首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Protein misfolding and aggregation are exacerbated by aging and diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In the cellular environment, aggregates can exist as discrete entities, or heterogeneous complexes of diverse solubility and conformational state. In this study, we have examined the in vivo dynamics of aggregation using imaging methods including fluorescence microscopy, fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS), to monitor the diverse biophysical states of expanded polyglutamine (polyQ) proteins expressed in Caenorhabditis elegans. We show that monomers, oligomers and aggregates co-exist at different concentrations in young and aged animals expressing different polyQ-lengths. During aging, when aggregation and toxicity are exacerbated, FCS-based burst analysis and purified single molecule FCS detected a populational shift toward an increase in the frequency of brighter and larger oligomeric species. Regardless of age or polyQ-length, oligomers were maintained in a heterogeneous distribution that spans multiple orders of magnitude in brightness. We employed genetic suppressors that prevent polyQ aggregation and observed a reduction in visible immobile species with the persistence of heterogeneous oligomers, yet our analysis did not detect the appearance of any discrete oligomeric states associated with toxicity. These studies reveal that the reversible transition from monomers to immobile aggregates is not represented by discrete oligomeric states, but rather suggests that the process of aggregation involves a more complex pattern of molecular interactions of diverse intermediate species that can appear in vivo and contribute to aggregate formation and toxicity.  相似文献   

2.
We investigate the challenges and limitations that are encountered when studying membrane protein dynamics in vivo by means of fluorescence correlation spectroscopy (FCS). Based on theoretical arguments and computer simulations, we show that, in general, the fluctuating fluorescence has a fractal dimension D(0) >or= 1.5, which is determined by the anomality alpha of the diffusional motion of the labeled particles, i.e., by the growth of their mean square displacement as (Deltax)(2) approximately t(alpha). The fractality enforces an initial power-law behavior of the autocorrelation function and related quantities for small times. Using this information, we show by FCS that Golgi resident membrane proteins move subdiffusively in the endoplasmic reticulum and the Golgi apparatus in vivo. Based on Monte Carlo simulations for FCS on curved surfaces, we can rule out that the observed anomalous diffusion is a result of the complex topology of the membrane. The apparent mobility of particles as determined by FCS, however, is shown to depend crucially on the shape of the membrane and its motion in time. Due to this fact, the hydrodynamic radius of the tracked particles can be easily overestimated by an order of magnitude.  相似文献   

3.
Ciliary neurotrophic factor (CNTF) signals via a receptor complex consisting of the specific CNTF receptor (CNTFR) and two promiscuous signal transducers, gp130 and leukemia inhibitory factor receptor (LIFR). Whereas earlier studies suggested that the signaling complex is a hexamer, more recent analyses strongly support a tetrameric structure. However, all studies so far analyzed the stoichiometry of the CNTF receptor complex in vitro and not in the context of living cells. We generated and expressed in mammalian cells acyl carrier protein-tagged versions of both CNTF and CNTFR. After labeling CNTF and CNTFR with different dyes we analyzed their diffusion behavior at the cell surface. Fluorescence (cross) correlation spectroscopy (FCS/FCCS) measurements reveal that CNTFR diffuses with a diffusion constant of about 2 × 10− 9 cm2 s− 1 independent of whether CNTF is bound or not. FCS and FCCS measurements detect the formation of receptor complexes containing at least two CNTFs and CNTFRs. In addition, we measured Förster-type fluorescence resonance energy transfer between two differently labeled CNTFs within a receptor complex indicating a distance of 5-7 nm between the two. These findings are not consistent with a tetrameric structure of the CNTFR complex suggesting that either hexamers and or even higher-order structures (e.g. an octamer containing two tetramers) are formed.  相似文献   

4.
Fluorescence correlation spectroscopy (FCS) analyzes spontaneous fluctuations in the fluorescence emission of small molecular ensembles, thus providing information about a multitude of parameters, such as concentrations, molecular mobility and dynamics of fluorescently labeled molecules. Performed within diffraction-limited confocal volume elements, FCS provides an attractive alternative to photobleaching recovery methods for determining intracellular mobility parameters of very low quantities of fluorophores. Due to its high sensitivity sufficient for single molecule detection, the method is subject to certain artifact hazards that must be carefully controlled, such as photobleaching and intramolecular dynamics, which introduce fluorescence flickering. Furthermore, if molecular mobility is to be probed, nonspecific interactions of the labeling dye with cellular structures can introduce systematic errors. In cytosolic measurements, lipophilic dyes, such as certain rhodamines that bind to intracellular membranes, should be avoided. To study free diffusion, genetically encoded fluorescent labels such as green fluorescent protein (GFP) or DsRed are preferable since they are less likely to nonspecifically interact with cellular substructures.  相似文献   

5.
Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are powerful techniques to measure molecular interactions with high sensitivity in homogeneous solution and living cells. In this study, we developed methods for the detection of prion protein (PrP) using FCS and FCCS. A combination of a fluorescent-labeled Fab' fragment and another anti-PrP monoclonal antibody (mAb) enabled us to detect recombinant bovine PrP (rBoPrP) using FCS because there was a significant difference in the diffusion coefficients between the labeled Fab' fragment and the trimeric immune complex consisting of rBoPrP, labeled Fab' fragment, and another anti-PrP mAb. On the other hand, FCCS detected rBoPrP using two mAbs labeled with different fluorescence dyes. The detection limit for PrP in FCCS was approximately threefold higher than that in FCS. The sensitivity of FCCS in detection of abnormal isoform of PrP (PrP(Sc)) was comparable to that of enzyme-linked immunosorbent assay (ELISA). Because FCS and FCCS detect the PrP immune complex in homogeneous solution of only microliter samples with a single mixing step and without any washing steps, these features of measurement may facilitate automating bovine spongiform encephalopathy diagnosis.  相似文献   

6.
7.
Membrane insertion of protein domains is an important step in many membrane remodeling processes, for example, in vesicular transport. The membrane area taken up by the protein insertion influences the protein binding affinity as well as the mechanical stress induced in the membrane and thereby its curvature. To our knowledge, this is the first optical measurement of this quantity on a system in equilibrium with direct determination of the number of inserted protein and no further assumptions concerning the binding thermodynamics. Whereas macroscopic total area changes in lipid monolayers are typically measured on a Langmuir film balance, finding the number of inserted proteins without perturbing the system and quantitating any small area changes has posed a challenge. Here, we address both issues by performing two-color fluorescence correlation spectroscopy directly on the monolayer. With a fraction of the protein being fluorescently labeled, the number of inserted proteins is determined in situ without resorting to invasive techniques such as collecting the monolayer by aspiration. The second color channel is exploited to monitor a small fraction of labeled lipids to determine the total area increase. Here, we use this method to determine the insertion area per molecule of Sar1, a protein of the COPII complex, which is involved in transport vesicle formation. Sar1 has an N-terminal amphipathic helix, which is responsible for membrane binding and curvature generation. An insertion area of (3.4 ± 0.8) nm2 was obtained for Sar1 in monolayers from a lipid mixture typically used in COPII reconstitution experiments, in good agreement with the expected insertion area of the Sar1 amphipathic helix. By using the two-color approach, determining insertion areas relies only on local fluorescence measurements. No macroscopic area measurements are needed, giving the method the potential to also be applied to laterally heterogeneous monolayers and bilayers.  相似文献   

8.
A method for quantifying global DNA methylation using fluorescence correlation spectroscopy (FCS) has been established. The single-molecule methylation assay (SMMA) is based on two methodologies. One methodology, FCS, estimates the translational diffusion coefficient of molecules in solution, whereas the other methodology uses the high affinity of methyl-CpG-binding domain protein 2 (MBD2) to bind specifically to methylated DNA. We studied the specific binding rates of fluorescence-labeled MBD2 and methylated DNA from biological samples using the automated FCS system. Using a standard curve with methylated control DNA, we developed the SMMA index to assess the global DNA methylation level of the biological samples. A marked decrease in the SMMA index was observed when human leukemia cell lines (U937 and K562) were cultured with DNA demethylating agents. Our findings clearly indicate the applicability of SMMA as a simple and rapid tool for quantifying global DNA methylation. SMMA may prove useful for genome-wide comparative methylation analyses of malignancies and as an indicator of the demethylation effects of epigenetic drugs.  相似文献   

9.
10.
Lajoie P  Snapp EL 《PloS one》2010,5(12):e15245

Background

Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington''s disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt.

Methodology/Principal Findings

When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Httex1) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHttex1 variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHttex1 formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHttex1 split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHttex1 to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHttex1. A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHttex1 oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs.

Conclusions/Significance

Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins.  相似文献   

11.
The development and differentiation of complex organisms from the single fertilized egg is regulated by a variety of processes that all rely on the distribution and interaction of proteins. Despite the tight regulation of these processes with respect to temporal and spatial protein localization, exact quantification of the underlying parameters, such as concentrations and distribution coefficients, has so far been problematic. Recent experiments suggest that fluorescence correlation spectroscopy on a single molecule level in living cells has great promise in revealing these parameters with high precision. The optically challenging situation in multicellular systems such as embryos can be ameliorated by two-photon excitation, where scattering background and cumulative photobleaching is limited. A more severe problem is posed by the large range of molecular mobilities observed at the same time, as standard FCS relies strongly on the presence of mobility-induced fluctuations. In this study, we overcame the limitations of standard FCS. We analyzed in vivo polarity protein PAR-2 from eggs of Caenorhabditis elegans by beam-scanning FCS in the cytosol and on the cortex of C. elegans before asymmetric cell division. The surprising result is that the distribution of PAR-2 is largely uncoupled from the movement of cytoskeletal components of the cortex. These results call for a more systematic future investigation of the different cortical elements, and show that the FCS technique can contribute to answering these questions, by providing a complementary approach that can reveal insights not obtainable by other techniques.  相似文献   

12.
We report the detection of heterogeneities in the diffusion of lipid molecules for the three-component mixture dipalmitoyl-PC/dilauroyl-PC/cholesterol, a chemically simple lipid model for the mammalian plasma membrane outer leaflet. Two-color fluorescence correlation spectroscopy (FCS) was performed on giant unilamellar vesicles (GUVs) using fluorescent probes that have differential lipid phase partition behavior—DiO-C18:2 favors disordered fluid lipid phases, whereas DiI-C20:0 prefers spatially ordered lipid phases. Simultaneously-obtained fluorescence autocorrelation functions from the same excitation volume for each dye showed that, depending on the lipid composition of this ternary mixture, the two dyes exhibited different lateral mobilities in regions of the phase diagram with previously proposed submicroscopic two-phase coexistence. In one-phase regions, both dyes reported identical diffusion coefficients. Two-color FCS thus may be detecting local membrane heterogeneities at size scales below the optical resolution limit, either due to short-range order in a single phase or due to submicroscopic phase separation.  相似文献   

13.
We report the detection of heterogeneities in the diffusion of lipid molecules for the three-component mixture dipalmitoyl-PC/dilauroyl-PC/cholesterol, a chemically simple lipid model for the mammalian plasma membrane outer leaflet. Two-color fluorescence correlation spectroscopy (FCS) was performed on giant unilamellar vesicles (GUVs) using fluorescent probes that have differential lipid phase partition behavior--DiO-C18:2 favors disordered fluid lipid phases, whereas DiI-C20:0 prefers spatially ordered lipid phases. Simultaneously-obtained fluorescence autocorrelation functions from the same excitation volume for each dye showed that, depending on the lipid composition of this ternary mixture, the two dyes exhibited different lateral mobilities in regions of the phase diagram with previously proposed submicroscopic two-phase coexistence. In one-phase regions, both dyes reported identical diffusion coefficients. Two-color FCS thus may be detecting local membrane heterogeneities at size scales below the optical resolution limit, either due to short-range order in a single phase or due to submicroscopic phase separation.  相似文献   

14.
We investigated the specific binding of epidermal growth factor (EGF) to its membrane-bound receptors in cultured cells. The specificity of the binding was attested by the consistent displacement of bound rhodamine-labeled EGF (Rh-EGF) following addition of 1000-fold molar excess of unlabeled EGF. The binding specificity of EGF was further confirmed when vascular EGF was unable to displace Rh-EGF binding, demonstrating no cross-reaction. Evidence for the specific interactions was verified by an equilibrium saturation binding experiment. EGF binding to the cell membranes is saturated at nanomolar concentration. The Scatchard plots show a binding process with K(ass) of 1.5 x 10(9) M(-1). The dissociation kinetics follow a single exponential function characteristic for a relatively slow dissociation process with k(diss) = 2.9 x 10(-4) s(-1). The appearance of two binding complexes through the distribution of diffusion times may suggest that these are representatives of two different forms or subtypes of EGF receptors. This study is of pharmaceutical significance as it provides evidence that fluorescence correlation spectroscopy can be used as a rapid technique for studying ligand-receptor interactions in cell cultures. This is a step forward toward large-scale drug screening in cell cultures.  相似文献   

15.
Fluorescence correlation spectroscopy (FCS) provides a versatile tool to investigate molecular interaction under native conditions, approximating infinite dilution. One precondition for its application is a sufficient difference between the molecular weights of the fluorescence-labelled unbound and bound ligand. In previous studies, an 8-fold difference in molecular weights or correspondingly a 1.6-fold difference in diffusion coefficients was required to accurately distinguish between two diffusion species by FCS. In the presented work, the hybridization of two complementary equally sized RNA single strands was investigated at an excellent signal-to-noise ratio enabled by the highly photostable fluorophore Atto647N. The fractions of ssRNA and dsRNA were quantified by applying multicomponent model analysis of single autocorrelation functions and globally fitting several autocorrelation functions. By introducing a priori knowledge into the fitting procedure, 1.3- to 1.4-fold differences in diffusion coefficients of single- and double-stranded RNA of 26, 41, and 54 nucleotides could be accurately resolved. Global fits of autocorrelation functions of all titration steps enabled a highly accurate quantification of diffusion species fractions and mobilities. At a high signal-to-noise ratio, the median of individually fitted autocorrelation functions allowed a robust representation of heterogeneous data. These findings point out the possibility of studying molecular interaction of equally sized molecules based on their diffusional behavior, which significantly broadens the application spectrum of FCS.  相似文献   

16.
We demonstrate that a novel high-pressure cell is suitable for fluorescence correlation spectroscopy (FCS). The pressure cell consists of a single fused silica microcapillary. The cylindrical shape of the capillary leads to refraction of the excitation light, which affects the point spread function of the system. We characterize the influence of these beam distortions by FCS and photon-counting histogram (PCH) analysis and identify the optimal position for fluorescence fluctuation experiments in the capillary. At this position within the capillary, FCS and photon-counting histogram experiments are described by the same equations as used in standard FCS experiments. We report the first experimental realization of fluorescence fluctuation spectroscopy under high pressure. A fluorescent dye was used as a model system for evaluating the properties of the capillary under pressure. The autocorrelation function and the photon count distribution were measured in the pressure range from 0 to 300 MPa. The fluctuation amplitude and the diffusion coefficient show a small pressure dependence. The changes of these parameters, which are on the order of 10%, are due to the pressure changes of the viscosity and the density of the aqueous medium.  相似文献   

17.
Fluorescence correlation spectroscopy (FCS) is now a widely used technique to measure small ensembles of labeled biomolecules with single molecule detection sensitivity (e.g., low endogenous concentrations). Fluorescence cross correlation spectroscopy (FCCS) is a derivative of this technique that detects the synchronous movement of two biomolecules with different fluorescence labels. Both methods can be applied to live cells and, therefore, can be used to address a variety of unsolved questions in cell biology. Applications of FCCS with autofluorescent proteins (AFPs) have been hampered so far by cross talk between the detector channels due to the large spectral overlap of the fluorophores. Here we present a new method that combines advantages of these techniques to analyze binding behavior of proteins in live cells. To achieve this, we have used dual color excitation of a common pair of AFPs, ECFP and EYFP, being discriminated in excitation rather than in emission. This is made possible by pulsed excitation and detection on a shorter timescale compared to the average residence time of particles in the FCS volume element. By this technique we were able to eliminate cross talk in the detector channels and obtain an undisturbed cross correlation signal. The setup was tested with ECFP/EYFP lysates as well as chimeras as negative and positive controls and demonstrated to work in live HeLa cells coexpressing the two fusion proteins ECFP-connexin and EYFP-connexin.  相似文献   

18.
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.  相似文献   

19.
Using fluorescence correlation spectroscopy (FCS), we tested the feasibility of rapid detection of oxidative damage of mitochondrial DNA (mtDNA) in a small volume. The complete mtDNA genome was amplified by long polymerase chain reaction (LPCR), and the product was fluorescently labeled with an intercalating dye, YOYO-1. The fluorescence autocorrelation function was analyzed using a simple two-component model with the diffusion time of 0.21 ms for the LPCR primer and 18 ms for the mtDNA LPCR product. When human embryonic kidney 293 (HEK-293) cells were exposed to 0.4 mM H2O2, the fraction of the mtDNA LPCR product decreased significantly. In contrast, the fraction of the nuclear-encoded beta-globin LPCR product remained unchanged. The analysis time of FCS measurement was very short (5 min) compared with that of gel electrophoresis (3 h). Thus, FCS allowed the rapid detection of the vulnerability of mtDNA to oxidative stress within a small volume element at the subfemtoliter level in solution. These results suggest that the LPCR-FCS method can be used for epidemiological studies of diseases caused by mtDNA damage.  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) is rapidly growing in popularity as a biomedical research tool. FCS measurements can produce an accurate characterization of the chemical, physical, and kinetic properties of a biological system. They can also serve as a diagnostic, detecting particular molecular species with high sensitivity and specificity. We here demonstrate that dual-color FCS measurements can be applied to detect and quantify the concentration of specific non-fluorescent molecular species without requiring any modifications to the molecule of interest. We demonstrate this capability by applying dual-color two-photon fluorescence cross-correlation spectroscopy to detect single stranded gamma tubulin DNA in solution with high sensitivity. This quantification is independent of molecular size, and the methods introduced can be extended to measurements in complex environments such as within living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号