首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We previously demonstrated that long term treatment of the Ag-specific CD4+ T cell clone P28D with soluble HIV envelope glycoprotein gp120 results in a marked impairment of CD3/TCR-mediated responses. In this report, to further understand these inhibitory effects, the binding properties and internalization of gp120 have been investigated, in parallel with functional studies, in long term incubations of P28D cells with gp120. Immunofluorescence studies show that surface-bound gp120 level is maximal within 1 h of incubation at 37 degrees C and then gradually decreases. This decrease is accompanied by a progressive down-modulation of membrane CD4 (30-35% loss over a 18-h incubation period) without concomitant alteration of the CD4 mRNA steady-state level. Similar experiments performed with 125I-labeled gp120 demonstrate that the glycoprotein is progressively internalized (up to 35% internalized material after 18 h) and that it accumulates inside the cells. Confocal microscopy studies show that internalized gp120 is concentrated in localized intracellular compartments. CD4 also accumulates in compartments with a similar localization and is stained with mAb OKT4 but not with mAb OKT4a. Concomitantly to internalization of gp120 and disappearance of membrane CD4, a correlated loss of the CD4-associated tyrosine kinase p56lck is evidenced. Interestingly, a progressive impairment of the P28D responses to specific Ag or to anti-CD3 mAb is also observed. Inhibitions of T cell proliferation increase with the degree of both CD4 and p56lck down-modulation. Removal of exogenous gp120 results in a rapid and spontaneous release of internalized gp120 into a degraded form. A progressive restoration of CD4 and p56lck levels is also noticed. In parallel, CD3/TCR-mediated responses of clone P28D are fully recovered. Altogether, our results suggest that HIV-1 glycoprotein gp120 is able to down-modulate membrane CD4 presumably by a cointernalization process and to further down-modulate the associated p56lck. This dual phenomenon is presumably involved in the direct immunosuppressive effect of gp120 on the CD3/TCR-mediated activation pathway.  相似文献   

2.
Because the binding of HIV-1 envelope to CD4 initiates a configurational change in glycoprotein 120 (gp120), enabling it to interact with fusion coreceptors, we investigated how this process interferes with the expression and function of CXC chemokine receptor 4 (CXCR4) in CD4+ T lymphocytes. A recombinant gp120 (MN), after preincubation with CD4+ T lymphocytes, significantly inhibited the binding and chemotaxis of the cells in response to the CXCR4 ligand stromal cell-derived factor-1alpha (SDF-1alpha), accompanied by a markedly reduced surface expression of CXCR4. gp120, but not SDF-1alpha, induced rapid tyrosine phosphorylation of src-like kinase p56lck in CD4+ T cells, whereas both gp120 and SDF-1alpha caused phosphorylation of the CXCR4. The tyrosine kinase inhibitor herbimycin A abolished the phosphorylation of p56lck and CXCR4 induced by gp120 in association with maintenance of normal expression of cell surface CXCR4 and a migratory response to SDF-1alpha. Thus, a CD4-associated signaling molecule(s) including p56lck is activated by gp120 and is required for the down-regulation of CXCR4.  相似文献   

3.
B Crise  J K Rose 《Journal of virology》1992,66(4):2296-2301
The cell surface glycoprotein, CD4, is the receptor for human immunodeficiency virus (HIV) in T lymphocytes. Following HIV infection, there is reduced expression of CD4 on the cell surface, and this downregulation probably results, at least in part, from the formation of complexes containing the HIV type 1 (HIV-1) glycoprotein precursor (gp160) and CD4 that are not transported from the endoplasmic reticulum (ER). At the plasma membrane of T cells, CD4 is tightly associated with a cytoplasmic tyrosine kinase (p56lck) that is involved in T-cell activation. Using a transient expression system with HeLa cells, we show by pulse-labeling and immunoprecipitation that newly synthesized CD4 can associate with p56lck before CD4 is transported from the ER. In the presence of HIV-1 gp160, a ternary complex of gp160-CD4 and p56lck forms in the ER. Using confocal immunofluorescence microscopy, we observed complete retention of p56lck in the ER. Such mislocation of a tyrosine kinase to the cytoplasmic face of the ER could play a role in lymphocyte killing caused by HIV infection or expression of gp160 alone.  相似文献   

4.
Peptide fragments of the CD4 molecule were compared in their ability to 1) inhibit CD4-dependent HIV-induced cell fusion; 2) inhibit CD4-dependent HIV infection in vitro; and 3) block gp120 envelope glycoprotein binding to CD4. Peptides from the region CD4(81-92), although inactive when underivatized, were equipotent inhibitors of CD4-dependent virus infection, cell fusion, and CD4/gp120 binding when derivatized via benzylation and acetylation. Peptides of identical chemical composition, but altered sequence and derivatization pattern that blocked gp120 binding to either CD4-positive cells or solubilized CD4, also blocked infection and fusion with similar potencies. Those that did not block gp120/CD4 interaction were also inactive in HIV-1 infection and cell fusion assays. No other peptide fragments of the CD4 molecule inhibited fusion, infection, or CD4/gp120 interaction. The peptide CD4(23-56), derived from a region of CD4 implicated in binding of CD4 antibodies that neutralize HIV infection and cell fusion, had no effect on CD4-dependent cell fusion, HIV-1 infection, or CD4/gp120 binding, but did reverse OKT4A and anti-Leu 3a blockade of gp120 binding to CD4. These data provide evidence that the 81-92 region of CD4 is directly involved in gp120 binding leading to CD4-dependent HIV infection and syncytium formation. Previous observations with structural mutants of CD4 suggest that the CDR2-homologous region of CD4 is also involved, either directly or indirectly, in binding of gp120 to CD4. The CDR2- and CDR3-like domains of CD4 may both contribute to the binding of the HIV envelope necessary for HIV-1 infection and HIV-1-induced cell fusion.  相似文献   

5.
The envelope glycoprotein (gp120) of HIV-1 was labeled with fluorescein by using 6-[4,6-dichlorotriazinyl]aminofluorescein. The labeled glycoprotein was found to bind to CD4-positive CEM cells. Monoclonal antibody OKT4a but not OKT4 blocked this binding. Similar specific binding of fluorescein-labeled gp120 with CD4 was observed in a solid-phase ELISA where sCD4 was attached to a polystyrene plate. The syncytium formation induced by HIV-1-infected cells on CEM cells was significantly inhibited in the presence of fluorescein-labeled gp120. Fluorescence photobleaching recovery measurements showed that the diffusion coefficient (D) of CD4 molecules complexed with fluorescein-labeled gp120 was approximately 5 x 10(-10) cm2sec-1, with nearly 61% of the receptor molecules being mobile. Binding of anti-gp120 monoclonal antibody to the CD4-gp120 complex reduced the mobile fraction significantly. Diffusion of CD4 labeled with OKT4 IgG was markedly inhibited with reductions in both D and the mobile fraction, but such inhibition was not observed with OKT4 Fab. It appears that crosslinking of multiple molecules of CD4 by OKT4 antibody is required to reduce CD4 mobility. This suggests that the receptor might be present on the membrane plane as molecular clusters containing at least two molecules of CD4.  相似文献   

6.
7.
The human immunodeficiency virus binds to CD4+ T lymphocytes through the interaction of its envelope glycoprotein (gp120) with the CD4 molecule. The src-related protein tyrosine kinase p56lck is physically associated with CD4 and is co-immunoprecipitated by CD4 monoclonal antibody (mAb). Activators of protein kinase C (PKC) cause the dissociation of p56lck from CD4. Here we report that gp120 mAb immunoprecipitated the p56lck.CD4.gp120 complex after short term treatment (20 min) of human T lymphocytes with gp120. The p56lck that was associated with the CD4.gp120 complex was dissociated by activators of PKC. This effect was abolished by pretreatment of cells with PKC inhibitors. Thus the p56lck.CD4.gp120 immune complex immunoprecipitated by gp120 mAb behaves in a similar manner, with respect to PKC activation or inhibition, to the p56lck.CD4 complex immunoprecipitated by CD4 mAb. Short term treatment of cells with gp120, followed by gp120 mAb, resulted in an increase in the tyrosine kinase activity of p56lck associated with CD4. However, the amount of enzyme associated with CD4 remained unchanged. Long term treatment (20 h) of human T lymphocytes with gp120 resulted in the down-regulation of cell surface CD4 molecules. A parallel decrease in CD4-associated gp120 was also observed. In addition, gp120 caused the dissociation of p56lck and CD4. However, the dissociation of the p56lck from CD4 occurred at much faster rate than the down-regulation of surface CD4 molecules. Such mechanisms may account for the down-regulation of cell surface CD4 molecules and the depletion of functional CD4+ T lymphocytes which are characteristic of human immunodeficiency virus infections and acquired immune deficiency syndrome pathogenesis.  相似文献   

8.
Langerhans cells (LC) are epidermal dendritic cells which express several surface antigens among them the CD4 antigens. We investigated the fate of HIV envelope glycoproteins (gp 120 and gp 160) incubated with healthy human trypsinized LC in suspension. After trypsin treatment only the epitope for OKT4 appeared to be resistant. In absence of antigenic sites identified by OKT4A, Leu 3a or BL4, LC fixed and internalized gp 120 or gp 160 recombinant HIV proteins. This finding support the hypothesis that there exists at the surface of LC a second molecule which may act as a HIV receptor.  相似文献   

9.
The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) plays a major role in the down-regulation of its receptor, CD4. Using a transient-expression system, we investigated the interaction of the HIV-1 envelope glycoprotein with CD4 during their movement through the intracellular membrane traffic. In singly transfected cells, the envelope glyprotein gp160 was synthesized, glycosylated, and localized predominantly in the endoplasmic reticulum. Only a minor fraction of gp160 was proteolytically cleaved, producing gp120 and gp41, and gp120 was secreted into the medium. On the other hand, the CD4 molecule, when expressed alone, was properly glycosylated and transported efficiently to the cell surface. However, when gp160 and CD4 were coexpressed in the same cell, the cell surface delivery of CD4 was greatly reduced. In coexpressing cells, CD4 formed a specific intracellular complex with gp160 as both proteins could be immunoprecipitated by antibodies against either the gp160 or CD4 (OKT4) but not by OKT4A, a blocking antibody against CD4. The specific gp160-CD4 complex was localized predominantly in the endoplasmic reticulum, and the CD4 in the complex did not acquire endoglycosidase H resistance. The present studies demonstrated that a specific intracellular interaction between gp160 and CD4 was responsible for the cell surface down-regulation of CD4 in cells expressing both the envelope glycoprotein of HIV-1 and its receptor, CD4.  相似文献   

10.
《Research in virology》1990,141(2):209-215
Langerhans cells (LC) are epidermal dendritic cells which express several surface antigens, among them the CD4 antigens. Recent data demonstrated that LC constitute target and storage cells for HIV. To better understand the interactions between HIV and LC, we investigated, in the present work, the fate of HIV envelope glycoproteins (gp120 and gp160) incubated with healthy human trypsinized LC in suspensions.After trypsin treatment, only the epitope for OKT4 appeared to be resistant on LC. In the absence of antigenic sites identified by OKT4A, Leu3a or BL4 (epitopes implicated in HIV binding), LC bound and internalized recombinant HIV gp120 or gp160.This finding supports the hypothesis that there exists at the surface of LC a second molecule which may act as an HIV receptor.  相似文献   

11.
gp120, the coat glycoprotein of the human immunodeficiency virus type 1 (HIV1) binds to a molecule on the surface of a class of T-lymphocytes, CD4, which is also the receptor for major histocompatibility complex class II (MHCII). To study the events that follow the interaction of gp120 with CD4, we have incorporated CD4 into lipid bilayers and recorded the electrical changes which occur after the addition of gp120. Interaction of gp120 to CD4-containing bilayers induces multistate ion-permeable channels with a maximum conductance of 380-400 picosiemens. When CD4+ bilayers were preexposed to either MHCII or to OKT4A antibody, no channels were formed after the addition of gp120. These results indicate that CD(4+)-containing bilayers bind gp120, MHCII, and OKT4A, that binding of gp120 produces ion-permeable channels, and that CD4+ bilayers can be used to assay for gp120 in the solution bathing the bilayer.  相似文献   

12.
The noncovalent association of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) is disrupted by soluble CD4 binding, resulting in shedding of the gp120 exterior envelope glycoprotein. This observation has led to the speculation that interaction of gp120 with the CD4 receptor triggers shedding of the exterior envelope glycoprotein, allowing exposure of gp41 domains necessary for membrane fusion steps involved in virus entry or syncytium formation. To test this hypothesis, a set of HIV-1 envelope glycoprotein mutants were used to examine the relationship of soluble CD4-induced shedding of the gp120 glycoprotein to envelope glycoprotein function in syncytium formation and virus entry. All mutants with a threefold or greater reduction in CD4-binding ability exhibited marked decreases in gp120 shedding in response to soluble CD4, even though several of these mutants exhibited significant levels of envelope glycoprotein function. Conversely, most fusion-defective mutants with wild-type gp120-CD4 binding affinity, including those with changes in the V3 loop, efficiently shed gp120 following soluble CD4 binding. Thus, soluble CD4-induced shedding of gp120 is not a generally useful marker for conformational changes in the HIV-1 envelope glycoproteins necessary for the virus entry or syncytium formation processes. Some gp120 mutants, despite being expressed on the cell surface and capable of efficiently binding soluble CD4, exhibited decreased gp120 shedding. These mutants were still sensitive to neutralization by soluble CD4, indicating that, for envelope glycoproteins exhibiting high affinity for soluble CD4, competitive inhibition may be more important than gp120 shedding for the antiviral effect.  相似文献   

13.
The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C' and FG. This structure is consistent with C'C' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein.  相似文献   

14.
Binding of recombinant HIV coat protein gp120 to human monocytes   总被引:2,自引:0,他引:2  
Inasmuch as the exact level of CD4 Ag expression on macrophages is controversial and because HIV may interact with macrophages in a manner different from that on T cells, we analyzed the binding of gp120 to freshly isolated and cultured monocytes. rgp120 was iodinated using the lactoperoxidase method to a sp. act. of 600 Ci/mmol. Highly purified monocytes (greater than 90%) were isolated from the leukapheresed blood of normal volunteers by Ficoll-Hypaque sedimentation followed by countercurrent centrifugal elutriation and cultured 7 days in DMEM supplemented with 1000 U/ml macrophage CSF in 10% human serum. Whereas MOLT/4 cells consistently bound freshly prepared 125I-rgp120 at 80% specificity with 5100 +/- 700 mol/cell, MCSF cultured monocytes bound rgp120 at only 0 to 20% specificity and 420 +/- 200 mol/cell. Most of the radioactivity bound by these cells could not be blocked by the addition of unlabeled rgp120. In contrast, the U937 myeloid cell line bound rgp120 with 50% specificity and about 2500 mol/cell. Whereas the antibody OKT4a (anti-CD4) blocked 80% of the binding on MOLT/4 cells and 50% on U937 cells, binding was only inhibited on the average of 6% on cultured monocytes. When soluble rCD4 was used as an inhibitor, binding to MOLT/4 cells was blocked by 80%. In contrast, binding to cultured monocytes was inhibited by 28%. HIV infectivity was blocked by similar concentrations of OKT4a. These observations suggest that although most binding of gp120 to cultured monocytes is not to the CD4 determinant, several hundred molecules do bind to a CD4-like molecule which promotes virus entry and replication.  相似文献   

15.
The HIV envelope glycoprotein gp120 binds with high affinity to CD4 and is responsible for the tropism of HIV for CD4+ T cells and monocytes. Efforts to develop HIV vaccines have focused on gp120 and, therefore, a detailed molecular understanding of human immune responses to gp120 is essential. In this report, we have used human T cell clones specific for gp120 to examine the processing and presentation of gp120 to T cells. In particular, we examined the role of the CD4 that is expressed at low levels on the surfaces of human monocytes in the presentation of gp120 by monocytes. The presentation of gp120 to gp120-specific human T cell clones was blocked by pretreatment of monocytes with anti-CD4 mAb. Blocking of monocyte CD4 with anti-CD4 did not inhibit presentation of other Ag or of synthetic peptides representing epitopes within gp120 recognized by gp120-specific T cell clones. These results indicated that the anti-CD4-mediated inhibition occurred at the level of the monocyte, was specific for the gp120 response, and was operative at the initial Ag uptake phase of the Ag-processing pathway. Definitive confirmation that monocyte CD4 functions in the initial uptake step of the gp120-processing pathway was obtained by using soluble CD4 to block the interaction of gp120 with monocyte CD4. These results demonstrate that gp120 expressed by human monocytes plays an important role in the initial uptake of gp120 by monocytes and that gp120 taken up via CD4 is subsequently processed to allow for exposure of epitopes recognized by gp120-specific human T cells. At limiting gp120 concentrations, uptake via CD4 is essential for the presentation of gp120.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 tightly binds CD4 as its principal cellular receptor, explaining the tropism of HIV-1 for CD4+ cells. Nevertheless, reports documenting HIV infection or HIV binding in cells lacking CD4 surface expression have raised the possibility that cellular receptors in addition to CD4 may interact with HIV envelope. Moreover, the lymphocyte adhesion molecule LFA-1 appears to play an important role in augmenting HIV-1 viral spread and cytopathicity in vitro, although the mechanism of this function is still not completely defined. In the course of characterizing a human anti-HIV gp41 monoclonal antibody, we transfected a CD4-negative, LFA-1-negative B-cell line to express an anti-gp41 immunoglobulin receptor (surface immunoglobulin [sIg]/gp41). Despite acquiring the ability to bind HIV envelope, such transfected B cells could not be infected by HIV-1. These cells were not intrinsically defective for supporting HIV-1 infection, because when directed to produce surface CD4 by using retroviral constructs, they acquired the ability to replicate HIV-1. Interestingly, transfected cells expressing both surface CD4 and sIg/gp41 receptors replicated HIV much better than cells expressing only CD4. The enhancement resided specifically in sIg/gp41, because isotype-specific, anti-IgG1 antibodies directed against sIg/gp41 blocked the enhancement. These data directly establish the ability of a cell surface anti-gp41 receptor to enhance HIV-1 replication.  相似文献   

17.
18.
Y Li  L Luo  N Rasool    C Y Kang 《Journal of virology》1993,67(1):584-588
Conflicting results have been reported regarding the role of carbohydrate on human immunodeficiency virus (HIV) envelope glycoprotein gp120 in CD4 receptor binding. Glycosylated, deglycosylated, and nonglycosylated forms of HIV type 1 (HIV-1) and HIV-2 gp120s were used to examine CD4 receptor-binding activity. Nonglycosylated forms of gp120 generated either by deletion of the signal sequence of HIV-1 gp120 or by synthesis in the presence of tunicamycin failed to bind to CD4. In contrast, highly mannosylated gp120 bound to soluble CD4 molecules well. Enzymatic removal of carbohydrate chains from glycosylated gp120 by endoglycosidase H or an endoglycosidase F/N glycanase mixture had no effect on the ability of gp120 to bind CD4. An experiment which measured the ability of gp120 to bind to CD4 as an assay of the proper conformation of gp120 showed that carbohydrate chains on gp120 are not required for the interaction between gp120 and CD4 but that N-linked glycosylation is essential for generation of the proper conformation of gp120 to provide a CD4-binding site.  相似文献   

19.
CCR5 and CXC chemokine receptor 4 (CXCR4) are coreceptors for CD4 as defined by HIV-1 glycoprotein (gp) 120 binding. Pretreatment of T cells with gp120 results in modulation of both CCR5 and CXCR4 responsiveness, which is dependent upon p56(lck) enzymatic activity. The recent findings that pretreatment of T cells with a natural CD4 ligand, IL-16, could alter cellular responsiveness to macrophage-inflammatory protein-1ss (MIP-1ss) stimulation, prompted us to investigate whether IL-16 could also alter CXCR4 signaling. These studies demonstrate that IL-16/CD4 signaling in T lymphocytes also results in loss of stromal derived factor-1alpha (SDF-1alpha)/CXCR4-induced chemotaxis; however, unlike MIP-1ss/CCR5, the effects were not reciprocal. There was no effect on eotaxin/CCR3-induced chemotaxis. Desensitization of CXCR4 by IL-16 required at least 10-15 min pretreatment; no modulation of CXCR4 expression was observed, nor was SDF-1alpha binding altered. Using murine T cell hybridomas transfected to express native or mutated forms of CD4, it was determined that IL-16/CD4 induces a p56(lck)-dependent inhibitory signal for CXCR4, which is independent of its tyrosine catalytic activity. By contrast, IL-16/CD4 desensitization of MIP-1ss/CCR5 responses requires p56(lck) enzymatic activity. IL-16/CD4 inhibition of SDF-1alpha/CXCR4 signals requires the presence of the Src homology 3 domain of p56(lck) and most likely involves activation of phosphatidylinositol-3 kinase. These studies indicate the mechanism of CXCR4 receptor desensitization induced by a natural ligand for CD4, IL-16, is distinct from the inhibitory effects induced by either gp120 or IL-16 on CCR5.  相似文献   

20.
CD4 serves as a receptor for major histocompatibility complex class II antigens and as a receptor for the human immunodeficiency virus type 1 (HIV-1) viral coat protein gp120. It is coupled to the protein-tyrosine kinase p56lck, an interaction necessary for an optimal response of certain T cells to antigen. In addition to the protein-tyrosine kinase domain, p56lck possesses Src homology 2 and 3 (SH2 and SH3) domains as well as a unique N-terminal region. The mechanism by which p56lck generates intracellular signals is unclear, although it has the potential to interact with various downstream molecules. One such downstream target is the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase), which has been found to bind to activated pp60src and receptor-tyrosine kinases. In this study, we verified that PI 3-kinase associates with the CD4:p56lck complex as judged by the presence of PI 3-phosphate generated from anti-CD4 immunoprecipitates and detected by high-pressure liquid chromatographic analysis. However, surprisingly, CD4-p56lck was also found to associate with another lipid kinase, phosphatidylinositol 4-kinase (PI 4-kinase). The level of associated PI 4-kinase was generally higher than PI 3-kinase activity. HIV-1 gp120 and antibody-mediated cross-linking induced a 5- to 10-fold increase in the level of CD4-associated PI 4- and PI 3-kinases. The use of glutathione S-transferase fusion proteins carrying Lck-SH2, Lck-SH3, and Lck-SH2/SH3 domains showed PI 3-kinase binding to the SH3 domain of p56lck, an interaction facilitated by the presence of an adjacent SH2 domain. PI 4-kinase bound to neither the SH2 nor the SH3 domain of p56lck. CD4-p56lck contributes PI 3- and PI 4-kinase to the activation process of T cells and may play a role in HIV-1-induced immune defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号