首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex type N-glycosides of commercial bovine fetuin preparations from pooled fetal calf serum have been shown to contain comparable amounts of Gal4,4,4TRI (see structure A below) and Gal4,4,3TRI (structure B) as major asialo-structures. To investigate whether there is a clear genetic specificity for synthesis of these oligosaccharides, N-glycosides from two preparations of bovine fetuin, each from a single calf, were examined. Both of these structures were present in each calf, and there was only a subtle quantitative difference in the ratio of these two structures between the calves. Thus, a specific galactosyltransferase, presumably required for the biosynthesis of the Gal4,4,3TRI structure, may exist in both of these individual calves. Comparison of fetuin N-glycosides was also extended to sheep, pig, and human alpha 2-HS-glycoprotein, the human counterpart of bovine fetuin, using high-pH anion-exchange chromatography of the reducing oligosaccharides as well as HPLC of their pyridinylamino derivatives. The N-glycosides of ovine fetuin also have both Gal4,4,4TRI and Gal4,4,3TRI structures in a ratio similar to that of bovine fetuin. However, the major N-glycoside of porcine fetuin is of a fucosyl biantennary complex type structure (structure C below) and human alpha 2-HS-glycoprotein has an N-glycoside which is almost exclusively a nonfucosylated biantennary structure (structure D). This species-specific presence of N-glycosides of fetuins and comparison with N-glycosides of other glycoproteins suggest that the polypeptide sequence of a glycoprotein may affect its N-glycan structure by regulating the activity of specific glycosyltransferases. [formula: see text]  相似文献   

2.
Some properties of two distinct rat brain sialyltransferases, acting on fetuin and asialofetuin, respectively, were investigated. These two membrane-bound enzymes were both strongly inhibited by charged phospholipids. Neutral phospholipids were without effect except lysophosphatidylcholine (lysoPC) which modulated these two enzymes in a different way. At 5 mM lysoPC, the fetuin sialyltransferase was solubilized and highly activated while the asialofetuin sialyltransferase was inhibited. Preincubation of brain microsomes with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), known as a specific anion inhibitor and a non-penetrating probe, led to a moderate inhibition of the asialofetuin sialyltransferase just as in the case of the ovomucoid galactosyltransferase (used here as a marker for the luminal side of the Golgi membrane); under similar conditions, the fetuin sialyltransferase was strongly inhibited. In the presence of Triton X-100, which induced a disruption of membranes, all three enzymes were strongly inhibited by DIDS. Trypsin action on intact membranes showed that asialofetuin sialyltransferase, galactosyltransferase and fetuin sialyltransferase were all slightly inhibited. After membrane disruption by Triton X-100, the first two enzymes were completely inactivated by trypsin while the fetuin sialyltransferase was quite insensitive to trypsin treatment. From these data, we suggest that the fetuin sialyltransferase, accessible to DIDS, is an external enzyme, oriented closely towards the cytoplasmic side of the brain microsomal vesicles (endoplasmic and Golgi membranes), whereas the asialofetuin sialyltransferase is an internal enzyme, oriented in a similar manner to the galactosyltransferase. Moreover, the anion site (nucleotide sugar binding site) of the fetuin sialyltransferase must be different from its active site, as this enzyme, when solubilized, is strongly inhibited by DIDS while no degradation is observed in the presence of trypsin.  相似文献   

3.
1. Sialyl- and galactosyl-transferase activities were determined in wild type and conA-resistant L6 rat myoblasts with substrates derived from fetuin, alpha 1-acid glycoprotein and bovine submaxillary mucin; fetuin was the best acceptor for both enzyme activities, whereas the mucin did not act as an acceptor. 2. The optimum pH for sialyltransferase was 6.6 in both cell lines. 3. The optimum pH for galactosyltransferase in the wild type cell line was 6.2 which was slightly higher than the value of 5.8 found for the conA-resistant cells. 4. Values for Km for both enzyme activities increased five to ten-fold in the variant cell line with both acceptors. 5. The main sialyltransferase activity was the Gal beta 1----4GlcNAc alpha 2----3sialyltransferase for N-linked chains. The galactosyltransferase was most likely the enzyme that is responsible for the synthesis of the Gal beta 1----4GlcNAc structure.  相似文献   

4.
Fetuin, a major protein of fetal calf serum, partially purified by the method of Pedersen, stimulated growth of aortic smooth muscle cells. More highly purified fetuin preparations stimulated growth less than Pedersen fetuin, as previously described for other cell types, suggesting that this activity is due to a contaminant. Recently bovine alpha 2-macroglobulin or "Embryonin" has been proposed as the mitogenic component of crude fetuin preparations. We found that active fetuin preparations did contain alpha 2-macroglobulin that stimulated smooth muscle cell growth. However, alpha 2-macroglobulin purified directly from platelet-poor bovine plasma or fetuin purified from Pedersen fetuin by gel filtration lacked appreciable mitogenic effect on smooth muscle cells. Since alpha 2-macroglobulin can bind platelet-derived growth factor (PDGF), and since highly acidic fetuin might bind the very basic PDGF molecule non-specifically, we measured the PDGF content of various fetuin preparations and found a good correlation between the PDGF content and mitogenic activity. Gel filtration experiments demonstrated that in Pedersen fetuin PDGF occurred both free, and in association with alpha 2-macroglobulin. We conclude that the principal mitogenic component for smooth muscle cells in crude fetuin preparations is PDGF, since purified bovine alpha 2-macroglobulin or fetuin do not appreciably affect growth of these cells. These results help to resolve a long-standing controversy regarding the nutrition of cultured cells. In addition, we suggest that before alpha 2-macroglobulin or "Embryonin" is accepted as a bona fide growth factor for a given cell type, the role of contamination with PDGF should be assessed.  相似文献   

5.
Two different lines of solid tumors were produced in outbred hamsters by subcutaneous injection of polyoma transformed BHK cells. Growth of the tumors correlated with the appearance in serum of an electrophoretically distinct peak of galactosyltransferase: NeuAc-, Gal-free fetuin acceptor activity on polyacrylamide gels. This slow moving peak of enzyme activity (GT-HH) was detected before solid tumors could be grossly observed and the amount of activity in this peak was also found to be linearly related with growth of the tumor. GT-IIH was not detectable in control animals and separated from a faster migrating major area of serum galactosyltransferase activity (GT-IH) found in sera of both control and tumor-bearing hamsters. These two activities were shown to maintain their respective mobilities on re-electrophoresis. Solubilized enzyme derived from excised tumors demonstrated an electrophoretic mobility on polyacrylamide gels identical to that for GT-IIH present in serum from tumor-bearing animals. In contrast, enzyme activity solubilized from livers of both control or tumor-bearing hamsters showed a mobility similar to that of the faster moving serum galactosyltransferase enzyme activity, i.e. GT-IH. In addition, medium derived from nonconfluent BHKpy cells in tissue culture contained galactosyltransferase activity which co-electrophoresed with the slower migrating characteristics of galactosyltransferase activities derived from serum (control and tumor-bearing), solid tumors, liver and BHKpy cells in tissue culture were compared. All kinetic properties were similar with the exception that the Km UDP-galactose of GT-IIH (1.0 X 10(-5) M) was half that of GT-IH (2.0 X 10(-5) M).  相似文献   

6.
It has been previously observed that rabbit erythrocyte cell surface galactosyltransferase appears to play a role in concanavalin A agglutination of these erythrocytes (Podolsky et al., 1974). Further, a correlation between the occurrence or level of cell surface galactosyltransferase and concanavalin A agglutinability of other cell types has also been observed. The mechanism by which rabbit erythrocyte galactosyltransferase participates in concanavalin A agglutination has now been further defined. The enzyme was solubilized and purified. Characterization of the enzyme properties has shown them to be similar to those reported for other purified galactosyltransferases. Amino acid and carbohydrate analysis showed a high asparagine content and the presence of D-mannose. Specific alpha-mannosidase treatment of the enzyme showed that some of these D-mannose residues were terminal sugars. The purified enzyme also conferred concanavalin A agglutinability to non-agglutinable human erythrocytes. However, the ability to confer concanavalin A agglutinability was unrelated to the enzyme activity per se (as measured with fetuin acceptor) but appeared to be entirely dependent on the presence of terminal alpha-linked D-mannosyl residues in the enzyme structure. These findings suggest that the presence of terminal alpha-mannosidyl residues on cell surface glycoproteins such as galactosyltransferase may be the determining factor in agglutination of cells by concanavalin A.  相似文献   

7.
Two enzymes that catalyse the transfer of galactose from UDP-galactose to GM2 ganglioside were partially purified from rat liver Golgi membranes. These preparations, designated enzyme I (basic) and enzyme II (acidic), utilized as acceptors GM2 ganglioside and asialo GM2 ganglioside as well as ovalbumin, desialodegalactofetuin, desialodegalacto-orosomucoid, desialo bovine submaxillary mucin and GM2 oligosaccharide. Enzyme II catalysed disaccharide synthesis in the presence of the monosaccharide acceptors N-acetylglucosamine and N-acetylgalactosamine. The affinity adsorbent alpha-lactalbumin-agarose, which did not retard GM2 ganglioside galactosyltransferase, was used to remove most or all of galactosyltransferase activity towards glycoprotein and monosaccharide acceptors from the extracted Golgi preparation. After treatment of the extracted Golgi preparation with alpha-lactalbumin-agarose, enzyme I and enzyme II GM2 ganglioside galactosyltransferase activities, prepared by using DEAE-Sepharose chromatography, were distinguishable from transferase activity towards GM2 oligosaccharide and glycoproteins by the criterion of thermolability. This residual galactosyltransferase activity towards glycoprotein substrates was also shown to be distinct from GM2 ganglioside galactosyltransferase in both enzyme preparations I and II by the absence of competition between the two acceptor substrates. The two types of transferase activities could be further distinguished by their response to the presence of the protein effector alpha-lactalbumin. GM2 ganglioside galactosyltransferase was stimulated in the presence of alpha-lactalbumin, whereas the transferase activity towards desialodegalactofetuin was inhibited in the presence of this protein. The results of purification studies, comparison of thermolability properties and competition analysis suggested the presence of a minimum of five galactosyltransferase species in the Golgi extract. Five peaks of galactosyltransferase activity were resolved by isoelectric focusing. Two of these peaks (pI 8.6 and 6.3) catalysed transfer of galactose to GM2 ganglioside, and three peaks (pI 8.1, 6.8 and 6.3) catalysed transfer to glycoprotein acceptors.  相似文献   

8.
E G Berger  B Verdon  T Mandel  H Fey  G Strous 《Enzyme》1983,29(3):175-182
Rabbit antisera against soluble human milk galactosyltransferase (GT) having anti-GT activity, as demonstrated by inhibition of enzyme activity were used for a comparative study of the molecular sizes of galactosyltransferase. For this purpose, affinity-purified antibodies were used for the identification of milk, serum and effusion galactosyltransferase from native or partially purified preparations resolved by sodium dodecyl sulfate polyacrylamide electrophoresis (SDS-PAGE) by the immune replica technique. Milk galactosyltransferase migrated as a 55-kilodalton (kD) protein, serum and effusion GT slightly faster. Cross-reactive enzyme forms of 110 kD and 20 kD were detected in milk only. In order to establish a relationship between intracellular and soluble galactosyltransferase, HeLa cells were metabolically labeled by [35S]-methionine, cells lysed, subjected to immunoprecipitation and the precipitate analyzed by SDS-PAGE/fluorography: a single band corresponding to the intracellular form of GT have similar mobility as the milk enzyme was detected. These results indicate a close structural similarity between soluble and cellular galactosyltransferase as judged by immunological cross-reactivity and electrophoretic mobility.  相似文献   

9.
The galactosylation steps in the biosynthesis of galactolipids involve two different enzymes; a UDP-Gal:diacylglycerol galactosyltransferase and a galactolipid:galactolipid galactosyltransferase. Previous localization studies have shown that in spinach these enzymes are located in the chloroplast envelope. Our results with peas (Pisum sativum var Laxton's Progress No. 9) confirm these results and extend the localization by providing evidence that the galactosyltransferases are in the outer membrane of the envelope. The specific activity of UDP-Gal:diacylglycerol galactosyltransferase in outer membrane preparations was 6 to 10 times greater than that exhibited by inner membrane preparations. In addition, using quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was possible to show that the UDP-Gal:diacylglycerol galactosyltransferase activity associated with inner membrane preparations could be accounted for by outer membrane contamination. It is concluded from these results that this enzyme is located predominantly, if not exclusively, in the outer membrane of the envelope. An analysis of the galactolipid products synthesized by the highly purified outer membrane showed that the galactolipid:galactolipid galactosyltransferase is also present, suggesting that this enzyme is also an outer membrane enzyme. The implication of these results is that the final assembly of galactolipids is carried out on the outer membrane of the chloroplast envelope.  相似文献   

10.
The zona pellucida of mouse oocytes becomes resistant to chymotrypsin digestion, or "hardened", when spontaneous maturation occurs in serum-free medium (De Felici and Siracusa, Gam Res 1982; 6:107). The hardened zona pellucida is refractory to sperm penetration, thus preventing fertilization. Conversion of the zona pellucida glycoprotein ZP2 to ZP2f by a protease from precociously released oocyte cortical granules appears to be a major contributory factor of zona pellucida hardening (Ducibella et al., Dev Biol 1990; 137:46). Fetal bovine serum (FBS) prevents zona hardening and the ZP2 to ZP2f conversion during oocyte maturation in vitro (Downs et al., Gam Res 1986; 15:115; Ducibella et al., Dev Biol 1990; 137:46). This study was conducted to determine whether fetuin, a major glycoprotein constituent of FBS and a protease inhibitor, could prevent zona pellucida hardening during murine oocyte maturation in serum-free medium. Commercially available preparations of fetuin purified by three different methods were all active in inhibiting zona pellucida hardening in a concentration-dependent manner. Further chromatographic purification of one of these preparations indicated that the activity preventing zona pellucida hardening was associated specifically with fetuin. Fetuin also inhibited the conversion of ZP2 to ZP2f in a concentration-dependent manner during oocyte maturation in serum-free medium. Moreover, oocytes that matured in serum-free medium containing fetuin could be fertilized and could undergo preimplantation development to the blastocyst stage. These results indicate that fetuin, a component of FBS, inhibits zona pellucida hardening during oocyte maturation, and suggest that fetuin acts by preventing the proteolytic conversion of ZP2 to ZP2f by precociously released cortical granules.  相似文献   

11.
B M Gmeiner 《Enzyme》1988,39(4):213-219
The ability of Co2+ to substitute for Mn2+ in exogenous and endogenous galactosyltransferase reactions was tested. Exogenous transfer was measured towards different high and low molecular weight galactose acceptors using galactosyltransferase from the following sources: crude serum, the serum enzyme partially purified by affinity chromatography and a pure enzyme preparation from milk. Endogenous transfer was estimated in preparations from human urinary bladder tumor cells and from rat liver microsomal fractions. The results show that Co2+ is able to substitute for Mn2+ in some exogenous and endogenous galactosyltransferase reactions. This ability seems to depend on the molecular structure of the galactose acceptor as well as on the nature of the enzyme.  相似文献   

12.
1. Rat liver microsomal preparations incubated in 1% Triton X-100 at 37°C for 1h released about 60% of the membrane-bound UDP-galactose–glycoprotein galactosyltransferase (EC 2.4.1.22) into a high-speed supernatant. The supernatant galactosyltransferase which was solubilized but not purified by this treatment had a higher molecular weight than the serum enzyme as shown by Sephadex G-100 column chromatography. 2. The galactosyltransferase present in the high-speed supernatant was purified 680-fold by an affinity-column-chromatographic technique by using a column of activated Sepharose 4B coupled with α-lactalbumin. The galactosyltransferase ran as a single band on polyacrylamide gels and contained no sialyltransferase, N-acetylglucosaminyltransferase or UDP-galactose pyrophosphatase activities. 3. The purified membrane enzyme had properties similar to serum galactosyltransferase. It had an absolute requirement for Mn2+ that could not be replaced by Ca2+, Mg2+, Zn2+ or Co2+, and was active over a wide pH range (6–8) with a pH optimum of 6.5. The apparent Km for UDP-galactose was 10.8μm. The protein α-lactalbumin modified the enzyme to a lactose synthetase by increasing substrate specificity for glucose in preference to N-acetylglucosamine and fetuin depleted of sialic acid and galactose. 4. The molecular weight of the membrane enzyme was 65000–70000, similar to that of the purified serum enzyme. Amino acid analyses of the two proteins were similar but not identical. 5. Sephadex G-100 column chromatography of the purified membrane enzyme showed a small peak (2–5%) of higher molecular weight than the purified serum enzyme. Inclusion of 1mm-ε-aminohexanoic acid in the isolation procedures increased this peak to as much as 30% of the total enzyme recovered. Increasing the ε-aminohexanoic acid concentration to 100mm resulted in no further increase in this high-molecular-weight fraction.  相似文献   

13.
Sialyltransferase activity in normal human breast tissue and tumors was investigated with lactose, desialylated fetuin, and bovine submaxillary mucin as the acceptors. While microsomal preparations from the normal tissue showed little or no sialyltransferase activity toward these acceptors, tumors showed elevated enzymic activities. Tween-20 at 0.5% concentrations stimulated sialic acid transfer to all three acceptors. Another nonionic detergent, Triton X-100, stimulated asialo fetuin sialyltransferase activity while inhibiting activity toward asialo BSM and lactose. Interestingly, lysolecithin, a normal cellular constituent which possesses detergent properties also had an effect similar to that of Triton X-100. Thermal denaturation curves of enzymic activity toward asialo BSM, however, resembled those seen with asialo fetuin as the acceptor. Kinetic studies showed that at acceptor concentrations of 500 micrograms each, sialyl transfers to asialo fetuin, asialo BSM, and lactose showed apparent Km values of 50, 60, and 300 microM, respectively. At CMP-sialic acid concentrations of 300 microM, the Km values for the above acceptors were 25, 15, and 5000 microM.  相似文献   

14.
Galactomannan biosynthesis in vitro is catalysed by membrane preparations from developing fenugreek seed endosperms. Two enzymes interact: a GDP-mannose dependent (1-->4)-beta-D-mannan synthase and a UDP-galactose dependent (1-->6)-alpha-D-galactosyltransferase. The statistical distribution of galactosyl substituents along the mannan backbone, and the degree of galactose substitution of the primary product of galactomannan biosynthesis appear to be regulated by the specificity of the galactosyltransferase. We now report the detergent solubilisation of the fenugreek galactosyltransferase with retention of activity, the identification on gels of a putative 51 kDa galactosyltransferase protein, and the isolation, cloning and sequencing of the corresponding cDNA. The solubilised galactosyltransferase has an absolute requirement for added acceptor substrates. Beta-(1-->4)-linked D-manno-oligosaccharides with chain lengths greater than or equal to 5 acted as acceptors, as did galactomannans of low to medium galactose-substitution. The putative galactosyltransferase cDNA encodes a 51282 Da protein, with a single transmembrane alpha helix near the N terminus. We have also confirmed the identity of the galactosyltransferase by inserting the cDNA in frame into the genome of the methylotrophic yeast Pichia pastoris under the control of an AOX promoter and the yeast alpha secretion factor and observing the secretion of galactomannan alpha-galactosyltransferase activity. Particularly high activities were observed when a truncated sequence, lacking the membrane-spanning helix, was expressed.  相似文献   

15.
Particulate membrane preparations from etiolated pea epicotyls were found to contain fucosyltransferases, which transferred fucose from GDP-fucose onto xyloglucan and N-linked glycoprotein, and galactosyltransferases, which transferred galactose from UDP-galactose onto galactan, xyloglucan, and N-linked glycoprotein. The products were characterised by specific enzyme degradation and by acid and alkaline hydrolysis. All the enzymes were found to be concentrated in the Golgi apparatus. The Golgi apparatus was further fractionated into membranes of low, medium and high-density. The glycoprotein fucosyltransferase activity was present in highest amounts in the medium-density Golgi membranes, while the majority of the xyloglucan fucosyltransferase was present in the low-density Golgi membranes. The majority of the galactan galactosyltransferase (galactan synthase) was found in the low-density membranes, while the glycoprotein galactosyltransferase was equally distributed in all three subfractions.  相似文献   

16.
The four major isoelectric forms of human liver neuraminidase (with pI values between 3.4 and 4.8) have been isolated by preparative isoelectric focusing and characterized with regard to their substrate specificity using glycoprotein, glycopeptide, oligosaccharide and ganglioside natural substrates. All forms exhibited a rather broad linkage specificity and were capable of hydrolyzing sialic acid glycosidically linked alpha 2-3, alpha 2-6 and alpha 2-8, although differential rates of hydrolysis of the substrates were found for each form. The most acidic form 1 (pI 3.4) was most active on sialyl-lactose, whereas form 2 (pI 3.9) and 3 (pI 4.4) were most active on the more hydrophobic ganglioside substrates. Form 4 (pI 4.8) was most active on the low-Mr hydrophilic substrates (fetuin glycopeptide, sialyl-lactose). Each form was less active on the glycoprotein fetuin than on a glycopeptide derived from fetuin. Organelle-enriched fractions were prepared from fresh human liver tissue and neuraminidase activity on 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid was recovered in plasma membrane, microsomal, lysosomal and cytosolic preparations. Isoelectric focusing of the neuraminidase activity recovered in each of these preparations resulted in significantly different isoelectric profiles (number, relative amounts and pI values of forms) for each preparation. The differential substrate specificity of the isoelectric forms and the different isoelectric focusing profiles of neuraminidase activity recovered in subcellular-enriched fractions suggest that specific isoelectric forms with broad but defined substrate specificity are enriched at separate sites within the cell.  相似文献   

17.
Fetuin is a major protein of fetal bovine serum that exhibits heterogeneity and has been found to be associated with some biological active growth factors. Preliminary studies indicated that commercial fetuin preparations contain lipids. We investigated in detail the nature of lipids associated with fetuin by using ultracentrifugation and agarose gel chromatography followed by lipid analysis. Fetuin was associated with a variety of lipids, predominantly cholesterol, cholesteryl ester with smaller amounts of phospholipids, triglycerides, and free fatty acids. Adjustment of fetuin preparation for various densities followed by ultracentrifugation resulted in a fraction with a density 1.063-1.21 g/ml (1-2% of total protein) that contained the bulk of the lipids. This fraction eluted as a single peak upon high pressure liquid chromatography and agarose gel chromatography. Delipidation of the lipoprotein-like particle followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a major band in the range of fetuin itself. These studies suggest that a fraction of fetuin (or isoform) binds lipids forming a particle with floating characteristics similar to high density lipoproteins.  相似文献   

18.
Indirect evidence suggests that some major histocompatibility complex (MHC) proteins are glycosyltransferases. No sequence or mapping information is available for transferases, although ganglioside variations in mice are linked to the H-2 complex on chromosome 17, and one galactosyltransferase activity on mouse sperm varies with T/t complex genotypes, also on chromosome 17. In the present experiments, diploid and trisomy 17 mouse embryos were assayed for four different galactosyltransferase activities. The same preparations were assayed for isocitrate dehydrogenase (Id-1, chromosome 1) and glyoxalase-1 (Glo-1, chromosome 17). Galactosyltransferase specific activities in trisomy 17 embryos are almost 1.5 times higher than in diploid embryos. The correlation between galactosyltransferase activities and chromosome 17 dosage indicates that the structural or regulatory gene for these enzymes are located on chromosome 17.  相似文献   

19.
Galactosyltransferase (EC 2.4.1.22) requires bivalent metal ions for its activity. However, preparations of this enzyme solubilized from Golgi membranes of lactating rat mammary gland were shown to be activated not only by Mn2+, Ca2+ and Mg2+, but also by spermine, spermidine, lysyl-lysine, ethylenediamine and other diaminoalkanes, and by a range of basic proteins and peptides, including clupeine, histone, polylysine, ribonuclease, pancreatic trypsin inhibitor, cytochrome c, melittin, avidin and myelin basic protein. Both N-acetyl-lactosamine synthetase and lactose synthetase activities were enhanced. A basic protein fraction was isolated from bovine milk and shown to activate galactosyltransferase at low concentrations. The polyanions ATP, casein, chondroitin sulphate and heparin reversed the activation of galactosyltransferase by several of the above substances. Galactosyltransferase, assayed as a lactose synthetase, showed a 10-fold greater affinity for glucose when Mn2+ ions were replaced by clupeine or by ribonuclease as cationic activator. Evidence was obtained for the presence of an endogenous cationic activator in solubilized Golgi membrane preparations which evoked a similar low apparent Km,glucose. The findings are discussed in the light of cationic activations of glycosyltransferases generally, of the porous nature of the Golgi membrane, and of the unlikelihood of bivalent metal ions being the physiological activators of galactosyltransferase. It is suggested that the natural cationic activator of lactose synthetase may be a secretory protein acting in a manner analogous to the enzyme's activation by alpha-lactalbumin. A scheme is proposed for the two-stage synthesis of lactose and phosphorylation of casein within the cell, to accommodate the apparent incompatibility of these two processes.  相似文献   

20.
Optimum extraction of collagen galactosyltransferase activity from chick embryos required relatively high concentrations of detergent and salt. The activity was inhibited by concanavalin A, and the enzyme had a high affinity for columns of this lectin coupled to agarose; these results suggest the presence of carbohydrate units in the enzyme molecule. Collagen galactosyltransferase was highly labile, and only 1% of the originally bound enzyme activity could be eluted from the concanavalin A-agarose column with a buffer containing methyl glucoside and ethylene glycol. The purification of the activity over the original supernatant of chick embryo homogenate was 250-300-fold, with the optimum reaction conditions for the purified transferase differing somewhat from those for crude enzyme preparations. The reaction was inhibited by glucose-free basement-membrane collagen, UDP and galactosylhydroxylsine, and also by Co2+ and a number of compounds resembling UDP-galactose. Hydroxylysine was also a weak inhibitor. Immobilized hydroxylysine and UDP-glucuronic acid did not bind the collagen galactosyltransferase, but the enzyme was retarded in a column of UDP-galacturonic acid linked to agarose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号