首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
Since parathyroid hormone (PTH) increased FGF2 mRNA and protein expression in osteoblasts, and serum FGF-2 was increased in osteoporotic patients treated with PTH, we assessed whether the anabolic effect of PTH was impaired in Fgf2-/- mice. Eight-week-old Fgf2+/+ and Fgf2-/- male mice were treated with rhPTH 1-34 (80mug/kg) for 4 weeks. Micro-CT and histomorphometry demonstrated that PTH significantly increased parameters of bone formation in femurs from Fgf2+/+ mice but the changes were smaller and not significant in Fgf2-/- mice. IGF-1 was significantly reduced in serum from PTH-treated Fgf2-/- mice. DEXA analysis of femurs from Fgf2+/+, Fgf2+/-, and Fgf2-/- mice treated with rhPTH (160mug/kg) for 10 days showed that PTH significantly increased femoral BMD in Fgf2+/+ by 18%; by only 3% in Fgf2+/- mice and reduced by 3% in Fgf2-/- mice. We conclude that endogenous Fgf2 is important for maximum bone anabolic effect of PTH in mice.  相似文献   

3.
To investigate the role of T lymphocytes in osteoclastogenesis, we performed in vivo depletion of CD4 and/or CD8 T lymphocyte subsets and evaluated in vitro osteoclast-like cell (OCL) formation. T lymphocyte depletion (TLD) with mAbs was confirmed 24 h later by flow cytometry. OCL formation was stimulated with 1, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) in bone marrow and with recombinant mouse (rm) receptor activator of NF-kappaB ligand (RANK-L) and rmM-CSF in bone marrow and spleen cell cultures. OCL formation was up to 2-fold greater in 1,25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice than in those from intact mice. In contrast, TLD did not alter OCL formation in bone marrow or spleen cell cultures that were stimulated with rmRANK-L and rmM-CSF. The effects of TLD seemed to be mediated by enhanced PG synthesis, because the PGE(2) concentration in the medium of 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice was 5-fold higher than that in cultures from intact mice, and indomethacin treatment abolished the stimulatory effect of TLD on OCL formation. There was a 2-fold increase in RANK-L expression and an almost complete suppression of osteoprotegerin expression in 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice compared with those from intact mice. Although there was a small (20%) increase in IL-1alpha expression in 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice, TLD in mice lacking type I IL-1R and wild-type mice produced similar effects on OCL formation. Our data demonstrate that TLD up-regulates OCL formation in vitro by increasing PG production, which, in turn, produces reciprocal changes in RANK-L and osteoprotegerin expression. These results suggest that T lymphocytes influence osteoclastogenesis by altering bone marrow stromal cell function.  相似文献   

4.
We previously reported that deletion of the Fgf2 gene (Fgf2-/-) resulted in decreased bone mass in adult mice. This study examines the effect of haplo-insuffiency (Fgf2+/-) on bone loss in vertebrae from these mutant mice. Fgf2+/+ mice attained peak bone mass at 8-9 months of age. In contrast BMD was significantly reduced in vertebrae from adult (8-9) Fgf2+/- mice. Exogenous FGF-2 rescued reduced bone nodule formation in Fgf2+/- and Fgf2-/- cultures. Runx2 mRNA was reduced in cultures from Fgf2+/- and Fgf2-/- mice. FGF receptor2 mRNA and protein were markedly reduced in Fgf2+/- and Fgf2-/- mice. Decreased bone formation in Fgf2 mutant mice may correlate with impaired FGFR signaling, decreased Runx2 gene expression.  相似文献   

5.
Parathyroid hormone (PTH) increases fibroblast growth factor receptor‐1 (FGFR1) and fibroblast growth factor‐2 (FGF‐2) expression in osteoblasts and the anabolic response to PTH is reduced in Fgf2?/? mice. This study examined whether candidate factors implicated in the anabolic response to PTH were modulated in Fgf2?/? osteoblasts. PTH increased Runx‐2 protein expression in Fgf2+/+ but not Fgf2?/? osteoblasts. By immunocytochemistry, PTH treatment induced nuclear accumulation of Runx‐2 only in Fgf2+/+ osteoblasts. PTH and FGF‐2 regulate Runx‐2 via activation of the cAMP response element binding proteins (CREBs). Western blot time course studies showed that PTH increased phospho‐CREB within 15 min that was sustained for 24 h in Fgf2+/+ but had no effect in Fgf2?/? osteoblasts. Silencing of FGF‐2 in Fgf2+/+ osteoblasts blocked the stimulatory effect of PTH on Runx‐2 and CREBs phosphorylation. Studies of the effects of PTH on proteins involved in osteoblast precursor proliferation and apoptosis showed that PTH increased cyclinD1‐cdk4/6 protein in Fgf2+/+ but not Fgf2?/? osteoblasts. Interestingly, PTH increased the cell cycle inhibitor p21/waf1 in Fgf2?/? osteoblasts. PTH increased Bcl‐2/Bax protein ratio in Fgf2+/+ but not Fgf2?/? osteoblasts. In addition PTH increased cell viability in Fgf2+/+ but not Fgf2?/? osteoblasts. These data suggest that endogenous FGF‐2 is important in PTH effects on osteoblast proliferation, differentiation, and apoptosis. Reduced expression of these factors may contribute to the reduced anabolic response to PTH in the Fgf2?/? mice. Our results strongly indicate that the anabolic PTH effect is dependent in part on FGF‐2 expression. J. Cell. Physiol. 219: 143–151, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Fibroblast growth factor 2 (FGF2) positively modulates osteoblast differentiation and bone formation. However, the mechanism(s) is not fully understood. Because the Wnt canonical pathway is important for bone homeostasis, this study focuses on modulation of Wnt/β-catenin signaling using Fgf2(-/-) mice (FGF2 all isoforms ablated), both in the absence of endogenous FGF2 and in the presence of exogenous FGF2. This study demonstrates a role of endogenous FGF2 in bone formation through Wnt signaling. Specifically, mRNA expression for the canonical Wnt genes Wnt10b, Lrp6, and β-catenin was decreased significantly in Fgf2(-/-) bone marrow stromal cells during osteoblast differentiation. In addition, a marked reduction of Wnt10b and β-catenin protein expression was observed in Fgf2(-/-) mice. Furthermore, Fgf2(-/-) osteoblasts displayed marked reduction of inactive phosphorylated glycogen synthase kinase-3β, a negative regulator of Wnt/β-catenin pathway as well as a significant decrease of Dkk2 mRNA, which plays a role in terminal osteoblast differentiation. Addition of exogenous FGF2 promoted β-catenin nuclear accumulation and further partially rescued decreased mineralization in Fgf2(-/-) bone marrow stromal cell cultures. Collectively, our findings suggest that FGF2 stimulation of osteoblast differentiation and bone formation is mediated in part by modulating the Wnt pathway.  相似文献   

7.
FGF-2 stimulates bone formation in vitro and in vivo in rats. However, there are limited studies in mice and no data on the mechanism(s) by which FGF-2 induces bone formation. We assessed whether short-term FGF-2 treatment of marrow stromal cells from young mice would increase alkaline phosphatase-positive (ALP), mineralized colony formation and expression of genes important in osteoblast maturation. Short-term treatment with FGF-2 (0.01-1.0 nM) for the first 3 days of a 14- or 21-day culture period increased the number of ALP mineralized colonies in bone marrow stromal cells. FGF-2 (0.1 nM) increased the mRNAs for type 1 collagen: osteocalcin, runt domain/core binding factor, PTH/PTHR receptor, and insulin-like growth factor 1 (IGF-1) at 14 and 21 days. We conclude that short-term FGF-2 treatment enhances osteoblast maturation in vitro. Furthermore, the anabolic effect of FGF-2 may be attributed in part to regulation of IGF-1 in osteoblasts.  相似文献   

8.
Over-expression of human FGF-2 cDNA linked to the phosphoglycerate kinase promoter in transgenic (TgFGF2) mice resulted in a dwarf mouse with premature closure of the growth plate and shortening of bone length. This study was designed to further characterize bone structure and remodeling in these mice. Bones of 1-6 month-old wild (NTg) and TgFGF2 mice were studied. FGF-2 protein levels were higher in bones of TgFGF2 mice. Bone mineral density was significantly decreased as early as 1 month in femurs from TgFGF2 mice compared with NTg mice. Micro-CT of trabecular bone of the distal femurs from 6-month-old TgFGF2 mice revealed significant reduction in trabecular bone volume, trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Osteoblast surface/bone surface, double-labeled surface, mineral apposition rate, and bone formation rates were all significantly reduced in TgFGF2 mice. There were fewer TRAP positive osteoclasts in calvaria from TgFGF2 mice. Quantitative histomorphometry showed that total bone area was similar in both genotypes, however percent osteoclast surface, and osteoclast number/bone surface were significantly reduced in TgFGF2 mice. Increased replication of TgFGF2 calvarial osteoblasts was observed and primary cultures of bone marrow stromal cells from TgFGF2 expressed markers of mature osteoblasts but formed fewer mineralized nodules. The data presented indicate that non-targeted over-expression of FGF-2 protein resulted in decreased endochondral and intramembranous bone formation. These results are consistent with FGF-2 functioning as a negative regulator of postnatal bone growth and remodeling in this animal model.  相似文献   

9.
We examined the ability of 1,25 (OH)(2) vitamin D(3) (Vit D) to stimulate osteoclast-like cell (OCL) formation in cocultures of spleen cells and primary calvarial osteoblasts from wild-type (WT) and IL-1R type 1-deficient (knockout; KO) mice. Vit D dose dependently increased OCL in cocultures containing WT osteoblasts. In contrast, there was a 90% reduction in OCL numbers in cocultures containing KO osteoblasts. In cocultures with either WT or KO osteoblasts, treatment with Vit D increased receptor activator of NF-kappaB ligand mRNA by 17-, 19-, or 3.5-fold, respectively. Vit D decreased osteoprotegerin mRNA to undetectable in all groups. Intracellular IL-1alpha protein increased after Vit D treatment in cocultures containing WT, but not KO osteoblasts. We also examined direct effects of Vit D, IL-1alpha, and their combination on gene expression in primary osteoblasts. In WT cells, Vit D and IL-1 stimulated receptor activator of NF-kappaB ligand mRNA expression by 3- and 4-fold, respectively, and their combination produced a 7-fold increase. Inhibition of osteoprotegerin mRNA in WT cells was partial with either agent alone and greatest with their combination. In KO cells, only Vit D stimulated a response. IL-1 alone increased IL-1alpha protein expression in WT osteoblasts. However, in combination with Vit D, there was a synergistic response (100-fold increase). In KO cultures, there were no effects of IL-1, Vit D, or their combination on IL-1alpha protein. These results demonstrate interactions between IL-1 and Vit D in primary osteoblasts that appear important in both regulation of IL-1alpha production and the ability of Vit D to support osteoclastogenesis.  相似文献   

10.
Ischemic revascularization involves extensive structural adaptation of the vasculature, including both angiogenesis and arteriogenesis. Previous studies suggest that fibroblast growth factor (FGF)-2 participates in both angiogenesis and arteriogenesis. Despite this, the specific role of endogenous FGF-2 in vascular adaptation during ischemic revascularization is unknown. Therefore, we used femoral artery ligation in Fgf2(+/+) and Fgf2(-/-) mice to test the hypothesis that endogenous FGF-2 is an important regulator of angiogenesis and arteriogenesis in the setting of hindlimb ischemia. Femoral ligation increased capillary and arteriole density in the ischemic calf in both Fgf2(+/+) and Fgf2(-/-) mice. The level of angiographically visible arteries in the thigh was increased in the ischemic hindlimb in all mice, and no significant differences were observed between Fgf2(+/+) and Fgf2(-/-) mice. Additionally, limb perfusion progressively improved to peak values at day 35 postsurgery in both genotypes. Given the equivalent responses observed in Fgf2(+/+) and Fgf2(-/-) mice, we demonstrate that endogenous FGF-2 is not required for revascularization in the setting of peripheral ischemia. Vascular adaptation, including both angiogenesis and arteriogenesis, was not affected by the absence of FGF-2 in this model.  相似文献   

11.
12.
Receptor activator of nuclear factor-kappaB ligand (RANKL), osteoprotegerin (OPG), and macrophage-colony stimulating factor play essential roles in the regulation of osteoclastogenesis. Runx2-deficient (Runx2-/-) mice showed a complete lack of bone formation because of maturational arrest of osteoblasts and disturbed chondrocyte maturation. Further, osteoclasts were absent in these mice, in which OPG and macrophage-colony stimulating factor were normally expressed, but RANKL expression was severely diminished. We investigated the function of Runx2 in osteoclast differentiation. A Runx2-/- calvaria-derived cell line (CA120-4), which expressed OPG strongly but RANKL barely, severely suppressed osteoclast differentiation from normal bone marrow cells in co-cultures. Adenoviral introduction of Runx2 into CA120-4 cells induced RANKL expression, suppressed OPG expression, and restored osteoclast differentiation from normal bone marrow cells, whereas the addition of OPG abolished the osteoclast differentiation induced by Runx2. Addition of soluble RANKL (sRANKL) also restored osteoclast differentiation in co-cultures. Forced expression of sRANKL in Runx2-/- livers increased the number and size of osteoclast-like cells around calcified cartilage, although vascular invasion into the cartilage was superficial because of incomplete osteoclast differentiation. These findings indicate that Runx2 promotes osteoclast differentiation by inducing RANKL and inhibiting OPG. As the introduction of sRANKL was insufficient for osteoclast differentiation in Runx2-/- mice, however, our findings also suggest that additional factor(s) or matrix protein(s), which are induced in terminally differentiated chondrocytes or osteoblasts by Runx2, are required for osteoclastogenesis in early skeletal development.  相似文献   

13.
We investigated the bone phenotype of mice with generalized lymphoproliferative disorder (gld) due to a defect in the Fas ligand-mediated apoptotic pathway. C57BL/6-gld mice had greater whole body bone mineral density and greater trabecular bone volume than their wild-type controls. gld mice lost 5-fold less trabecular bone and had less osteoclasts on bone surfaces after ovariectomy-induced bone resorption. They also formed more bone in a model of osteogenic regeneration after bone marrow ablation, had less osteoclasts on bone surfaces and less apoptotic osteoblasts. gld and wild-type mice had similar numbers of osteoclasts in bone marrow cultures, but marrow stromal fibroblasts from gld mice formed more alkaline phosphatase-positive colonies. Bone diaphyseal shafts and bone marrow stromal fibroblasts produced more osteoprotegerin mRNA and protein than wild-type mice. These findings provide evidence that the disturbance of the bone system is a part of generalized lymphoproliferative syndrome and indicates the possible role of osteoprotegerin as a regulatory link between the bone and immune system.  相似文献   

14.
We screened a human osteoclast (OCL) cDNA expression library for OCL inhibitory factors and identified a clone that blocked both human and murine OCL formation and bone resorption by more than 60%. This clone was identical to human legumain, a cysteine endopeptidase. Legumain significantly inhibited OCL-like multinucleated cell formation induced by 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) and parathyroid hormone-related protein (PTHrP) in mouse and human bone marrow cultures, and bone resorption in the fetal rat long bone assay in a dose-dependent manner. Legumain was detected in freshly isolated marrow plasma from normal donors and conditioned media from human marrow cultures. Furthermore, treatment of human marrow cultures with an antibody to legumain induced OCL formation to levels that were as high as those induced by 1,25-(OH)(2)D(3). Implantation in nude mice of 293 cells transfected with the legumain cDNA and constitutively expressing high levels of the protein significantly reduced hypercalcemia induced by PTHrP by about 50%, and significantly inhibited the increase in OCL surface and in OCL number expressed per mm(2) bone area and per mm bone surface induced by PTHrP. These results suggest that legumain may be a physiologic local regulator of OCL activity that can negatively modulate OCL formation and activity.  相似文献   

15.
Since bone resorption and formation by continuous and intermittent parathyroid hormone (PTH) treatments involve various types of cells in bone, this study examined the underlying mechanism by combining culture systems using mouse primary calvarial osteoblasts and bone marrow cells. The PTH/PTHrP receptor (PTH1R) expression and the cAMP accumulation in response to PTH were increased in accordance with the differentiation of osteoblasts. Osteoclast formation was strongly induced by continuous PTH treatment in the monolayer co‐culture of osteoblasts and bone marrow cells, which was associated with RANKL expression in differentiated osteoblasts. Bone formation determined by ALP activity and the type I collagen mRNA expression was stimulated by intermittent PTH treatment in the monolayer co‐culture and in the bone marrow cell layer of the separated co‐culture in a double chamber dish, but not in the culture of bone marrow cells alone. The stimulation in the separated co‐culture, accompanied by IGF‐I production by osteoblasts, was abolished when bone marrow cells were derived from knockout mice of insulin‐receptor substrate‐1 (IRS‐1?/?) or when osteoblasts were from PTH1R?/? mice. We conclude that differentiated osteoblasts are most likely the direct target of both continuous and intermittent PTH, while bone marrow cells are likely the effector cells. The osteoblasts stimulated by continuous PTH express RANKL which causes osteoclastogenesis from the precursors in bone marrow via cell‐to‐cell contact, leading to bone resorption; while the osteoblasts stimulated by intermittent PTH secrete IGF‐I which activates IRS‐1 in osteoblast precursors in bone marrow via a paracrine mechanism, leading to bone formation. J. Cell. Biochem. 109: 755–763, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The interactions between mouse angora-Y (Fgf5go-Y) and hairless (hr) genes have been studied. Homozygous mutant gene Fgf5go-Y increases hair length starting on day 14 after birth. We obtained mice with genotypes +/+ hr/hr F2, +/Fgf5go-Y hr/hr and Fgf5go-Y/Fgf5go-Y hr/hr. Both +/Fgf5go-Y hr/hr and +/+ hr/hr mice began to loose hair from their heads on day 14. This further extended on the whole body. On day 21 the mice were completely deprived of hair. Therefore a single dose of gene Fgf5go-Y does not affect alopecia mice homozygous for hr. However in double homozygotes Fgf5go-Y/Fgf5gO-hr/hr alopecia started 4 days later, namely on day 18. It usually finished 10-12 days after detection of first bald patches. On days 28-30 double homozygotes have lost all the hair. Hair loss in double homozygous mice was 1,5-fold slower than in +/+ hr/hr mice. This resulted from a significant extension of anagen phase induced by a mutant homozygous gene Fgf5go-Y in morphogenesis of the hair follicle. In contrast, hr gene was expressed only at the transmission phase from anagen to catagen. Our data shows that the angora gene is a modifier of the hairless gene and this results in a strong repression of alopecia progression in double homozygous mice compared to +/+ hr/hr animals.  相似文献   

17.
Bone is maintained by continuous bone formation by osteoblasts provided by proliferation and differentiation of osteoprogenitors. Parathyroid hormone (PTH) activates bone formation, but because of the complexity of cells in the osteoblast lineage, how these osteoprogenitors are regulated by PTH in vivo is incompletely understood. To elucidate how signals by PTH in differentiated osteoblasts regulate osteoprogenitors in vivo, we conducted bone marrow ablation using Col1a1‐constitutively active PTH/PTHrP receptor (caPPR) transgenic mice. These mice express caPPR specifically in osteoblasts by using 2.3 kb Col1a1 promoter and showed higher trabecular bone volume under steady‐state conditions. In contrast, after bone marrow ablation, stromal cells recruited from bone surface extensively proliferated in the marrow cavity in transgenic mice, compared to limited proliferation in wild‐type mice. Whereas de novo bone formation was restricted to the ablated area in wild‐type mice, the entire marrow cavity, including not only ablated area but also outside the ablated area, was filled with newly formed bone in transgenic mice. Bone mineral density was significantly increased after ablation in transgenic mice. Bone marrow cell culture in osteogenic medium revealed that alkaline phosphatase‐positive area was markedly increased in the cells obtained from transgenic mice. Furthermore, mRNA expression of Wnt‐signaling molecules such as LRP5, Wnt7b, and Wnt10b were upregulated after marrow ablation in bone marrow cells of transgenic mice. These results indicate that constitutive activation of PTH/PTHrP receptor in differentiated osteoblasts enhances bone marrow ablation‐induced recruitment, proliferation, and differentiation of osteoprogenitors. J. Cell. Physiol. 227: 408–415, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
We have previously shown that mice with generalised lymphoproliferative disorder (gld) have increased bone mass in addition to autoimmune disease characterised by the accumulation of double negative (dn) T lymphocytes (CD3(+)CD4(-)CD8(-)CD45R(+)). To further explore the association of the immune disorder with the bone phenotype of gld mice, we established parabiotic circulation between gld and wild-type animals (C57BL/6, B6). One week after the surgery, the proportion of dn T lymphocytes increased in peripheral blood, bone marrow, spleen, and lymph nodes of wild-type members of the B6-gld parabiotic pair and decreased in tissues of gld pair members. The mixing of cells continued during four weeks of parabiosis. Number of osteoclast-like (OCL) cells in bone marrow cultures from a wild-type member of B6-gld parabiotic pair at the end of the first week decreased from 266+/-52 to 120+/-5OCL/cm(2), P<0.05, comparable with gld mice (99+/-21OCL/cm(2)), while the number of osteoblast colonies did not change. After four weeks, number of OCL cells formed from the bone marrow of B6 parabiotic mice was still similar to the number of OCL cells in their gld counterparts (150+/-18 and 131+/-24OCL/cm(2), respectively). In addition, the number of osteoblast colonies in B6 members of B6-gld parabiotic pairs increased (from 6+/-2 to 18+/-1colonies/cm(2), P<0.05) thus resembling the cell cultures of gld mice (18+/-1colonies/cm(2)). Taken together, these data show that the circulation of cells, including dn T lymphocytes established by parabiosis confers the osteoclast and osteoblast phenotype of gld to wild-type animals.  相似文献   

19.
Paget's disease (PD) of bone is characterized by increased activity of large abnormal osteoclasts (OCLs) which contain paramyxoviral nuclear and cytoplasmic inclusions. MVNP gene expression has been shown to induce pagetic phenotype in OCLs. We previously characterized the osteoclast inhibitory peptide-1 (OIP-1/hSca) which inhibits OCL formation/bone resorption. OIP-1 is a glycophosphatidylinositol (GPI)-linked membrane protein containing a 79 amino acid extra cellular peptide and a 32 amino acid carboxy terminal GPI-linked peptide (c-peptide) which is critical for OCL inhibition. In this study, we demonstrate that OIP-1 c-peptide significantly decreased (43%) osteoclast differentiation of peripheral blood mononuclear cells from patients with PD. Also, OIP-1 treatment to normal human bone marrow mononuclear cells transduced with the MVNP inhibited (41%) osteoclast precursor (CFU-GM) growth in methyl-cellulose cultures. We further tested if OIP-1 overexpression in the OCL lineage in transgenic mice inhibits MVNP stimulated OCL formation. MVNP transduction and RANKL stimulation of OIP-1 mouse bone marrow cells showed a significant decrease (43%) in OCL formation and inhibition (38%) of bone resorption area compared to wild-type mice. Western blot analysis identified that OIP-1 decreased (3.5-fold) MVNP induced TRAF2 expression during OCL differentiation. MVNP or OIP-1 expression did not affect TRAF6 levels. Furthermore, OIP-1 expression resulted in a significant inhibition of MVNP stimulated ASK1, Rac1, c-Fos, p-JNK, and NFATc1 expression during OCL differentiation. These results suggest that OIP-1 inhibits MVNP induced pagetic OCL formation/activity through suppression of RANK signaling. Thus, OIP-1 may have therapeutic utility against excess bone resorption in patients with PD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号