首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The ammonium induction of the chloroplast-localized NADP-specific glutamate dehydrogenase (NADP-GDH) was shown not to be a light-dependent process per se in Chlorella sorokiniana. In the dark without exogenous organic substrates, the cells synthesized low levels of fully active NADP-GDH, provided endogenous starch reserves had not been depleted. When cells were supplied with exogenous acetate, the rate of induction of NADP-GDH activity per milliliter of culture in the dark was equal to or slightly greater than the rate observed under photosynthetic conditions without an organic carbon source. Glucose supported only a low rate of induction of NADP-GDH activity in the dark. Both acetate and glucose inhibited induction of enzyme activity in the light. The NADP-GDH holoenzyme had at least 7 different electrophoretic forms. These forms differed in net charge and/or molecular weight. Their difference in molecular weight was due to the presence of 2 subunits with similar antigenic properties but different molecular weights (Mr = 55,500 and 53,000; α-and β-subunits, respectively). Depending upon the cultural conditions and length of the induction period, a wide variation was observed in the α:β subunit ratio and in the numbers and sizes of the NADP-GDH holoenzymes.  相似文献   

2.
A specific polysome immunoadsorption procedure, employing soluble rabbit anti-NADP-GDH IgG and sheep anti-rabbit IgG covalently-linked to an insoluble cellulose matrix, was used to immunoselect polysomes translating mRNA for a chloroplastic ammonium-inducible NADP-GDH in fully induced cells of Chlorella sorokiniana. The immunoselected polysomes were dissociated, and the NADP-GDH mRNA was recovered by oligo (dT)cellulose chromatography. The translatable NADP-GDH mRNA was estimated to be 0.07 and 90% of the total polysomal poly(A)+RNA before and after immunoselection of the polysomes, respectively. The immunoadsorption procedure resulted in an 83% recovery and 1,291-fold purification of translatable NADP-GDH mRNA. In vitro translation of the immunoselected poly(A)+RNA yielded a single radioactive protein (on sodium dodecyl sufate polyacrylamide gels) with a molecular weight of 58,500, i.e. size of the putative precursor-protein of the NADP-GDH subunit in the holoenzyme in fully induced cells. The purified NADP-GDH mRNA was used for synthesis of a high proportion of nearly full-length single-stranded cDNA and double-stranded cDNA molecules.  相似文献   

3.
Two ammonium-inducible, chloroplast-localized NADP-specific glutamate dehydrogenase isoenzymes were purified to homogeneity from Chlorella sorokiniana. These isoenzymes were homopolymers of either α- or β-subunits with molecular weights of 55,500 or 53,000, respectively. The α-isoenzyme was preferentially induced at low ammonium concentrations (2 millimolar or lower), whereas only the β-isoenzyme accumulated after cells were fully induced (120 minutes) at high ammonium concentrations (29 millimolar). Purification of isoenzymes was achieved by (NH4)2SO4 fractionation, gel-filtration, anion-exchange fast protein liquid chromatography, and affinity chromatography. The α- and β-isoenzymes were separated by their differential binding to Type 4 nicotinamide adenine dinucleotide phosphate-Sepharose. Both isoenzymes bound to an antibody affinity column to which purified antibody (prepared against β-isoenzyme) was covalently attached. Peptide mapping of the subunits showed them to have a high degree of sequence homology. Both subunits were synthesized in vitro from precursor protein(s) with a molecular weight of 58,500. Although the subunits have similar chemical, physical, and antigenic properties, their holoenzymes have strikingly different ammonium Km values. The ammonium Km of the β-isoenzyme remained constant at approximately 75 millimolar, whereas this Km of the α-isoenzyme ranged from 0.02 to 3.5 millimolar, depending upon nicotinamide adenine dinucleotide phosphate concentration.  相似文献   

4.
Glutamine synthetase (GS) and NADP-dependent glutamate dehydrogenase (NADP-GDH) play a key role in nitrogen assimilation in the ectomycorrhizal fungus Laccaria laccata (Scop. ex Fr. Cke) strain S 238. The two enzymes were purified to apparent electrophoretic homogeneity by a three-step procedure involving diethylaminoethyl (DEAE)-Trisacryl and affinity chromatography, and DEAE-5PW fast protein liquid chromatography. This purification scheme resulted in a 23 and 62% recovery of the initial activity for GS and NADP-GDH, respectively. Purified GS had a specific activity of 713 nanomoles per second per milligram protein and a pH optimum of 7.2. Michaelis constants (millimolar) for the substrates were NH4+ (0.024), glutamate (3.2), glutamine (30), ATP (0.18), and ADP (0.002). The molecular weight (Mr) of native GS was approximately 380,000; it was composed of eight identical subunits of Mr 42,000. Purified NADP-GDH had a specific activity of 4130 nanomoles per second per milligram protein and a pH optimum of 7.2 (amination reaction). Michaelis constants (millimolar) for the substrates were NH4+ (5), 2-oxoglutarate (1), glutamate (26), NADPH (0.01), and NADP (0.03). Native NADP-GDH was a hexamer with a Mr of about 298,000 composed of identical subunits with Mr 47,000. Polyclonal antibodies were produced against purified GS and NADP-GDH. Immunoprecipitation tests and immunoblot analysis showed the high reactivity and specificity of the immune sera against the purified enzymes.  相似文献   

5.
Cytosolic and nuclear forms of the glucocorticoid receptor were characterized using immunochemical techniques. Antibodies were raised in rabbits to an Mr 58,000 fragment of the transformed (DNA-binding) glucocorticoid receptor purified from rat liver cytosol by DNA-cellulose chromatography and polyacrylamide gel electrophoresis. Antibodies reacted with the transformed receptor form in a radioimmunoassay for glucocorticoid receptor. Western blot analysis of antibody reactivity revealed a single Mr 185,000 receptor form in rat liver cytosol but a smaller Mr 85,000 form in nucleosol, indicating the Mr 85,000 form is the transformed receptor. Furthermore, western blot analysis indicates that the Mr 185,000 receptor undergoes proteolysis during receptor purification and in vitro transformation processes by generating immunochemically similar proteins of smaller molecular weights. An identical Mr 185,000 glucocorticoid receptor was detected in cytosols of four rat tissues; liver, brain, adrenal medulla, and thymus. The glucocorticoid receptor was localized to the cytoplasm and nucleus of rat adrenal medulla cells by immunohistochemistry, demonstrating the existence in vivo of the transformed receptor and translocation of the receptor from cytoplasm to nucleus.  相似文献   

6.
Cell cultures of Corydalis sempervirens adapted to growth in the presence of 5 millimolar glyphosate overproduce the herbicide's target enzyme, 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, 30- to 40-fold. In vitro translation of total RNA and poly(A)-RNA coupled with immunoprecipitation showed that the protein is synthesized as a precursor of relative molecular weight (Mr) 53900 ± 900 as compared to Mr 45500 ± 1000 of the mature enzyme. Translatable activity of mRNA for EPSP-synthase in glyphosate-adapted cultures is tenfold higher than in nonadapted cultures.  相似文献   

7.
Several aspects of the properties of phosphorylase phosphatase in crude rat liver extracts were investigated. Treatment of tissue extracts with either trypsin, ethanol, or urea was found to dissociate phosphorylase phosphatase activity to a form of Mr 35,000. The Mr 35,000 enzyme form was derived from three native enzyme forms. The major cytosolic form of phosphorylase phosphatase had a molecular weight of 260,000 as determined by gel filtration and was dissociated to a Mr 35,000 form by treatment with either ethanol or urea. Treatment of the Mr 260,000 form with trypsin led to its conversion to Mr 225,000 and a Mr 35,000 form. A minor cytosolic form of Mr 200,000 was also present. This minor activity was latent until activated by trypsin treatment and was converted to a Mr 35,000 form by such treatment. The third form was found to chromatograph as a form of molecular weight greater than 500,000 on gel filtration and, like the Mr 200,000 form, was only detected after activation with trypsin. Subsequent to this treatment, it too behaved as a Mr 35,000 enzyme. Although a single major enzyme form was present in the cytosol, multiple molecular weight forms could be generated in crude extracts simply by the use of vigorous mechanical homogenization procedures. This suggested that artifactual forms of enzyme may readily be produced, possibly by proteolytic cleavage of the native enzyme.  相似文献   

8.
The biosynthesis and processing of the Galanthus nivalis agglutinin were studied in vivo in ripening snowdrop ovaries. Using labeling and pulse chase labeling experiments it could be demonstrated that the snowdrop lectin is synthesized as a precursor of relative molecular weight (Mr) 15,000 which is posttranslationally converted into the authentic lectin polypeptide of Mr 13,000 with a half-life of about 6 hours. Gel filtration of an extract of [3H]leucine labeled ovaries on Sepharose 4B showed that a significant portion of the newly synthesized lectin is associated with the particulate fraction. When the organellar fraction was fractionated on isopycnic sucrose gradients this lectin banded in the same density region as the endoplasmic reticulum (ER) marker enzyme NADH cytochrome c reductase. Both radioactivity in lectin and in enzyme activity shifted towards a higher density in the presence of 2 millimolar Mg-acetate indicating that the labeled lectin was associated with the rough ER. Labeled lectin could be chased from the ER with a half-life of 4 hours and then accumulated in the soluble fraction. Whereas the ER-associated lectin contains exclusively polypeptides of Mr 15,000 the soluble fraction contains both precursor molecules and mature lectin polypeptides. The snowdrop lectin in the ER is fully capable of binding immobilized mannose. It is associated into tetramers with an appropriate molecular weight of 60,000. These results indicate that newly synthesized snowdrop lectin is transiently associated with the ER before transport and processing.  相似文献   

9.
The apoprotein of the major light harvesting pigment-protein complex from the diatom Phaeodactylum tricornutum (UTEX 646) is composed of two similar polypeptides of 17.5 and 18.0 kilodaltons (kD). The in vivo synthesis of these polypeptides is inhibited by the 80s protein synthesis inhibitor cycloheximide, but not by the 70s ribosome inhibitor chloramphenicol. When total poly(A)+ RNA was used in in vitro protein synthesis, a number of polypeptides were synthesized with a dominant product at 22 kD. When the polypeptides were immunoprecipitated with monospecific antibodies to the 17.5 and 18.0 polypeptides, a single protein zone of 22 kD was detected. Immunoprecipitation with preimmune serum failed to precipitate detectable levels of protein at any relative molecular weight (Mr). These findings indicate that the two apoprotein polypeptides of the diatom light harvesting pigment-protein are translated from polyadenylated message on cytoplasmic ribosomes as either a single or two (or more) similar Mr precursor proteins. These findings also suggest that this protein is encoded in the nucleus.

Photosynthetic light adaptation features of P. tricornutum UTEX 646 indicate that it responds to low light by increasing cell size and numbers of photosystem I and II reaction centers per cell, but does not change photosynthetic rate per cell or photosynthetic unit sizes significantly. When low light cells are exposed to higher photon flux densities, the in vivo incorporation of label into the apoprotein of the light harvesting complex decreases. In contrast, high light grown cells show rapid (<3 hour) increases in apoprotein synthesis when exposed to low light levels. This is the first demonstration of a specific role of photon flux density in regulating the synthesis of a major light harvesting pigment-protein during photosynthetic light adaptation.

  相似文献   

10.
Guy CL  Haskell D 《Plant physiology》1987,84(3):872-878
Spinach (Spinacia oleracea L. cv Bloomsdale) seedlings cultured in vitro were used to study changes in protein synthesis during cold acclimation. Seedlings grown for 3 weeks postsowing on an inorganic-nutrient-agar medium were able to increase their freezing tolerance when grown at 5°C. During cold acclimation at 5°C and deacclimation at 25°C, the kinetics of freezing tolerance induction and loss were similar to that of soil-grown plants. Freezing tolerance increased after 1 day of cold acclimation and reached a maximum within 7 days. Upon deacclimation at 25°C, freezing tolerance declined within 1 day and was largely lost by the 7th day. Leaf proteins of intact plants grown at 5 and 25°C were in vivo radiolabeled, without wounding or injury, to high specific activities with [35S]methionine. Leaf proteins were radiolabeled at 0, 1, 2, 3, 4, 7, and 14 days of cold acclimation and at 1, 3, and 7 days of deacclimation. Up to 500 labeled proteins were separated by two-dimensional gel electrophoresis and visualized by fluorography. A rapid and stable change in the protein synthesis pattern was observed when seedlings were transferred to the low temperature environment. Cold-acclimated leaves contained 22 polypeptides not found in nonacclimated leaves. Exposure to 5°C induced the synthesis of three high molecular weight cold acclimation proteins (CAPs) (Mr of about 160,000, 117,000, and 85,000) and greatly increased the synthesis of a fourth high molecular weight protein (Mr 79,000). These proteins were synthesized during day 1 and throughout the 14 day exposure to 5°C. During deacclimation, the synthesis of CAPs 160, 117, and 85 was greatly reduced by the first day of exposure to 25°C. However, CAP 79 was synthesized throughout the 7 day deacclimation treatment. Thus, the induction at low temperature and termination at warm temperature of the synthesis of CAPs 160, 117, and 85 was highly correlated with the induction and loss of freezing tolerance. Cold acclimation did not result in a general posttranslational modification of leaf proteins. Most of the observed changes in the two-dimensional gel patterns could be attributed to the de novo synthesis of proteins induced by low temperature. In spinach leaf tissue, heat shock altered the pattern of protein synthesis and induced the synthesis of several heat shock proteins (HSPs). One polypeptide synthesized in cold-acclimated leaves had a molecular weight and net charge (Mr 79,000, pI 4.8) similar to that of a HSP (Mr 83,000, pI 4.8). However, heat shock did not increase the freezing tolerance, and cold acclimation did not increase heat tolerance over that of nonacclimated plants, but heat-shocked leaf tissue was more tolerant to high temperatures than nonacclimated or cold-acclimated leaf tissue. When protein extracts from heat-shocked and cold-acclimated leaves were mixed and separated in the same two-dimensional gel, the CAP and HSP were shown to be two separate polypeptides with slightly different isoelectric points and molecular weights.  相似文献   

11.
14C-Labeled single-chain factor X prepared by vitamin K-dependent carboxylation in vitro was partially purified by adsorption to BaSO4 and chromatography on DEAE-Sephacel. Known activators of factor X were analyzed for their effect on the single-chain molecule. 14C-Labeled factor X antigens were recovered immunochemically from incubation mixtures and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation with trypsin resulted in the generation of factor Xa clotting activity, and the 14C-labeled product migrated after reduction with an apparent molecular weight of 22,500 ± 1500 (mean ± 1 SD). The light chain produced by factor Xa was similar to that produced by trypsin (Mr 24,500 ± 1500; mean ± 1 SD). Incubation of single-chain factor X with factor VII and thromboplastin, factor IXa, or the factor X activating enzyme from Russell's viper venom gave a reducible product with a light chain of higher apparent molecular weight (Mr 37,000–38,000). Incubation with factor VII and thromboplastin also resulted in the generation of factor Xa clotting activity. Incubation of single-chain factor X with platelets resulted in the binding of about 20% of the 14C. The bound 14C-labeled factor X antigen released by freezing and thawing in the presence of EDTA was reduced to give a 14C-labeled polypeptide with Mr 31,000. Walker 256 tumor cells bound about 30% of the 14C. The bound material, after reduction, gave a 14C-labeled polypeptide with Mr 23,000.  相似文献   

12.
Rat liver mitochondria were incubated in vitro with radioactive leucine, and submitochondrial particles prepared by several methods. Analysis of the labeled mitochondrial membrane fractions by sodium dodecylsulfate gel electrophoresis revealed three labeled bands of molecular weights corresponding to 40,000; 27,000; and 20,000 daltons. Electrophoresis for longer times at higher concentrations of acrylamide revealed eight labeled bands, ranging in molecular weights from 48,000 to 12,000.Mitochondria were incubated for 5 min with [3H]leucine followed by a chase of unlabeled leucine. Gel electrophoresis of the membranes obtained after labeling for 5 min indicated significant synthesis of polypeptides in the 40,000 Mr, range and very little labeling of low molecular-weight polypeptides. After addition of the chase, increased synthesis of the high molecular-weight polypeptides was observed; however, no significant increase or decrease of radioactivity in the bands of low molecular-weight was observed, suggesting that rat liver mitochondria have the ability to synthesize complete proteins in the Mr 27,000–40,000 range.Approximately 16% of the total leucine incorporated into protein by isolated rat liver mitochondria in vitro could be extracted by chloroform: methanol. Gel electrophoresis of the chloroform: methanol extract revealed several bands containing radioactivity with the majority of counts in a band of 40,000 molecular weight. Gel electrophoresis of the chloroform: methanol extract of lyophilized submitochondrial particles indicated label in two broad bands in the low molecular-weight region of 14,000-10,000 with insignificant counts in the higher molecular-weight regions of the gel.Yeast cells were pulse labeled in vivo with [3H]leucine in the presence of cycloheximide and the submitochondrial particles extracted with chloroform:methanol. The extract separated after gel electrophoresis into four labeled bands ranging in molecular weight from 52,000 to 10,000. Preincubation of the yeast cells with chloramphenicol prior to the pulse labeling caused a 6-fold stimulation of labeling into the band of lowest molecular weight of the chloroform: methanol extract. These results suggest that the accumulation of mitochondrial proteins synthesized in the cytoplasm, when chloramphenicol is present in the medium, may stimulate the synthesis of certain specific mitochondrial proteins which are soluble in chloroform: methanol.  相似文献   

13.
  • 1.1. Glutamine synthetase was purified from the diazotroph Azospirillum brasilense.
  • 2.2. The holoenzyme with a Mr of 630,000 is composed of 12 subunits of Mr 52,000.
  • 3.3. A modified subunit of Mr 53,000 was also found by electrophoresis under denaturing conditions.
  • 4.4. It is shown that the Mr 53,000 species is the adenylylated subunit.
  • 5.5. The apparent Km values for glutamate, ATP and ammonia were 2.5 ± 0.3 mM, 200 ± 20 μM and42 ± 2 μM, respectively.
  • 6.6. Levels of glutamine synthetase activity in A. brasilense cells varied by a factor of 8 depending on the nitrogen source and its concentration in the growth medium.
  相似文献   

14.
Two forms of initiation factor 2, (IF-2α, Mr, 118,000 and IF-2β, Mr 90,000) have been isolated from Escherichia coli extracts and tested for their ability to support β-galactosidase synthesis in a phage DNA-directed in vitro protein synthesis system. Although both forms are equally active in supporting the binding of fMet-tRNA to ribosomes only IF-2α functions in β-galactosidase synthesis.  相似文献   

15.
Studies of in vitro processing of precursors of the major chlorophyll a/b-binding polypeptides of Chlamydomonas reinhardtii y-1 were undertaken to define the precursor-product relationships. Analysis of translates, prepared from C. reinhardtii poly(A)-rich RNA in a rabbit reticulocyte lysate system, which were incubated with the soluble fraction from C. reinhardtii cells, showed that the 31,500 relative molecular mass (Mr) precursor was converted to the Mr 29,500 thylakoid membrane polypeptide whereas the Mr 30,000 precursor was converted to the Mr 26,000 product. Furthermore, the Mr 31,500 polypeptide, when bound to antibodies, was not processed to the mature polypeptide of Mr 29,500, although the presence of antibodies did not prevent the precursor of Mr 30,000 from being converted to the mature Mr 26,000 polypeptide. The mature fraction of Mr 26,000, was separated into two bands corresponding to polypeptides 16 and 17 in the electrophoretic system of Chua and Bennoun (1975 Proc Natl Acad Sci USA 72: 2175-2179).

Processing activity was present in the soluble fraction obtained from cells grown in the light or in the dark. Therefore, processing of the precursor polypeptides does not appear to be involved in the regulation by light of the accumulation of these polypeptides in thylakoid membranes.

  相似文献   

16.
The kinetics of accumulation (per milliliter of culture) of the α- and β- subunits, associated with chloroplast-localized ammonium inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) isoenzymes, were measured during a 3 hour induction of synchronized daughter cells of Chlorella sorokiniana in 29 millimolar ammonium medium under photoautotrophic conditions. The β-subunit holoenzyme(s) accumulated in a linear manner for 3 hours without an apparent induction lag. A 40 minute induction lag preceded the accumulation of the α-subunit holoenzyme(s). After 120 minutes, the α-subunit ceased accumulating and thereafter remained at a constant level (i.e. steady state between synthesis and degradation). From pulsechase experiments, using 35SO4 and immunochemical procedures, the rate of synthesis of the α-subunit was shown to be greater than the β-subunit during the first 80 minutes of induction. The α- and β-subunits had different rates of degradation during the induction period (t½ = 50 versus 150 minutes, respectively) and during the deinduction period (t½ = 5 versus 13.5 minutes) after removal of ammonium from the culture. During deinduction, total NADP-GDH activity decreased with a half-time of 9 minutes. Cycloheximide completely inhibited the synthesis and degradation of both subunits. A model for regulation of expression of the NADP-GDH gene was proposed.  相似文献   

17.
A cyclic AMP-independent protein kinase, which strongly inhibits in vitro protein synthesis, was purified to homogeneity from barley embryo by affinity and ion exchange chromatography. The Mr of the purified enzyme is 95,000 with two nonidentical subunits of Mr 58,000 and 39,000. The enzyme activity is not stimulated by cAMP, cGMP, or calmodulin. The endogenous phosphate acceptor of this kinase is a protein of Mr 52,000, was isolated by purified protein kinase immobilized Sepharose column. Using antibodies raised against this protein kinase, the levels of the enzyme during embryogenesis and germination are determined. An inverse relationship has been observed between protein kinase level and rate of protein synthesis.  相似文献   

18.
125I-nerve growth factor (NGF) was found to be internalized and translocated to the nucleus of SKBr5 breast carcinoma cells. The cytoplasm and chromatin isolated from nonmitotic cells accumulated two-and five-fold, respectively, more of 125I-NGF than the cells undergoing mitosis. MAb 20.4 developed against the NGF cell surface receptor immunoprecipitated the 80,000 Mr receptor from plasma membrane and two protein species from the chromatin; 90,000 Mr (major band) and 200,000 Mr (minor band). In SKBr5 cells, binding of NGF to the chromatin did not affect synthesis of rRNA. Proliferation of SKBr5 cells was slightly stimulated by NGF. In control melanoma A875 cells, which express the 230,000 Mr chromatin receptor, NGF inhibited both rRNA synthesis and cell proliferation. We suggest that the 90,000 Mr chromatin receptor expressed by SKBr5 cells represents a “nonactive”, ligand-binding subunit of the high molecular weight receptor for NGF. The critical role of the chromatin receptor for NGF in rRNA-dependent cell proliferation is discussed. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 has two putative pathways for ammonium assimilation: the glutamine synthetase-glutamate synthase cycle, which is the main one and is finely regulated by the nitrogen source; and a high NADP-dependent glutamate dehydrogenase activity (NADP-GDH) whose contribution to glutamate synthesis is uncertain. To investigate the role of the latter, we used two engineered mutants, one lacking and another overproducing NADP-GDH. No major disturbances in the regulation of nitrogen-assimilating enzymes or in amino acids pools were detected in the null mutant, but phycobiline content, a sensitive indicator of the nutritional state of cyanobacterial cells, was significantly reduced, indicating that NADP-GDH plays an auxiliary role in ammonium assimilation. This effect was already prominent in the initial phase of growth, although differences in growth rate between the wild type and the mutants were observed at this stage only at low light intensities. However, the null mutant was unable to sustain growth at the late stage of the culture at the point when the wild type showed the maximum NADP-GDH activity, and died faster in ammonium-containing medium. Overexpression of NADP-GDH improved culture proliferation under moderate ammonium concentrations. Competition experiments between the wild type and the null mutant confirmed that the presence of NADP-GDH confers a selective advantage to Synechocystis sp. strain PCC 6803 in late stages of growth.  相似文献   

20.
Two kinds of cysteine proteinase inhibitor (Mr 145 000 and Mr 15 500) were purified from bovine serum. These purified inhibitors showed a single band on SDS-polyacrylamide gel electrophoresis, respectively. The isoelectric point of the high molecular weight inhibitor was found to be 4.4 and that of the low molecular weight inhibitor was 8.6. The high molecular weight inhibitor inhibited papain and cathepsin H, but had little activity against cathepsin B. While the low molecular weight inhibitor was a strong inhibitor of papain and cathepsin H and showed a weak inhibition of cathepsin B. These two inhibitors showed different immunological reactivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号