首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of FasL/FasR pathways of immunoregulation of programmed cell death in teleost cytotoxic innate immunity has not been previously examined. In the present study, constitutive cytosolic soluble FasL (sFasL) was detected in anterior kidney (AK), peripheral blood (PBL) and liver NCC obtained from tilapia. Ligation of NCC by tumour cells caused the release of sFasL that was associated with lysis of HL-60 targets in 14 h killing assays. Evidence that sFasL mediated this activity was that anti-(human) FasL inhibited tilapia and catfish (cf.) NCC lysis of FasR+ HL-60 tumour cells. Inhibition was concentration dependent. Lysis of IM-9 targets (12% positive for FasR) by (cf.) anterior kidney and PBL NCC was only partially inhibited by anti-FasL mab. Activated NCC from both species were negative for the expression of membrane FasL and FasR. These data confirmed that NCC lyse sensitive tumour cells by multiple effector pathways. Pretreatment of (FasR+) HL-60 cells with anti-FasR mab completely inhibited cf. cytotoxicity at low (100:1) E:T ratios. Anti-FasR mab did not inhibit the lysis of IM-9 targets by cf. NCC. This study demonstrated that for catfish and tilapia, initial target cell conjugate formation was required; however, the terminal killing mechanism depended on at least two different pathways of cytotoxicity. One pathway depended on the release of preformed soluble FasL by activated NCC in the presence of FasR positive target cells. A second pathway has yet to be determined.  相似文献   

2.
Nonspecific cytotoxic cells (NCC) may comprise an important effector population specific for recognition of aberrant (tumour) cells, regulation of cell interactions including antibacterial action and lysis of protozoan parasites. In the present study, peptides were synthesized based on the amino acid sequence of a novel protein (Natural Killer cell Target Antigen, NK Tag) found on the protozoan parasite Tetrahymena pyriformis and on NCC-sensitive tumour target cells. Partially purified NK Tag was obtained from Tetrahymena. It inhibited NCC lysis of a large variety of mammalian tumour target cells. Synthetic peptides composed of short 20 mer sequences obtained from the N-terminal and midregion portions of NK Tag were tested for their ability to inhibit NCC cytotoxicity. Synthetic peptide comprised of aa # 55-74 significantly inhibited NCC lysis of IM-9 target cells. A monoclonal antibody generated against an N-terminal dodecapeptide of NK Tag bound to Tetrahymena and to several mammalian NK-sensitive target cells including K562, YAC-1, U937, NC-37, EL-4, IM-9, HL-60 and MOLT-4. NK Tag sequence comparisons using Swisspro database revealed no significant homologies except in a restricted domain region of several glycolytic pathway enzymes. A supergene family relationship was indicated because of these similarities.  相似文献   

3.
Nonspecific cytotoxic cells (NCC) obtained from channel catfish (Ictalurus punctatus) kill Tetrahymena pyriformis, an opportunistic parasite in fish. Based upon this fact, a new mechanism for nonspecific cellular anti-parasitic immunity in fish is proposed. Optimum in vitro conditions for NCC killing of deciliated T. pyriformis were first obtained. Lysis of T. pyriformis by NCC occurred by 10 hr of cocultivation of effector and target cells. During this time period, 50 to 60% cytotoxicity occurred. Fish anti-T. pyriformis serum enhanced NCC killing of T. pyriformis either by prolonging immobilization (after the cilia regeneration period) or by delaying cilia regeneration. Shared antigenic determinants between T. pyriformis, Ichthyophthirius multifiliis, and NC-37 target cells were demonstrated by binding-depletion experiments. For these studies, NCC were depleted from anterior kidney cells (the hemopoetic organ in fish) by preincubating formalin-treated T. pyriformis, I. multifiliis, or viable NC-37 target cells with NCC for 3 hr. Conjugates of effector and target cells were removed by overlaying on fetal bovine serum. Unconjugated fish anterior kidney cells were tested for cytotoxic activity against NC-37 or T. pyriformis target cells. Cold target inhibition experiments by using a 4-hr 51chromium cytotoxicity assay also demonstrated these shared antigenic determinants. Target-specific antisera, used to mediate the killing of T. pyriformis by NCC, were required only for immobilizing the targets, and did not function in an antibody-dependent cell-mediated (ADCC)-like mechanism. Scanning electron micrographs of NCC-T. pyriformis conjugates additionally demonstrated NCC binding to both cilia and cell surface determinants.  相似文献   

4.
Nonspecific cytotoxic cells (NCC) are the teleost equivalent of mammalian lymphokine-activated natural killer cells. The cytotoxic activities of NCC are enhanced by stress-activated serum factors (SASF) present in tilapia acute-phase serum. In the present study purified NCC and xenogeneic target HL-60 tumor cells and nuclei were distinguishable in mixtures determined by flow cytometry. NCC activated by target HL-60 cells undergo activation-induced programmed cell death (AIPCD) during 12- to 16-h killing assays as shown by Annexin-V binding and nuclear DNA fragmentation results. Annexin-V binding studies also demonstrated that NCC kill HL-60 cells by an apoptotic mechanism. NCC are protected from AIPCD by 4-h preincubation in 50% SASF. Pretreatment also produced more than a fourfold increase in NCC cytotoxicity (effector/target (E:T) ratio = 100:1). In the absence of SASF preincubation, the percentage of apoptotic NCC increased from 8 to 91% at E:T ratios of 1:0 and 1:1, respectively. Kinetic studies (E:T = 10:1) demonstrated that the percentage of NCC exhibiting HL-60-dependent AIPCD increased between 0.1 and 12 h and then decreased inversely with total cell necrosis over the next 60 h. Preincubation of NCC with SASF protected NCC from AIPCD for over 72 h. Crosslinkage of the NCCRP-1 receptor with monoclonal antibody (mab) 5C6 produced AIPCD between 1 and 100 microg/mL mab concentrations. Preincubation with SASF completely protected NCC from mab 5C6-dependent AIPCD. SASF-mediated protection of NCC from AIPCD was dependent upon divalent cations, as demonstrated by increases in DNA hypoploidy of 38, 67, and 88% following preincubation in the presence of 10, 100, and 1000 microM EDTA, respectively. SASF also protected NCC from glucocorticoid- (i. e., dexamethasone) induced apoptosis. Combined, these results demonstrated that NCC activity is down-regulated by AIPCD. Release of SASF into the peripheral circulation may prevent negative regulation of NCC by AIPCD by increasing recycling capacity. Results are discussed in the context of the effects of acute stressors on innate immunity.  相似文献   

5.
In the present study mAb were derived against flow cytometry (FCM) purified fish (Ictalurus punctatus) nonspecific cytotoxic cells (NCC). mAb 5C6.10.4 and 6D3.2.10 produced 60 to 65% inhibition of lysis of NC-37 target cells (a human B-lymphoblastoid cell line) by unfractionated NCC. mAb 2B2.4.9 and 6D3.4.4 were noninhibitors of cytotoxicity. All mAb were the same isotype (IgM) and were cloned by limiting dilution (2x). Inhibitory activity was specific for the effector cells because the mAb had no effect on NCC cytotoxicity when only the target cells were treated. Inhibition could be produced by preincubation of the mAb with NCC or by no preincubation, and inhibition was not reversible. Killing by FCM-sorted NCC of NC-37 target cells was inhibited almost 100% by mAb 5C6.10.4. Inhibitor mAb also significantly reduced NCC killing of MOLT-4, K562, P815, U937, Daudi, YAC-1, and HL-60 cells. Experiments also were conducted to determine at which stage of the lytic cycle the mAb acted. Both inhibitor mAb significantly inhibited conjugate formation between effector and NC-37 target cells. The technique of FCM was combined with competitive binding experiments to determine that the Ag recognized by both inhibitor and noninhibitor mAb was found on the membranes of the same cells. These results were confirmed by demonstrating (by using FCM) that FITC-labeled inhibitor and biotinylated noninhibitor mAb bound to the same cells. FCM also was next used to determine mAb binding to various effector cell populations. Inhibitor and noninhibitor mAb bound to approximately 25% (5C6.10.4) and 39% (6D3.4.4) of fish anterior kidney cells; to 42% (5C6.10.4) and 54% (6D3.4.4) of fish spleen cells; and to 2.5% (5C6.10.4 and 6D3.4.4) of fish peripheral blood. mAb were used to purify the target cell binding structure found on NCC. Con A-Sepharose purified mAb were used as the fixed ligand for Affi-Gel-10 affinity chromatography experiments. FCM-purified NCC were solubilized and the receptor was purified by using this technique. Analysis of the NCC-purified receptor by 12% SDS-PAGE indicated that the mAb purified structure may be composed of a dimeric molecule consisting of 41 kDa and 38 kDa proteins. The same dimer was purified by using either inhibitory (6D3.2.10) or noninhibitory (6D3.4.4) mAb. Similar results were obtained with immunoprecipitation experiments by using mAb 5C6.10.4. These studies demonstrate that the Ag-binding receptor structure on fish NCC may be comprised of a dimeric complex.  相似文献   

6.
NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.  相似文献   

7.
Fish nonspecific cytotoxic cells (NCC)3 recognize and lyse a large variety of human and mouse transformed cells. In an effort to determine the Ag recognized by NCC on these targets, mAb were raised against NC-37 target cells. Four anti-NC-37 mAb were chosen for further characterization based on their effects on NCC lysis of target cells. Purified mAb 18C2 and 1E7 (IgM isotype) inhibited NCC killing of the following targets: U937, MOLT-4, K562, HL-60, DAUDI, NC-37, P815, and YAC-1. The dose-dependent inhibitory activity occurred at the target cell level and ranged from 50 to 70% at a concentration of 50 micrograms/well when compared to noninhibitory mAb 7C6 and 1D4 (IgG isotype). Similarly, mAb 18C2 protected the fish parasite Tetrahymena pyriformis from lysis by NCC when compared to mAb 7C6. Adsorption experiments demonstrated that the inhibitory effect on NC-37 lysis by NCC could be removed in a titratable fashion by incubation of mAb 1E7 with any one of the other target cell lines, but it could not be removed by incubation with effector cells. The inhibitory activity of mAb 1E7 and 18C2 was shown to be caused by the inhibition of conjugate formation between effector and NC-37 target cells. The relative membrane concentration of the antigenic determinants recognized by these mAb on the target cells was studied by flow cytometry using FITC-labeled mAb. These experiments showed that all four mAb bound to the surface of the cells tested. Biochemical analysis with Western blots and immunoprecipitation showed that mAb 18C2 and 1E7 recognize two Ag in NC-37 lysates: a larger protein of around 80 kDa and a smaller one of 42 kDa.  相似文献   

8.
Numerous different species of parasites and pathogenic microorganisms produce programmed cell death (PCD) and apoptosis in eukaryotic targets. How ever, only a few studies have demonstrated that effector cells, cytokines, growth factors, or soluble apoptosis-inducing factors are capable of initiating apoptosis in protozoan parasites. Certain Tetrahymena spp. in teleosts are opportunistic pathogens. In the present study these pathogenic protozoans were developed as a model system to describe the potential role of the Fas ligand (FasL)-Fas receptor (FasR) system as a means of innate immunity in teleosts. Nonspecific cytotoxic cells (NCC) constitutively express soluble FasL (sFasL). Binding of the antigen receptor (i.e., NCCRP-1) on NCC to target cells caused the release of sFasL into the milieu. The presence of functional sFasL in these supernatants was determined by Western blot analysis and by demonstrating the lysis of FasR(+) HL-60 but not IM-9 (FasR(-)) targets. Soluble FasL containing supernatants generated by tumor cell-activated NCC also produced a reduction in 2 N DNA (i.e., DNA hypoploidy) of T. furgasoni. The induction of DNA hypoploidy by NCC supernatants could be neutralized by adsorption of the supernatants with anti-FasL antibody (but not with an isotype control). Experiments were next done to determine the expression of FasR on Tetrahymena and study the effects of anti-FasR monoclonal crosslinkage and treatment with soluble human recombinant FasL (huFasL) on initiation of PCD in Tetrahymena. Cell cycle analysis revealed that both crosslinkage and soluble huFasL binding to Tetrahymena produced DNA hypoploidy. The reduction in diploid DNA was confirmed by observing oligonucleosome fragmentation (DNA laddering) following anti-FasR treatment. Additional evidence for FasR expression on Tetrahymena was obtained using fluorescence microscopy and flow cytometry. Both methods showed that all Tetrahymena examined (three species consisting of four isolates) expressed membrane FasR. These studies demonstrated the potential of the FasL-FasR system in teleosts for initiation of antiparasite innate immunity. Effector NCC may initiate PCD of Tetrahymena that express a FasR-like protein. Induction of apoptosis may be a major mechanism of homeostatic control of protozoan parasite infestations/infections.  相似文献   

9.
An important component of immediate innate responses of tilapia to stress is the release within minutes of soluble cytokine-like substances into the peripheral circulation. These cytokine-like stress factors bind nonspecific cytotoxic cells (NCC) and produce 3-4-fold increased cytotoxicity. In the present study, the in vivo responses of tilapia NCC following injection with different isolates of intact killed Streptococcus iniae was investigated. Activated cytotoxicity of NCC in the peripheral blood (PB) was produced by increased specific activity of resident cells rather than increased numbers. Tilapia injected intravenously (i.v.) with killed S. iniae produced different cytotoxicity responses compared to fish injected intraperitoneally (i.p.). In the spleen (S) and anterior kidney (AK), there was no correlation between S. iniae isolate and cytotoxicity response at 4, 8 or 24 h following i.p. injection. The NCC response following i.v. injection of killed bacteria was different. Within minutes following i.v. injection, NCC cytotoxicity from the PB increased 100% compared to naive controls. The existence of subsets of differentiated NCC in the PB was suggested because i.v. injection had no amplification effects on NCC from the AK or S. Likewise, NCC from the PB only appeared to exhibit a degree of antigen specificity. S. iniae strain #173 produced activation of cytotoxicity compared to isolates #164 and ATCC. Evidence for soluble factor (cytokine?) involvement in increased cytotoxicity was obtained by passive activation of NCC with serum from #173 (i.v.) injected fish. Incubation of this serum with control (na?ve) NCC produced large increases in the cytotoxicity of labelled HL-60 target cells. Similarly obtained serum from fish injected with ATCC and #164 isolates had no amplification activity. Studies were also performed to study the mechanism(s) of passive activation. Flow cytometric analysis revealed that NCC from the S, AK and PB constitutively expressed cytosolic (not membrane) FasL. Stress serum treated NCC obtained from the peripheral blood produced an increase in the expression of FasL, CAS and FADD by Western blot examination. These data indicated that cytokine like factors in the serum of stressed tilapia activate increased NCC cytotoxicity (possibly) by stimulating the expression of proteins involved in activation of programmed cell death.  相似文献   

10.
The addition of leukotriene B4 (LTB4) to cytotoxicity assays measuring natural killer (NK) or natural cytotoxic (NC) cell activities resulted in significantly augmented killing of K562 or herpes simplex virus (HSV)-infected target cells, respectively. Since the mechanism of cytotoxicity implies several steps, including the binding of effectors to targets which is Mg2+-dependent and the programming of lysis of the target which is Ca2+-dependent, we undertook to define the step(s) at which LTB4 acted in augmenting cytotoxicity. Our results showed that LTB4 significantly increased the percentage of effector-target conjugates when K562- or HSV-infected targets were incubated with lymphocytes. Maximal binding occurred at a concentration of LTB4 of 1 X 10(-10) M. Preincubation of lymphocytes and not target cells with LTB4 was sufficient to observe the increased binding. PBML binding to and killing of the NK-resistant target clone I, derived from K562, was not enhanced by LTB4. In the absence of Ca2+, cytotoxicity was impaired and LTB4 could not restore it. Use of a single cell lytic assay demonstrated augmented efficiency of lysis of both K562 and HSV-infected targets in the presence of LTB4. These findings suggest that LTB4 may augment natural cytotoxicity by enhancing target cell recognition by cytotoxic effector cells and subsequently by augmenting their lytic efficiency.  相似文献   

11.
Cytokines as soluble mediators of immunity are important in understanding immunological mechanisms against infectious organisms and during stress conditions. In the present study, the role of protein tyrosine phosphorylation is assessed in the activation of nonspecific cytotoxic cells (NCC) from tilapia Oreochromis niloticus by cytokine-like serum factors. NCC are the teleost equivalent of mammalian natural killer (NK) cells. In teleost fish, NCC are important mediators of innate immunity against bacterial and parasite insult and tumor growth. We have previously shown that exposure of tilapia (a tropical fish) to cold water temperatures (3 to 5 min at 5 to 10 degrees C) produces physiological stress responses characterized by immediate phenotypic and immunological changes. The serum obtained from stressed tilapia contains a 'stress activating serum factor' (SASF) which passively increases in vitro naive NCC cytotoxicity 2- to 4-fold over control levels. In an effort to identify the mechanisms of activation of cytotoxicity by SASF, the phosphorylation status of tyrosine residues in proteins from treated NCC was determined. NCC were incubated with heat-inactivated or untreated stress serum and Western blots of the cell lysates were probed with anti-phosphotyrosine monoclonal antibodies (mabs). The levels of tyrosine phosphorylation in several proteins of the SASF-activated NCC were higher than in control cells. Increased tyrosine phosphorylation was also induced by incubation of NCC in the presence of the tyrosine phosphatase inhibitor Na orthovanadate (vanadate). In every case, an increase in phosphorylation status shown by Western blotting was correlated with increases in cytotoxic activity of NCC against HL-60 target cells. The enzyme inhibitor Herbimycin A (HA) has been previously used to inhibit the activity of the src-family of tyrosine kinases. In the present study, a 4 h pretreatment of NCC with HA (2 microM), followed by treatment with SASF blocked the activation of cytotoxicity produced by SASF. These results suggested that activation of NCC by cytokine-like factors is mediated through activation of the src family of protein tyrosine kinases. Activation was associated with increased phosphorylation and higher cytotoxic effector functions.  相似文献   

12.
The entire lytic process of natural cell-mediated cytotoxicity against sensitive target cells can occur rapidly, within minutes. This was demonstrated by 51chromium release and in single-cell assays. At the cellular level, most of the target cell lysis occurred within 15–30 min after binding to effector cells. The enriched natural killer cell subpopulation of lymphocytes obtained by Percoll density gradient centrifugation (containing >70% large granular lymphocytes (LGL)) was the most rapidly lytic population by 51chromium release. However, in the single-cell assay, the rate of lysis of bound target cells was quite similar for the LGL-enriched effector subpopulation and the higher density subpopulation of effector cells recognized previously. Both the light and dense effector cells contained similar numbers of target binding cells. Therefore, that the light subpopulation effected lysis more rapidly and to a greater extent than the dense subpopulation suggested that the low-density effector cells probably recycled more rapidly than those of higher density. This was corroborated by the finding that when conjugates were formed at 29 °C for the single-cell assay, a significant number of dead unconjugated targets could be observed only on the slides made with the LGL-enriched effector cells but not on those made with dense effector cell. Lysis continued to increase in the chromium-release assay probably because of recycling, recruitment, and/or heterogeneity of the effector cells, and/or because of heterogeneity or delayed death of the target cells.  相似文献   

13.
In an attempt to develop a constant and reproducible in vitro system for a detailed analysis of cytotoxic effector mechanisms of nonimmune mononuclear phagocytes, the HL-60 promyelocytic cell line was studied for its cytotoxic action on chicken erythrocyte target cells. HL-60 cells cultured in complete medium were found to be noncytotoxic for chicken erythrocytes in an 18-hr 51Cr-release assay. These cells have been shown to acquire several characteristics of mature macrophages upon incubation with phorbol myristate acetate (PMA), and when PMA was included in the medium during the assay, the HL-60 cells became strongly cytotoxic to the target cells in the absence of exogenous antibody, lectin, or serum complement. Freshly isolated peripheral blood monocytes also became cytotoxic in the presence of PMA, whereas peripheral blood lymphocytes and the U937 histiocytic cell line did not. Detectable target lysis was observed between 4 and 8 hr after HL-60 stimulation with PMA, and HL-60 cells prestimulated with PMA for 24 hr retained their cytotoxic activity following washing and assay in PMA-free medium. Cytotoxic HL-60 cells developed after exposure to 10(-6) to 10(-9) M PMA, and significant target cell lysis occurred at effector:target cell ratios as low as 0.5:1. The PMA-induced HL-60-mediated cytotoxic response was markedly inhibited by blockers of protein synthesis, inhibition of microfilament function, and depletion of cellular superoxide and hydrogen peroxide. Interestingly, cytotoxicity of HL-60 cells for chicken erythrocyte targets was modulated by the direct addition of certain simple saccharides to the assay in a fashion similar to that observed with spontaneously cytotoxic mononuclear cells from several vertebrate and invertebrate species. Thus, the cytolytic effector function induced in HL-60 cells by incubation with PMA presents a useful model for the study of cellular cytotoxic mechanisms as well as the mechanisms utilized by nonimmune cells in the recognition of non-self.  相似文献   

14.
Polymorphonuclear leukocytes (PMN) were studied for their ability to mediate cytotoxicity against varicella-zoster virus (VZV)-infected and uninfected human fibroblasts in 51Cr release assays. PMN were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) against VZV-infected targets. Maximal ADCC was obtained with effector-to-target ratios of 100:1 and 18 h of incubation. Percent 51Cr release for 26 normal adults was 14.1 +/- 0.6 (mean +/- standard error) in the presence of pooled human seropositive sera (final dilution, 1:100) and 0.5 +/- 0.6 in the presence of pooled human seronegative sera. Addition of phorbol myristate acetate (PMA) enhanced PMN-mediated cytotoxicity against VZV-infected and uninfected targets. PMA-stimulated cytotoxicity was optimal with PMA concentrations of 200 ng/ml and effector-to-target ratios of 10:1, and antibody was not required; killing was detected as early as 3 h after incubation and was maximal after 18 h. Highly purified PMN were capable of mediating both ADCC and PMA-stimulated lysis. Catalase completely inhibited PMA-stimulated PMN cytotoxicity, but had no effect on PMN-mediated ADCC. PMN from patients with chronic granulomatous disease were capable of mediating ADCC, but not PMA-stimulated killing, against VZV-infected targets. Thus, PMN could kill VZV-infected targets by two different mechanisms: ADCC, which required antibody but not hydrogen peroxide (H2O2), and PMA-stimulated cytotoxicity, which required H2O2 but not antibody.  相似文献   

15.
Nonspecific cytotoxic cells (NCC) may be the teleost fish equivalent of mammalian natural killer (NK) cells. Although significant differences exist between species regarding many characteristics of these cells, both NCC and NK cells share similarities: in the types of target cells sensitive to lysis; in mechanisms of target cell recognition; in the requirements for a competent lytic cycle; and both types of effectors participate in mediating the lysis of infectious microorganisms. A putative antigen binding receptor obtained from catfish NCC has now been characterized using monoclonal antibodies (mabs). This receptor is a vimentin-like protein. Preliminary studies indicate that NCC recognize a 40 kD protein on the membranes of susceptible target cells. Solubilized target cell protein can specifically bind to NCC and inhibit killing.Similar to NK cells, NCC require cell contact with the target cell to deliver the lethal cytotoxic hit. NCC appear to be the more potent cytotoxic cells because fewer are required to kill an individual target cell and less time is required for this action to occur than for NK cells. Unlike NK cells, NCC do not recycle under experimental conditions. Preliminary studies were also reviewed to characterize signal transduction responses. Monoclonal antibody against the vimentin-like protein receptor activates NCC cytotoxicity, initiates the production of significant increased levels of free cytoplasmic calcium, and causes the production of inositol lipid intermediates (specifically phosphotidylinositol 1, 4–5 trisphosphate). NCC may be important effectors of anti-parasite immunity. Although these cells probably do not elicit memory responses, data suggest that they do recognize antigen and can be activated and recruited into peripheral tissue where they mediate cytolytic responses.  相似文献   

16.
Mouse epidermal cells (EC) and lymphoid cells (LC) were compared as targets of cellmediated cytotoxicity (CMC) in short-term chromium release assays where attacker cells were generated in primary mixed cultures using irradiated allogeneic EC or LC as stimulators. Three patterns of relative susceptibility to lysis of the two types of target cells were observed: (i) significantly greater lysis of LC than of EC targets; (ii) significantly greater lysis of EC than LC targets; and (iii) approximately equal susceptibility to lysis of the two targets. The first pattern was primarily associated with LC stimulators, whereas the second and third patterns were almost invariably associated with EC stimulators. Factors possibly contributing to the differences in in vitro immunogenicity and susceptibility to CMC of EC and LC were investigated, including the alteration of EC surface antigens during the trypsinization required to prepare EC suspensions, the differential expression of shared alloantigens, or the restricted expression of tissue-specific alloantigens on the two types of cells. Tests with intact and trypsinized LC on the one hand and fresh and short-term cultured EC on the other indicated that trypsinization is not responsible for the basic differences between EC and LC detected in the in vitro assays. Antibody absorption tests demonstrated that although EC and LC express approximately equal quantities of the cell surface antigens determined by the H-2D region of the H-2 complex, LC express significantly greater quantities of the antigens determined by the H-2K and I regions. In addition, the results of cold target inhibition tests suggest that tissue-specific antigens on both EC and LC also influence their relative immunogenicity and susceptibility to lysis.  相似文献   

17.
The role of beta1 (CD29) integrins in natural killer (NK) cell-target cell conjugation and cytotoxicity has not been clearly established. Ligation of beta1 integrins in NK cells can modulate the lytic capacity in both a positive and a negative manner; however, the contribution of the beta1 integrins present on target cells remains to be evaluated. Here, we analyzed the effect of beta1 integrins expressed by potential tumor target cells on conjugation and cytotoxicity. Using normalized flow cytometry binding assays, we demonstrated that the pretreatment of MOLT-4, K562, U-937 and HL-60 human leukemia target cell lines with selected anti-beta1 monoclonal antibodies (mAb) increased conjugation to human NK cell line NKL as well as to purified NK cells. Only mAb recognizing residues 207-218 of the beta1 subunit and functionally involved in the induction of homotypic adhesion (functional epitope A1) increased conjugation of all the target cells. Moreover, mAb to adhesion molecules different from beta1 but also inducers of homotypic adhesion of the target cells, i.e. CD43 and CD50 (ICAM-3), failed to increase conjugation to NKL cells. Cytotoxicity assays demonstrated that lysis of NK-sensitive target cells (MOLT-4) also increased after pretreatment with anti-beta1 epitope A1 mAb. Importantly, pretreatment of NK-resistant target cells (U-937 and HL-60) with anti-beta1 mAb was not able to outweigh the cytotoxic inhibitory mechanisms controlled by HLA class I molecules. However, simultaneous masking of HLA class I molecules with mAb and pretreatment with anti-beta1 mAb rendered NK-resistant cells susceptible to lysis, as predicted by the missing self hypothesis. Triggering of tumor target cells through beta1 integrins may thus play a role in conjugation to NK cells as well as in co-stimulation of cell-mediated cytotoxicity.  相似文献   

18.
The mechanism of initiation of antibody-dependent cellular cytotoxicity (ADCC) was analyzed using a model system consisting of sensitized chicken red blood cells (ChRBC) as targets and non-immunized Balb/c mouse splenocytes as effectors.Using a 51Cr release assay in parallel with electron and light microscopic observations, we were able to correlate the binding of target cells to effector cells with the subsequent lysis of the target cells. Untreated splenocytes are capable of binding and lysing a substantial number of target cells in the presence of anti-ChRBC. Splenocytes pretreated with the microfilament disrupting drug, cytochalasin D, display a significant reduction in their ability to bind and kill target cells. In contrast, splenocytes incubated with colchicine, a drug that disrupts microtubules, are slightly stimulated in both their binding and lysis of ChRBC. Our data suggest that microfilaments (but not necessarily microtubules) play an important role in the initial recognition and binding steps between effector and target cells which are prerequisite conditions for target killing in this ADCC sysytem.  相似文献   

19.
NK cell-mediated cytotoxicity results from membrane interactions between NK effector and target cells. The role of membrane fluidity in these events is not known. The present study was undertaken to investigate the effect of changes in membrane lipid fluidity of NK effector and NK-sensitive target cells on the lytic pathway of NK cell-mediated cytotoxicity. Fluidity was modulated by various lipids and measured by fluorescence polarization. NK effector cells treated with phosphatidylcholine complexed with polyvinylpyrrolidone (PVP) and bovine serum albumin (BSA) showed increased membrane fluidity. This fluidization of the effector cell membrane resulted in a significant inhibition of cytotoxic activity in the 51Cr-release assay. Single cell analysis revealed that the inhibition was due to a decrease in the frequency of NK target conjugates and reduced killing of conjugated targets. Rigidification of the NK effector cell membranes by treatment with cholesteryl hemisuccinate complexed with PVP and BSA also resulted in inhibition of cytotoxicity. This inhibition was post binding, because binding was increased and lysis was abrogated. Fluidization of K562 target cell membranes caused a slight but insignificant increase in their lysis by NK cells without affecting the binding step. On the other hand, rigidification of K562 membranes decreased the sensitivity of these target cells to lysis. Single cell analysis revealed that this inhibition of NK lysis is post binding, because the frequency of killers was significantly decreased. It was also shown that membrane rigidification of target cells that were programmed for lysis during the lethal hit stage and subsequently separated from effector cells, rendered the programmed cells resistant to killing during the killer cell-independent lysis step. These results demonstrate that fluidization or rigidification of the plasma membrane of either effector or target cells affect different stages of the NK cell-mediated cytolytic events.  相似文献   

20.
MLC-generated cells were tested on 7 consecutive days in the single cell cytotoxicity assay to determine the kinetics of natural and allospecific killing. Maximum cytotoxicity to the NK-sensitive target, K562, was found on Day 3 of MLC with an increase at that time in both the number of cells binding and the number of cells killing K562. The maximum allospecific response was found on Days 6 and 7 with an increase in cells able to bind and kill the alloantigen-bearing target. To determine whether the anti-K562 and allospecific killing were mediated by the same effector cells or different cell populations, both targets were tested simultaneously in the single cell assay. At no time during the 7 days were cells detected capable of simultaneously binding both K562 and allospecific targets. These data indicate that there are two different cell populations responsible for allospecific cytotoxicity and MLC-induced NK-like cytotoxicity. The cytotoxic specificity of unstimulated and MLC-generated NK-like cells was also investigated. When two different NK-sensitive targets (e.g., K562 and MOLT-4) were tested together in the single cell assay, there was no concurrent binding of targets by either fresh PBL prior to MLC stimulation or Day 3 MLC-generated cells. When unstimulated effector cells were enriched for NK activity by Percoll density gradient centrifugation, only a small number of effector cells simultaneously binding two different NK-sensitive targets was detected in the single cell assay. These results imply that the NK cell population is heterogeneous and composed of subpopulations recognizing diverse target specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号