yields high-resolution maps of DNA copy number changes and is applicable to a broad range of organisms for which commercial oligonucleotide expression microarrays are available. Due to the standardization of oligonucleotide microarrays, graCNV results can reliably be compared between laboratories and can easily be combined with gene expression data using the same platform.  相似文献   

13.

Background  

Wheat (Triticum ssp.) is an important food source for humans in many regions around the world. However, the ability to understand and modify gene function for crop improvement is hindered by the lack of available genomic resources. TILLING is a powerful reverse genetics approach that combines chemical mutagenesis with a high-throughput screen for mutations. Wheat is specially well-suited for TILLING due to the high mutation densities tolerated by polyploids, which allow for very efficient screens. Despite this, few TILLING populations are currently available. In addition, current TILLING screening protocols require high-throughput genotyping platforms, limiting their use.  相似文献   

14.
15.

Background

Targeting Induced Local Lesions in Genomes (TILLING) is a high throughput reverse genetics tool which detects mismatches (single point mutations or small indels) in large number of individuals of mutagenized populations. Currently, TILLING is intensively used for genomics assisted molecular breeding of several crop plants for desired traits. Most commonly used platform for mutation detection is Li-COR DNA Analyzer, where PCR amplified products treated with single strand mismatch specific nuclease are resolved on denaturing gels. The molecular size of any cut product can be easily estimated by comparing with IR dye labeled markers of known sizes. Similar fluorescent dye labeled size markers are also used for several genotyping experiments. Currently, commercially available size standards are expensive and are restricted up to only 700 bp which renders estimation of products of sizes greater than 700 bases inaccurate.

Findings

A simple protocol was developed for labeling 5' end of multiple DNA size markers with fluorescent dyes. This method involves cloning a pool of different size markers of DNA in a plasmid vector. PCR amplification of plasmid using IR dye labeled universal primers generates 5' fluorescent labeled products of various sizes. The size of products constituting the ladder can be customized as per the need. The generated size markers can be used without any further purification and were found to be stable up to one year at -20°C.

Conclusions

A simple method was developed for generating fluorescent dye labeled size standards. This method can be customized to generate different size standards as per experimental needs. The protocol described can also be adapted for developing labeled size standards for detection on platforms other than Li-COR i.e. other than infra red range of the spectrum.  相似文献   

16.

Key message

This study elucidates the influence of indehiscent mutations on rapeseed silique shatter resistance. A phenotype with enlarged replum-valve joint area and altered cell dimensions in the dehiscence zone is described.

Abstract

Silique shattering is a major factor reducing the yield stability of oilseed rape (Brassica napus). Attempts to improve shatter resistance often include the use of mutations in target genes identified from Arabidopsis (Arabidopsis thaliana). A variety of phenotyping methods assessing the level of shatter resistance were previously described. However, a comparative and comprehensive evaluation of the methods has not yet been undertaken. We verified the increase of shatter resistance in indehiscent double knock-down mutants obtained by TILLING with a systematic approach comparing three independent phenotyping methods. A positive correlation of silique length and shatter resistance was observed and accounted for in the analyses. Microscopic studies ruled out the influence of different lignification patterns. Instead, we propose a model to explain increased shattering resistance of indehiscent rapeseed mutants by altered cell shapes and sizes within the contact surfaces of replum and valves.
  相似文献   

17.

Background  

Arabidopsis thaliana is the main model species for plant molecular genetics studies and world-wide efforts are devoted to identify the function of all its genes. To this end, reverse genetics by TILLING (Targeting Induced Local Lesions IN Genomes) in a permanent collection of chemically induced mutants is providing a unique resource in Columbia genetic background. In this work, we aim to extend TILLING resources available in A. thaliana by developing a new population of ethyl methanesulphonate (EMS) induced mutants in the second commonest reference strain. In addition, we pursue to saturate the number of EMS induced mutations that can be tolerated by viable and fertile plants.  相似文献   

18.

Main conclusion

Maize 1,491 small secreted peptides were identified, which were classified according to the character of peptide sequences. Partial SSP gene expressions in reproductive tissues were determined by qRT-PCR. Small secreted peptides (SSPs) are important cell–cell communication messengers in plants. Most information on plant SSPs come from Arabidopsis thaliana and Oryza sativa, while little is known about the SSPs of other grass species such as maize (Zea mays). In this study, we identified 1,491 SSP genes from maize genomic sequences. These putative SSP genes were distributed throughout the ten maize chromosomes. Among them, 611 SSPs were classified into 198 superfamilies according to their conserved domains, and 725 SSPs with four or more cysteines at their C-termini shared similar cysteine arrangements with their counterparts in other plant species. Moreover, the SSPs requiring post-translational modification, as well as defensin-like (DEFL) proteins, were identified. Further, the expression levels of 110 SSP genes were analyzed in reproductive tissues, including male flower, pollen, silk, and ovary. Most of the genes encoding basal-layer antifungal peptide-like, small coat proteins-like, thioredoxin-like proteins, γ-thionins-like, and DEFL proteins showed high expression levels in the ovary and male flower compared with their levels in silk and mature pollen. The rapid alkalinization factor-like genes were highly expressed only in the mature ovary and mature pollen, and pollen Ole e 1-like genes showed low expression in silk. The results of this study provide basic information for further analysis of SSP functions in the reproductive process of maize.  相似文献   

19.
20.
The complexity of gene expression dynamics revealed by permutation entropy   总被引:1,自引:0,他引:1  

Background

High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity.

Results

Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes.

Conclusions

We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号