首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since parathyroid hormone (PTH) increased FGF2 mRNA and protein expression in osteoblasts, and serum FGF-2 was increased in osteoporotic patients treated with PTH, we assessed whether the anabolic effect of PTH was impaired in Fgf2-/- mice. Eight-week-old Fgf2+/+ and Fgf2-/- male mice were treated with rhPTH 1-34 (80mug/kg) for 4 weeks. Micro-CT and histomorphometry demonstrated that PTH significantly increased parameters of bone formation in femurs from Fgf2+/+ mice but the changes were smaller and not significant in Fgf2-/- mice. IGF-1 was significantly reduced in serum from PTH-treated Fgf2-/- mice. DEXA analysis of femurs from Fgf2+/+, Fgf2+/-, and Fgf2-/- mice treated with rhPTH (160mug/kg) for 10 days showed that PTH significantly increased femoral BMD in Fgf2+/+ by 18%; by only 3% in Fgf2+/- mice and reduced by 3% in Fgf2-/- mice. We conclude that endogenous Fgf2 is important for maximum bone anabolic effect of PTH in mice.  相似文献   

2.
3.
Continuous elevation of parathyroid hormone (PTH) increases osteoclast precursors, the number of osteoclasts on cancellous bone, and bone turnover. The essential molecular mediators of these effects are controversial, however, and both increased receptor activator of NF-kappaB ligand (RANKL) and IL-6 have been implicated. The goal of these studies was to determine whether continuous elevation of endogenous PTH alters IL-6 gene expression in vivo and whether IL-6 is required for PTH-induced bone loss. To accomplish this, we generated transgenic mice harboring a luciferase reporter gene under the control of IL-6 gene regulatory regions to allow accurate quantification of IL-6 gene activity in vivo. In these mice, induction of secondary hyperparathyroidism using a calcium-deficient diet did not alter IL-6-luciferase transgene expression, whereas RANKL mRNA expression was elevated in bone tissue. Moreover, secondary hyperparathyroidism induced an equivalent amount of bone loss in wild-type and IL-6-deficient mice, and PTH elevated RANKL mRNA and osteoclast formation to the same extent in bone marrow cultures derived from wild-type and IL-6-deficient mice. These results demonstrate that IL-6 is not required for the osteoclast formation and bone loss that accompanies continuous elevation of PTH.  相似文献   

4.
Bone tissue composed of typical bone trabeculae containing ground substance with incorporated osteogenic cells and osteoblast layer was formed in organ cultures of bone marrow obtained from adult mice. Electron microscopic properties of the bone formed in vitro were identical to those of the bone tissue in vivo. The mineralization of the bone took place only in the presence of Na-beta-glycerophosphate in the culture medium.  相似文献   

5.
Chen Q  Kaji H  Sugimoto T  Chihara K 《FEBS letters》2001,491(1-2):91-93
Androgens play an important role in the regulation of bone metabolism in animals and humans. The present study was performed to investigate whether androgens would affect osteoclast formation stimulated by parathyroid hormone (PTH) in mouse bone cell cultures and its mechanism. Testosterone as well as alpha-dihydrotestosterone (DHT) concentration-dependently inhibited osteoclast formation induced by PTH-(1-34). 10(-8) M ICI 182780, an estrogen receptor inhibitor, did not affect PTH-induced osteoclast formation antagonized by 10(-8) M testosterone, although it completely antagonized the effects of 10(-8) M 17beta-estradiol. Moreover, 3 microM 4-androsten-4-ol-3,17-dione, an aromatase inhibitor, did not affect PTH-induced osteoclast formation antagonized by testosterone. Hydroxyflutamide, an androgen receptor antagonist, concentration-dependently antagonized the inhibitory effects of testosterone as well as DHT on PTH-stimulated osteoclast formation. In conclusion, the present study first demonstrated that testosterone inhibited osteoclast formation stimulated by PTH through the androgen receptor, but not through the production of intrinsic estrogen in mouse bone cell cultures.  相似文献   

6.
Bone formation in organ cultures of bone marrow   总被引:6,自引:0,他引:6  
Summary Bone formation in organ cultures of intact marrow fragments from mouse is described. Marrow explants were cultured on the top surface of a millipore filter at a gas-liquid interface. Observations with both light- and electron microscopes demonstrated the formation of a well-organised trabecular matrix lined with osteoblast-like cells. The tissue and cells were positive for alkaline-phosphatase activity. Large amounts of thick, well-banded collagen fibrils and matrix vesicles typical of those found in bone were present. The tissue became mineralised in the presence of 10 mM Na--glycerophosphate; in its absence a similar trabecular matrix developed but mineralisation did not take place.  相似文献   

7.
Quantitative transmission electron microscope methods were used to determine the response of functionally inactive avian medullary bone osteoclasts to parathyroid hormone (PTH). Egg-lying Japanese quail were used during a period of the egg cycle when medullary bone was not being resorbed for egg shell calcification and when medullary bone osteoclasts were functionally inactive. Ruffled borders adjacent to bone surfaces were rarely, if ever, found on these cells. 20 min after the administration of PTH, over 70% of the osteoclast profiles had ruffled borders adjacent to bone surfaces. These ruffled borders were bounded by filamentous-rich "clear zones" and resembled ruffled borders found on functionally active cells. There was also a marked increase in plasma calcium levels after PTH administration. This study demonstrates that PTH stimulates the de novo generation of ruffled borders on osteoclasts in vivo and suggests that osteoclasts may be involved in the acute regulation of calcium metabolism by exogenous PTH.  相似文献   

8.
Murine long-term bone marrow cultures (LTBMCs) were used to generate hematopoietic cells free from marrow stromal cells. These progenitor cells were treated with GM-CSF (5 U/ml) with or without rat bone osteocalcin or rat serum albumin in either α-MEM with 2% heat-inactivated horse serum alone (α) or supplemented with 10% L-cell-conditioned medium (as a source of M-CSF) (L10). Few substrate-attached cells survived in basal α medium, but when treated with L10 medium or GM-CSF, they survived and proliferated. Osteocalcin did not significantly affect survival or proliferation. Subcultures of cells treated with GM-CSF had large numbers of multinucleated cells, more than half of which were tartrate-resistant acid phosphatase–positive (TRAP). Osteocalcin further promoted the development of TRAP-positive multinucleated cells; a dose of 0.7 μg/ml osteocalcin promoted osteoclastic differentiation by 60%. Using a novel microphotometric assay, we detected significantly more tartrate-resistant acid phosphatase activity in the osteocalcin plus GM-CSF group (75.6 ± 14.2) than in GM-CSF alone (53.3 ± 7.3). In the absence of M-CSF, GM-CSF stimulated tartrate-resistant acid phosphatase activity, but osteocalcin did not have an additional effect. These studies indicate that osteocalcin promotes osteoclastic differentiation of a stromal-free subpopulation of hematopoietic progenitors in the presence of GM-CSF and L-cell-conditioned medium. These results are consistent with the hypothesis that this bone-matrix constituent plays a role in bone resorption. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Osteoclast development was studied in cell cultures prepared from calvaria of neonatal osteopetrotic (mi/mi) mice or their normal littermates, using tartrate-resistant acid phosphatase (TRAPase), as an osteoclast marker. In cultures from normal mice, treatment with 10 nM PTH for 4-5 days stimulated the formation of osteoclasts. However in cultures from mi/mi mice, this response was only 7% +/- 5% that of normal mice and they were significantly smaller than osteoclasts of normal mice. Mineralized bone particles elicited osteoclast development in cultures from both normal and mi/mi mice, and osteoclast size was identical for both genotypes. Seventy-eight to 96% of the TRAPase-positive cells bound 125I-CT, as demonstrated by autoradiography. 125I-CT binding characteristics were identical in cultures from both genotypes treated with bone particles, exhibiting a Kd of 3.3-3.6 x 10(-10) M. Addition of PTH stimulated 45Ca release from the added bone particles only in the case of cultures prepared from normal mice, and CT inhibited this response. Cells from normal mice were capable of excavating bone from the surface of smooth cortical bone wafers, but such excavations were rarely seen in the case of calvarial cells from mi/mi mice. Thus, PTH-driven differentiation of osteoclasts is arrested in calvarial cell cultures from mi/mi mice, but mi/mi preosteoclasts retain the ability to express certain osteoclast markers in response to bone derived signals. We hypothesize that the lack of activity of mi/mi osteoclasts is due to the failure of mi/mi preosteoclasts to respond appropriately to resorptive agents, or to cytokines elicited by these agents.  相似文献   

10.
Autoimmune antibodies to beta(2)-glycoprotein I (beta2GPI) have been proposed to be clinically relevant because of their strong association with thrombosis, miscarriage, and thrombocytopenia. By using a homologous recombination approach, beta2GPI-null mice were generated to begin to understand the physiologic and pathologic role of this prominent plasma protein in mammals. When beta2GPI heterozygotes on a 129/Sv/C57BL/6 mixed genetic background were intercrossed, only 8.9% of the resulting 336 offspring possessed both disrupted alleles. These data suggest that beta2GPI plays a beneficial role in implantation and/or fetal development in at least some mouse strains. Although those beta2GPI-null mice that were born appeared to be relatively normal anatomically and histologically, subsequent analysis revealed that they possessed an impaired in vitro ability to generate thrombin relative to wild type mice. Thus, beta2GPI also appears to play an important role in thrombin-mediated coagulation.  相似文献   

11.
Bone, a major reservoir of body calcium, is under the hormonal control of the parathyroid hormone (PTH). Several aspects of its growth, turnover, and mechanism, occur in the absence of gonadal hormones. Sex steroids such as estrogen, nonetheless, play an important role in bone physiology, and are extremely essential to maintain bone balance in adults. In order to provide a basis for understanding the underlying mechanisms of bone remodeling as it is mediated by PTH, we propose here a mathematical model of the process. The nonlinear system model is then utilized to study the temporal effect of PTH as well as the action of estrogen replacement therapy on bone turnover. Analysis of the model is done on the assumption, supported by reported clinical evidence, that the process is characterized by highly diversified dynamics, which warrants the use of singular perturbation arguments. The model is shown to exhibit limit cycle behavior, which can develop into chaotic dynamics for certain ranges of the system's parametric values. Effects of estrogen and PTH administrations are then investigated by extending on the core model. Analysis of the model seems to indicate that the paradoxical observation that intermittent PTH administration causes net bone deposition while continuous administration causes net bone loss, and certain other reported phenomena may be attributed to the highly diversified dynamics which characterizes this nonlinear remodeling process.  相似文献   

12.
Receptor activator of NF‐κB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter‐driven Cre expression (AdipoqCre ) can target bone marrow adipose lineage cells. We cross the AdipoqCre mice with ranklfl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. AdipoqCre; ranklfl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)‐induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.  相似文献   

13.
Bone formation in adult human bone marrow organ cultures is described. When culturing marrow fragments, thick bone lamina is formed. It has well-mineralized trabecular bone matrix with bone cells incorporated and is lined with osteoblast-like cells. In cultures of marrow deaggregated cell suspensions thin layers of the bone are only formed. Osteoclast-like cells develop in the cultures.  相似文献   

14.
15.
16.
l -Kyotorphin ( l -KTP), an endogenous analgesic neuropeptide, is a substrate for aminopeptidases and a proton-coupled oligopeptide transporter, PEPT2. This study examined the CSF efflux, antinociceptive response, and hydrolysis kinetics in brain of l -KTP and its synthetic diastereomer d -kyotorphin ( d -KTP) in wild-type and Pept2 null mice. CSF clearance of l -KTP was slower in Pept2 null mice than in wild-type animals, and this difference was reflected in greater l -KTP-induced analgesia in Pept2 null mice. Moreover, dose-response analyses showed that the ED50 of l -KTP in Pept2 -deficient animals was one-fifth of the value observed in Pept2 -competent animals (4 vs. 21 nmol for null vs. wild-type mice, respectively). In contrast, the ED50 of d -KTP was very similar between the two genotypes (9–10 nmol). Likewise, there was little difference between genotypes in slope factor or baseline effects of l -KTP and d -KTP. The enhanced antinociceptive response to l -KTP in Pept2 null mice could not be explained by differences in neuropeptide degradation as Vmax and Km values did not differ between genotypes. Our results demonstrate that PEPT2 can significantly impact the analgesic response to an endogenous neuropeptide by altering CSF (and presumably brain interstitial fluid) concentrations and that it may influence the disposition and response to exogenous peptide/mimetic substrates.  相似文献   

17.
Presynaptic nerve terminals require high levels of ATP for the maintenance of synaptic function. Failure of synaptic mitochondria to generate adequate ATP has been implicated as a causative event preceding the loss of synaptic networks in neurodegenerative disease. Endogenous oxidative stress has often been postulated as an etiological basis for this pathology, but has been difficult to test in vivo. Inactivation of the superoxide dismutase gene (Sod2) encoding the chief defense enzyme against mitochondrial superoxide radicals results in neonatal lethality. However, intervention with an SOD mimetic extends the life span of this model and uncovers a neurodegenerative phenotype providing a unique model for the examination of in vivo oxidative stress. We present here studies on synaptic termini isolated from the frontal cortex of Sod2 null mice demonstrating impaired bioenergetic function as a result of mitochondrial oxidative stress. Cortical synaptosomes from Sod2 null mice demonstrate a severe decline in mitochondrial spare respiratory capacity in response to physiological demand induced by mitochondrial respiratory chain uncoupling with FCCP or by plasma membrane depolarization induced by 4-aminopyridine treatment. However, Sod2 null animals compensate for impaired oxidative metabolism in part by the Pasteur effect allowing for normal neurotransmitter release at the synapse, setting up a potentially detrimental energetic paradigm. The results of this study demonstrate that high-throughput respirometry is a facile method for analyzing specific regions of the brain in transgenic models and can uncover bioenergetic deficits in subcellular regions due to endogenous oxidative stress.  相似文献   

18.
19.
Bone marrow cells (BMCs) are the main type of cells used for transplantation therapies. Obesity, a major world health problem, has been demonstrated to affect various tissues, including bone marrow. This could compromise the success of such therapies. One of the main mechanisms underlying the pathogenesis of obesity is mitochondrial dysfunction, and recent data have suggested an important role for mitochondrial metabolism in the regulation of stem cell proliferation and differentiation. Since the potential use of BMCs for clinical therapies depends on their viability and capacity to proliferate and/or differentiate properly, the analysis of mitochondrial function and cell viability could be important approaches for evaluating BMC quality in the context of obesity. We therefore compared BMCs from a control group (CG) and an obese group (OG) of mice and evaluated their mitochondrial function, proliferation capacity, apoptosis, and levels of proteins involved in energy metabolism. BMCs from OG had increased apoptosis and decreased proliferation rates compared with CG. Mitochondrial respiratory capacity, biogenesis, and the coupling between oxidative phosphorylation and ATP synthesis were significantly decreased in OG compared with CG, in correlation with increased levels of uncoupling protein 2 and reduced peroxisome proliferator-activated receptor-coactivator 1α content. OG also had decreased amounts of the glucose transporter GLUT-1 and insulin receptor (IRβ). Thus, Western-diet-induced obesity leads to mitochondrial dysfunction and reduced proliferative capacity in BMCs, changes that, in turn, might compromise the success of therapies utilizing these cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号