首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current techniques to estimate nitric oxide (NO) production and elimination in the lungs are inherently nonspecific or are cumbersome to perform (multiple-breathing maneuvers). We present a new technique capable of estimating key flow-independent parameters characteristic of NO exchange in the lungs: 1) the steady-state alveolar concentration (C(alv,ss)), 2) the maximum flux of NO from the airways (J(NO,max)), and 3) the diffusing capacity of NO in the airways (D(NO,air)). Importantly, the parameters were estimated from a single experimental single-exhalation maneuver that consisted of a preexpiratory breath hold, followed by an exhalation in which the flow rate progressively decreased. The mean values for J(NO,max), D(NO,air), and C(alv,ss) do not depend on breath-hold time and range from 280-600 pl/s, 3.7-7.1 pl. s(-1). parts per billion (ppb)(-1), and 0.73-2.2 ppb, respectively, in two healthy human subjects. A priori estimates of the parameter confidence intervals demonstrate that a breath hold no longer than 20 s may be adequate and that J(NO,max) can be estimated with the smallest uncertainty and D(NO,air) with the largest, which is consistent with theoretical predictions. We conclude that our new technique can be used to characterize flow-independent NO exchange parameters from a single experimental single-exhalation breathing maneuver.  相似文献   

2.
Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (+/-SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1,195 +/- 836 pl/s and 143 +/- 66 ppb compared with 2,693 +/- 1,687 pl/s and 438 +/- 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl.s-1.ppb-1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 +/- 11.7, 8.71 +/- 5.74, and 3.13 +/- 1.57 pl.s-1.ppb-1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (%predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S, Am J Respir Crit Med 161: 1218-1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthma independent of steroid therapy and may reflect clinically relevant changes in airways.  相似文献   

3.
Exhaled nitric oxide (NO) is highly dependent on exhalation flow; thus exchange dynamics of NO have been described by multicompartment models and a series of flow-independent parameters that describe airway and alveolar exchange. Because the flow-independent NO airway parameters characterize features of the airway tissue (e.g., wall concentration), they should also be independent of the physical properties of the insufflating gas. We measured the total mass of NO exhaled (A(I,II)) from the airways after five different breath-hold times (5-30 s) in healthy adults (21-38 yr, n = 9) using air and heliox as the insufflating gas, and then modeled A(I,II) as a function of breath-hold time to determine airway NO exchange parameters. Increasing breath-hold time results in an increase in A(I,II) for both air and heliox, but A(I,II) is reduced by a mean (SD) of 31% (SD 6) (P < 0.04) in the presence of heliox, independent of breath-hold time. However, mean (SD) values (air, heliox) for the airway wall diffusing capacity [3.70 (SD 4.18), 3.56 pl.s(-1).ppb(-1) (SD 3.20)], the airway wall concentration [1,439 (SD 487), 1,503 ppb (SD 644>)], and the maximum airway wall flux [4,156 (SD 2,502), 4,412 pl/s (SD 2,906)] using a single-path trumpet-shaped airway model that considers axial diffusion were independent of the insufflating gas (P > 0.55). We conclude that a single-path trumpet model that considers axial diffusion captures the essential features of airway wall NO exchange and confirm earlier reports that the airway wall concentration in healthy adults exceeds 1 ppm and thus approaches physiological concentrations capable of modulating smooth muscle tone.  相似文献   

4.
Exhaled nitric oxide (NO) arises from both airway and alveolar regions of the lungs, which provides an opportunity to characterize region-specific inflammation. Current methodologies rely on vital capacity breathing maneuvers and controlled exhalation flow rates, which can be difficult to perform, especially for young children and individuals with compromised lung function. In addition, recent theoretical and experimental studies demonstrate that gas-phase axial diffusion of NO has a significant impact on the exhaled NO signal. We have developed a new technique to characterize airway NO, which requires a series of progressively increasing breath-hold times followed by exhalation of only the airway compartment. Using our new technique, we determined values (means +/- SE) in healthy adults (20-38 yr, n = 8) for the airway diffusing capacity [4.5 +/- 1.6 pl.s(-1).parts per billion (ppb)(-1)], the airway wall concentration (1,340 +/- 213 ppb), and the maximum airway wall flux (4,350 +/- 811 pl/s). The new technique is simple to perform, and application of this data to simpler models with cylindrical airways and no axial diffusion yields parameters consistent with previous methods. Inclusion of axial diffusion as well as an anatomically correct trumpet-shaped airway geometry results in significant loss of NO from the airways to the alveolar region, profoundly impacting airway NO characterization. In particular, the airway wall concentration is more than an order of magnitude larger than previous estimates in healthy adults and may approach concentrations (approximately 5 nM) that can influence physiological processes such as smooth muscle tone in disease states such as asthma.  相似文献   

5.
Exhaled nitric oxide (Fe(NO)) measurements provide a noninvasive approach to the evaluation of airway inflammation. Flow-independent NO exchange parameters [airway NO transfer factor (D(NO)) and airway wall NO concentration (Cw(NO))] can be estimated from Fe(NO) measurements at low flows and may elucidate mechanisms of disturbances in NO exchange. We measured Fe(NO) in sedated infants by using an adaptation of a raised lung volume rapid thoracic compression technique that creates forced expiration through a mass-flow controller that lasts 5-10 s, at a constant preset flow. We measured Fe(NO) at expired flows of 50, 25, and 15 ml/s in five healthy infants (7-31 mo). Median Fe(NO) increased [24, 40, and 60 parts per billion (ppb)] with decreasing expiratory flows (50, 25, and 15 ml/s). Group median (range) for D(NO) and Cw(NO) were 12.7 (3.2-37) x 10(-3) nl. s(-1). ppb(-1) and 108.9 (49-385) ppb, respectively, similar to values reported in healthy adults. Exhaled NO is flow dependent; flow-independent parameters of exhaled NO kinetics can be assessed in infants and are similar to values described in adults.  相似文献   

6.
Exhaled nitric oxide (NO) may be a useful marker of lung inflammation, but the concentration is highly dependent on exhalation flow rate due to a significant airway source. Current methods for partitioning pulmonary NO gas exchange into airway and alveolar regions utilize multiple exhalation flow rates or a single-breath maneuver with a preexpiratory breath hold, which is cumbersome for children and individuals with compromised lung function. Analysis of tidal breathing data has the potential to overcome these limitations, while still identifying region-specific parameters. In six healthy adults, we utilized a three-compartment model (two airway compartments and one alveolar compartment) to identify two potential flow-independent parameters that represent the average volumetric airway flux (pl/s) and the time-averaged alveolar concentration (parts/billion). Significant background noise and distortion of the signal from the sampling system were compensated for by using a Gaussian wavelet filter and a series of convolution integrals. Mean values for average volumetric airway flux and time-averaged alveolar concentration were 2,500 +/- 2,700 pl/s and 3.2 +/- 3.4 parts/billion, respectively, and were strongly correlated with analogous parameters determined from vital capacity breathing maneuvers. Analysis of multiple tidal breaths significantly reduced the standard error of the parameter estimates relative to the single-breath technique. Our initial assessment demonstrates the potential of utilizing tidal breathing for noninvasive characterization of pulmonary NO exchange dynamics.  相似文献   

7.
Exhaled nitric oxide (NO) is a potential noninvasive index of lung inflammation and is thought to arise from the alveolar and airway regions of the lungs. A two-compartment model has been used to describe NO exchange; however, the model neglects axial diffusion of NO in the gas phase, and recent theoretical studies suggest that this may introduce significant error. We used heliox (80% helium, 20% oxygen) as the insufflating gas to probe the impact of axial diffusion (molecular diffusivity of NO is increased 2.3-fold relative to air) in healthy adults (21-38 yr old, n = 9). Heliox decreased the plateau concentration of exhaled NO by 45% (exhalation flow rate of 50 ml/s). In addition, the total mass of NO exhaled in phase I and II after a 20-s breath hold was reduced by 36%. A single-path trumpet model that considers axial diffusion predicts a 50% increase in the maximum airway flux of NO and a near-zero alveolar concentration (Ca(NO)) and source. Furthermore, when NO elimination is plotted vs. constant exhalation flow rate (range 50-500 ml/s), the slope has been previously interpreted as a nonzero Ca(NO) (range 1-5 ppb); however, the trumpet model predicts a positive slope of 0.4-2.1 ppb despite a zero Ca(NO) because of a diminishing impact of axial diffusion as flow rate increases. We conclude that axial diffusion leads to a significant backdiffusion of NO from the airways to the alveolar region that significantly impacts the partitioning of airway and alveolar contributions to exhaled NO.  相似文献   

8.
Nitric oxide (NO) was first detected in the exhaled breath more than a decade ago and has since been investigated as a noninvasive means of assessing lung inflammation. Exhaled NO arises from the airway and alveolar compartments, and new analytical methods have been developed to characterize these sources. A simple two-compartment model can adequately represent many of the observed experimental observations of exhaled concentration, including the marked dependence on exhalation flow rate. The model characterizes NO exchange by using three flow-independent exchange parameters. Two of the parameters describe the airway compartment (airway NO diffusing capacity and either the maximum airway wall NO flux or the airway wall NO concentration), and the third parameter describes the alveolar region (steady-state alveolar NO concentration). A potential advantage of the two-compartment model is the ability to partition exhaled NO into an airway and alveolar source and thus improve the specificity of detecting altered NO exchange dynamics that differentially impact these regions of the lungs. Several analytical techniques have been developed to estimate the flow-independent parameters in both health and disease. Future studies will focus on improving our fundamental understanding of NO exchange dynamics, the analytical techniques used to characterize NO exchange dynamics, as well as the physiological interpretation and the clinical relevance of the flow-independent parameters.  相似文献   

9.
Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.  相似文献   

10.
The most common technique employed to describe pulmonary gas exchange of nitric oxide (NO) combines multiple constant flow exhalations with a two-compartment model (2CM) that neglects 1) the trumpet shape (increasing surface area per unit volume) of the airway tree and 2) gas phase axial diffusion of NO. However, recent evidence suggests that these features of the lungs are important determinants of NO exchange. The goal of this study is to present an algorithm that characterizes NO exchange using multiple constant flow exhalations and a model that considers the trumpet shape of the airway tree and axial diffusion (model TMAD). Solution of the diffusion equation for the TMAD for exhalation flows >100 ml/s can be reduced to the same linear relationship between the NO elimination rate and the flow; however, the interpretation of the slope and the intercept depend on the model. We tested the TMAD in healthy subjects (n = 8) using commonly used and easily performed exhalation flows (100, 150, 200, and 250 ml/s). Compared with the 2CM, estimates (mean +/- SD) from the TMAD for the maximum airway flux are statistically higher (J'aw(NO) = 770 +/- 470 compared with 440 +/- 270 pl/s), whereas estimates for the steady-state alveolar concentration are statistically lower (CA(NO) = 0.66 +/- 0.98 compared with 1.2 +/- 0.80 parts/billion). Furthermore, CA(NO) from the TMAD is not different from zero. We conclude that proximal (airways) NO production is larger than previously predicted with the 2CM and that peripheral (respiratory bronchioles and alveoli) NO is near zero in healthy subjects.  相似文献   

11.
Nitric oxide (NO) appears in the exhaled breath and is a potentially important clinical marker. The accepted model of NO gas exchange includes two compartments, representing the airway and alveolar region of the lungs, but neglects axial diffusion. We incorporated axial diffusion into a one-dimensional trumpet model of the lungs to assess the impact on NO exchange dynamics, particularly the impact on the estimation of flow-independent NO exchange parameters such as the airway diffusing capacity and the maximum flux of NO in the airways. Axial diffusion reduces exhaled NO concentrations because of diffusion of NO from the airways to the alveolar region of the lungs. The magnitude is inversely related to exhalation flow rate. To simulate experimental data from two different breathing maneuvers, NO airway diffusing capacity and maximum flux of NO in the airways needed to be increased approximately fourfold. These results depend strongly on the assumption of a significant production of NO in the small airways. We conclude that axial diffusion may decrease exhaled NO levels; however, more advanced knowledge of the longitudinal distribution of NO production and diffusion is needed to develop a complete understanding of the impact of axial diffusion.  相似文献   

12.
Human airways produce nitric oxide (NO), and exhaled NO increases as expiratory flow rates fall. We show that mixing during exhalation between the NO produced by the lower, alveolar airways (VL(NO)) and the upper conducting airways (VU(NO)) explains this phenomenon and permits measurement of VL(NO), VU(NO), and the NO diffusing capacity of the conducting airways (DU(NO)). After breath holding for 10-15 s the partial pressure of alveolar NO (PA) becomes constant, and during a subsequent exhalation at a constant expiratory flow rate the alveoli will deliver a stable amount of NO to the conducting airways. The conducting airways secrete NO into the lumen (VU(NO)), which mixes with PA during exhalation, resulting in the observed expiratory concentration of NO (PE). At fast exhalations, PA makes a large contribution to PE, and, at slow exhalations, NO from the conducting airways predominates. Simple equations describing this mixing, combined with measurements of PE at several different expiratory flow rates, permit calculation of PA, VU(NO), and DU(NO). VL(NO) is the product of PA and the alveolar airway diffusion capacity for NO. In seven normal subjects, PA = 1.6 +/- 0.7 x 10(-6) (SD) Torr, VL(NO) = 0.19 +/- 0.07 microl/min, VU(NO) = 0.08 +/- 0.05 microl/min, and DU(NO) = 0.4 +/- 0.4 ml. min(-1). Torr(-1). These quantitative measurements of VL(NO) and VU(NO) are suitable for exploring alterations in NO production at these sites by diseases and physiological stresses.  相似文献   

13.
Exhaled nitric oxide (NO) is elevated in asthma, but the underlying mechanisms remain poorly understood. Recent results in subjects with asthma have reported a decrease in exhaled breath pH and ammonia, as well as altered expression and activity of glutaminase in both alveolar and airway epithelial cells. This suggests that pH-dependent nitrite conversion to NO may be a source of exhaled NO in the asthmatic airway epithelium. However, the anatomic location (i.e., airway or alveolar region) of this pH-dependent NO release has not been investigated and could impact potential therapeutic strategies. We quantified airway (proximal) and alveolar (peripheral) contributions to exhaled NO at baseline and then after PBS inhalation in stable (mild-intermittent to severe) asthmatic subjects (20-44 yr old; n = 9) and healthy controls (22-41 yr old; n = 6). The mean (SD) maximum airway wall flux (pl/s) and alveolar concentration (ppb) at baseline in asthma subjects and healthy controls was 2,530 (2,572) and 5.42 (7.31) and 1,703 (1,567) and 1.88 (1.29), respectively. Compared with baseline, there is a significant decrease in the airway wall flux of NO in asthma as early as 15 min and continuing for up to 60 min (maximum -28% at 45 min) after PBS inhalation without alteration of alveolar concentration. Healthy control subjects did not display any changes in exhaled NO. We conclude that elevated airway NO at baseline in asthma is reduced by inhaled PBS. Thus airway NO may be, in part, due to nitrite conversion to NO and is consistent with airway pH dysregulation in asthma.  相似文献   

14.
Nitric oxide (NO) regulates neutrophil migration and alveolar macrophage functions such as cytokine synthesis and bacterial killing, both of which are impaired in immune paralysis associated with critical illness. The aim of this study was to determine whether NO is involved in immune paralysis and whether exhaled NO measurement could help to monitor pulmonary defenses. NO production (protein expression, enzyme activity, end products, and exhaled NO measurements) was assessed in rats after cecal ligation and puncture to induce a mild peritonitis (leading to approximately 20% mortality rate). An early and sustained decrease in exhaled NO was found after peritonitis (from 1 to 72 h) compared with healthy rats [median (25th-75th percentile), 1.5 parts per billion (ppb) (1.2-1.7) vs. 4.0 ppb (3.6-4.3), P < 0.05], despite increased NO synthase-2 and unchanged NO synthase-3 protein expression in lung tissue. NO synthase-2 activity was decreased in lung tissue. Nitrites and nitrates in supernatants of isolated alveolar macrophages decreased after peritonitis compared with healthy rats, and an inhibitory experiment suggested arginase overactivity in alveolar macrophages bypassing the NO substrate. Administration of the NO synthase-2 inhibitor aminoguanidine to healthy animals reproduced the decreased neutrophil migration toward alveolar spaces that was observed after peritonitis, but L-arginine administration after peritonitis failed to correct the defect of neutrophil emigration despite increasing exhaled NO compared with D-arginine administration [4.8 (3.9-5.7) vs. 1.6 (1.3-1.7) ppb, respectively, P < 0.05]. In conclusion, the decrease in exhaled NO observed after mild peritonitis could serve as a marker for lung immunodepression.  相似文献   

15.
Alveolar nitric oxide (NO) concentration (Fa(NO)), increasingly considered in asthma, is currently interpreted as a reflection of NO production in the alveoli. Recent modeling studies showed that axial molecular diffusion brings NO molecules from the airways back into the alveolar compartment during exhalation (backdiffusion) and contributes to Fa(NO). Our objectives in this study were 1) to simulate the impact of backdiffusion on Fa(NO) and to estimate the alveolar concentration actually due to in situ production (Fa(NO,prod)); and 2) to determine actual alveolar production in stable asthma patients with a broad range of NO bronchial productions. A model incorporating convection and diffusion transport and NO sources was used to simulate Fa(NO) and exhaled NO concentration at 50 ml/s expired flow (Fe(NO)) for a range of alveolar and bronchial NO productions. Fa(NO) and Fe(NO) were measured in 10 healthy subjects (8 men; age 38 +/- 14 yr) and in 21 asthma patients with stable asthma [16 men; age 33 +/- 13 yr; forced expiratory volume during 1 s (FEV(1)) = 98.0 +/- 11.9%predicted]. The Asthma Control Questionnaire (Juniper EF, Buist AS, Cox FM, Ferrie PJ, King DR. Chest 115: 1265-1270, 1999) assessed asthma control. Simulations predict that, because of backdiffusion, Fa(NO) and Fe(NO) are linearly related. Experimental results confirm this relationship. Fa(NO,prod) may be derived by Fa(NO,prod) = (Fa(NO) - 0.08.Fe(NO))/0.92 (Eq. 1). Based on Eq. 1, Fa(NO,prod) is similar in asthma patients and in healthy subjects. In conclusion, the backdiffusion mechanism is an important determinant of NO alveolar concentration. In stable and unobstructed asthma patients, even with increased bronchial NO production, alveolar production is normal when appropriately corrected for backdiffusion.  相似文献   

16.
While airway constriction has been shown to affect exhaled nitric oxide (NO), the mechanisms and location of constricted airways most likely to affect exhaled NO remain obscure. We studied the effects of histamine-induced airway constriction and ventilation heterogeneity on exhaled NO at 50 ml/s (Fe(NO,50)) and combined this with model simulations of Fe(NO,50) changes due to constriction of airways at various depths of the lung model. In 20 normal subjects, histamine induced a 26 +/- 15(SD)% Fe(NO,50) decrease, a 9 +/- 6% forced expiratory volume in 1 s (FEV(1)) decrease, a 19 +/- 9% mean forced midexpiratory flow between 25% and 75% forced vital capacity (FEF(25-75)) decrease, and a 94 +/- 119% increase in conductive ventilation heterogeneity. There was a significant correlation of Fe(NO,50) decrease with FEF(25-75) decrease (P = 0.006) but not with FEV(1) decrease or with increased ventilation heterogeneity. Simulations confirmed the negligible effect of ventilation heterogeneity on Fe(NO,50) and showed that the histamine-induced Fe(NO,50) decrease was due to constriction, with associated reduction in NO flux, of airways located proximal to generation 15. The model also indicated that the most marked effect of airways constriction on Fe(NO,50) is situated in generations 10-15 and that airway constriction beyond generation 15 markedly increases Fe(NO,50) due to interference with the NO backdiffusion effect. These mechanical factors should be considered when interpreting exhaled NO in lung disease.  相似文献   

17.
Nasal nitric oxide (NO) exchange dynamics are poorly understood but potentially are of importance, inasmuch as they may provide insight into the NO-related physiology of the bronchial tree. In healthy human volunteers, NO output was assessed by isolating the nasal cavity through elevation of the soft palate and application of tight-fitting nasal olives. Mean NO output was 334 nl/min and was a positive function of gas flow. With the use of a mathematical model and the introduction of nonzero concentrations of NO, the diffusing capacity for NO in the nose (DNO) and the mucosal NO concentration (Cw) were determined. DNO ranged from 0.52 to 2.98 x 10(-3) nl x s(-1) x ppb(-1) and Cw from 1,236 to 8,947 ppb. Cw declined with increasing gas flow, while DNO was constant. NO output declined with luminal hypoxia, particularly at oxygen tensions <10%. Measurement of nasal DNO and Cw is easy using this method, and the range of intersubject values of Cw raises the possibility of interindividual differences in NO-dependent nasal physiology.  相似文献   

18.
Inhibition of nitric oxide synthesis attenuates thermally induced asthma.   总被引:1,自引:0,他引:1  
To determine whether the inhibition of nitric oxide (NO) synthesis attenuates thermally induced obstruction, we had 10 asthmatic volunteers perform isocapnic hyperventilation with frigid air after inhaling 1 mg of N(G)-monomethyl-L-arginine (L-NMMA) or isotonic saline in a blinded fashion. The challenges were identical in all respects, and there were no differences in baseline lung function [1-s forced expiratory volume (FEV(1)); saline 2.8 +/- 0.3 liters, L-NMMA 2.9 +/- 0.3 liters; P = 0.41] or prechallenge fractional concentration of nitric oxide in the exhaled air (FENO) [saline 23 +/- 6 parts/billion (ppb), L-NMMA 18 +/- 4 ppb; P = 0.51]. Neither treatment had any impact on the FEV(1), pulse, or blood pressure. After L-NMMA, FENO fell significantly (P < 0.0001), the stimulus-response curves shifted to the right, and the minute ventilation required to reduce the FEV(1) 20% rose 53.5% over control (P = 0.02). The results of this study demonstrate that NO generated from the airways of asthmatic individuals may play an important role in the pathogenesis of thermally induced asthma.  相似文献   

19.
20.
Effect of raised alveolar pressure on leukocyte retention in the human lung   总被引:2,自引:0,他引:2  
To determine whether an increase in alveolar pressure delays the passage of leukocytes (WBCs) through the lung by compressing the lung capillaries, we measured the concentration of WBC across the lung in response to a forced expiratory maneuver. In 20 human subjects, blood was sampled from catheters placed in the pulmonary artery (PA) and left ventricle (LV) before, during, and after a forced expiratory maneuver held for greater than or equal to 20 s against an occluded airway. Pressures were recorded at the mouth and from both catheters. A significant fall in LV WBC (P less than 0.01) but not in PA WBC occurred during or immediately after the maneuver in 18 subjects, with a mean maximum decrease of 26 +/- 12% (SD) from base line (range 9-46%). Between 1 and 3 min after the maneuver, there was an increase in LV and PA WBC (P less than 0.01) above base line. The neutrophil and lymphocyte counts showed similar changes, but erythrocyte and platelet counts remained unchanged. The degree of fall in LV WBC correlated closely (r = 0.68, P less than 0.01) with the changes from lung zone 3 to zone 2 and 1 conditions, as determined from the pressure changes. We conclude that WBCs are retained in the lung during a forced expiratory maneuver because of alveolar capillary compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号