首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A simple and efficient protocol for the preparation of various symmetrical dinucleoside phosphoramidates derived from AZT, is presented. It consists of the phosphonylation of AZT with phosphonic acid in the presence of DCC to produce the symmetrical H-phosphonate diester, followed by its oxidative conversion to various phosphoramidate analogues. The synthesized compounds were evaluated for their anti-HIV activity in different cell cultures.  相似文献   

2.
The synthesis of some symmetrical phosphoramidate dimers of AZT is presented. The synthetic scheme includes the formation of the symmetrical H-phosphonate diester of AZT, followed by its conversion to several dinucleoside phosphoramidate analogues. The compounds were evaluated for their anti-retroviral activity.  相似文献   

3.
Abstract

The synthesis of some symmetrical phosphoramidate dimers of AZT is presented. The synthetic scheme includes the formation of the symmetrical H-phosphonate diester of AZT, followed by its conversion to several dinucleoside phosphoramidate analogues. The compounds were evaluated for their anti-retroviral activity.  相似文献   

4.
5.
A sensitive high-performance liquid chromatographic assay has been developed to determine the levels of 3'-amino-3'-deoxy-thymidine (AMT), a cytotoxic metabolite of 3'-azido-3'-deoxy-thymidine (AZT, zidovudine), in human plasma. The sample pretreatment involved solid-phase extraction using cation-exchange extraction columns. Chromatography was carried out on a C8 column, using a mobile phase of methanol—0.01 M ammonium acetate (pH 5)—0.25 M sodium dioctylsulfosuccinate (60:40:4, v/v/v) and ultraviolet detection at 265 nm. The method has been validated, and stability tests under various conditions have been performed. The lower limit of quantitation is 5 ng/ml (using 500-μl human plasma samples). The bioanalytical assay has been used for the determination of AMT in patients with AIDS who used AZT.  相似文献   

6.
Perinatal treatment with 3'-azido-3'-deoxythymidine (AZT) has been found to reduce the rate of maternal-infant transmission of HIV; however, AZT is genotoxic in mammalian cells in vitro and induces tumors in the offspring of mice treated in utero. The purpose of the present study was to investigate the relationships between incorporation of AZT into DNA, and the frequency and spectrum of mutations at the HPRT locus of the human lymphoblastoid cell line, TK6, following in vitro exposures to AZT. Cells were cultured in medium containing 0 or 300 microM AZT for 1, 3, or 6 day(s) (n = 5/group). The effects of exposure duration on incorporation of AZT into DNA and HPRT mutant frequency were determined using an AZT radioimmunoassay and a cell cloning assay, respectively. AZT accumulated in DNA in a supralinear manner, approaching a plateau at 6 days of treatment (101.9 +/- 14.7 molecules AZT/10(6) nucleotides). After 3 days of AZT exposure, HPRT mutant frequency was significantly increased (1.8-fold, p = 0.016) compared to background (mutant frequency = 3.78 x 10(-6)). Multiplex PCR amplification of genomic DNA was used to determine the frequency of exon deletions in HPRT mutant clones from untreated cells versus AZT-treated cells. Molecular analyses of AZT-induced mutations revealed a significant difference in the frequency of total gene deletions (44/120 vs. 18/114 in controls, p = 0.004 by the Mann-Whitney U-statistic). In fact, the Chi-square test of homogeneity demonstrate that the differences between the control and AZT-treatment groups is attributed mainly to this increase in total gene deletion mutations (p = 0.00001). These data indicate that the primary mechanism of AZT mutagenicity in human TK6 cells is through the production of large deletions which occur as a result of AZT incorporation into DNA and subsequent chain termination. The data imply that perinatal chemoprophylaxis with AZT may put children of HIV-infected women at potential risk for genetic damage.  相似文献   

7.
In order to analyze the efficacy of azidothymidine (AZT), it is important to know intracellular concentrations of AZT metabolites. However, it has been impossible to measure intracellular AZT 5'-monophosphate (AZT-MP), AZT 5'-diphosphate (AZT-DP), and AZT 5'-triphosphate (AZT-TP) without using isotopes. In the present study, we developed a new method to measure intracellular AZT metabolites without radiolabeled compounds. The method employed was a high-performance liquid chromatography (HPLC) system programmed for column switching technique, in which two columns were used: column 1 (TSK-G2000-SW, 300 x 7.5 mm) to preseparate AZT metabolites from major cell components, and column 2 (YMC-A-312-ODS, 150 x 6 mm) to determine the metabolites. The limit of detectability of this system was 3.3 pmol/injection. When MT-4 cells were incubated with various concentrations of AZT, intracellular concentrations of AZT-MP increased in parallel with extracellular AZT. Those of AZT-DP and AZT-TP, however, reached plateaus at 5 and 2 microM of AZT, respectively. In MT-4 and Molt-4 cells incubated with 5 microM AZT, concentrations of AZT-MP increased time dependently, while the AZT-DP/AZT-MP ratios decreased with time. These data suggest that high dose of AZT may not necessarily increase intracellular concentration of AZT-TP. The concentrations of AZT metabolites in peripheral blood mononuclear cells in a patient with AIDS and an asymptomatic carrier were measured; the concentrations were comparable to those in cultured cells. Quantitative analysis of intracellular AZT metabolites without the use of isotopes will increase safety and convenience of measurement, and take an effective step in studying pharmacokinetics of AZT in clinical materials.  相似文献   

8.
Glucuronidation by liver microsomes of 3'-azido-3'-deoxythymidine (AZT) was characterized in human and in various animal species. The glucuronide isolated by HPLC, was identified by mass spectrometry (fast atom bombardment, desorption in chemical ionization), and beta-glucuronidase hydrolysis. AZT glucuronidation reaction in liver microsomes of human and monkey proceeded similarly with an apparent Vmax of 0.98 nmol/min/mg protein and apparent Km of 13 mM. Oleoyl lysophosphatidylcholine activated more than twofold the formation of the glucuronide. Human kidney microsomes could also biosynthesize AZT glucuronide, although to a lower extent (six times less than the corresponding liver). Probenecid, which is administered to AIDS patients, decreased hepatic AZT glucuronidation in vitro (I50 = 1.5 mM), whereas paracetamol did not exert any effect at concentrations up to 21.5 mM. Morphine also inhibited the reaction (I50 = 2.7 mM). AZT glucuronidation presented the highest rate in human and in monkey (0.50 nmol/min/mg protein); pig and rat glucuronidated the drug two and three times less, respectively. In Gunn rat, the specific activity in liver microsomes was similar (0.18 nmol/min/mg protein) to that of the congenic normal strain; this suggests that an isozyme other than bilirubin UDP-glucuronosyltransferase catalyzed the reaction. In rats, AZT glucuronidation was stimulated fourfold by phenobarbital; 3-methylcholanthrene or clofibrate failed to increase this activity. This result was consistent with the bulkiness of the AZT molecule (thickness 6.7 A), which is a critical structural factor for glucuronidation of the drug by phenobarbital-induced isozymes. Altogether, the results strongly indicate that UDP-glucuronosyltransferase (phenobarbital inducible forms) is responsible for AZT glucuronidation.  相似文献   

9.
10.
3'-Azido-3'-deoxythymidine (AZT) has attained wide clinical utility in the treatment of acquired immunodeficiency syndrome (AIDS). Unfortunately, associated with AZT use, is the development of severe hematopoietic toxicity as manifested by anemia, neutropenia and overall bone marrow suppression. Interleukin-1 (IL-1), a cytokine, primarily produced by activated macrophages, has been involved in the control of hematopoiesis by acting synergistically with other hematopoietic growth factors, and has been demonstrated to be an effective agent in reducing the myelosuppression associated with the therapy for malignant disease. We report here the ability of recombinant human IL-1 alpha to protect normal murine hematopoietic progenitors (CFU-GM, BFU-E, and CFU-Meg) from the toxic effects of AZT. Following the determination of the LD50 dose for each progenitor, IL-1 was added in co-culture studies (10-1000 units; 0.001-1.0 micrograms/ml protein) with adherent cell depleted marrow. Marrow progenitors expressed differences in AZT sensitivity, e.g., BFU-E, LD50 5 x 10(-9)M; CFU-Meg, LD50 10(-7) M; CFU-GM, 5 x 10(-5) M respectively. IL-1 inhibited AZT induced toxicity. The maximum IL-1 dose effect was observed for CFU-GM and CFU-Meg at 300 units, 0.3 micrograms protein; however BFU-E required a dose of 600 units, 0.6 micrograms/ml protein to reverse the effects of AZT. These results demonstrate marrow progenitors respond differently to AZT and identifies the potential efficacy of IL-1 to minimize the hematopoietic toxicity associated with AZT treatment.  相似文献   

11.
The ultraviolet (UV) absorption and fluorescence nature of the mixtures of 3'-azido-3'-deoxythymidine (AZT), poly 1, N6-ethenoadenylic acid (poly, epsilon A) and mixtures of AZT and poly A (AZT+poly epsilon A) at various molar ratio has been studied. On the basis of the present results, it may be concluded that the azide group of AZT (N6', N7', and/or N8') may link to the phosphate groups of polynucleotide. Thus, results obtained suggest that there are electronic interaction between thymine and ethenoadenine lings at the first excited singlet state.  相似文献   

12.
Vertical transmission of the human immunodeficiency virus 1 (HIV-1) is reduced from approximately 25% to approximately 7% as a result of 3'-azido-3'-deoxythymidine (AZT) therapy given during pregnancy; however, the consequences of transplacental AZT exposure to the fetus remain unknown. To address the extent and kinetics of AZT transfer across the human placenta, perfusion studies have been performed with fresh uninfected human placentas perfused with 0.5, 1. 0 and 5.0 mg AZT/ml for 2 h using a dual recirculating single cotyledon perfusion apparatus [T.I. Ala-Kokko, P. Pienimaki, R. Herva, A.I. Hollmen, O. Pelkonen, K. V?h?kangas, Transfer of lidocaine and bupivacaine across the isolated perfused human placenta, Pharmacol. Toxicol. 77 (1995) 142-148]. For two placentas, samples of perfusion effluent were taken every 15 min from the maternal and fetal sides of the apparatus and AZT levels were determined by AZT radioimmunoassay (RIA). At the end of the perfusion, AZT-DNA incorporation into placental DNA was determined by AZT-RIA. The concentration of AZT in the fetal perfusate increased with time, along with a concomitant slow decrease in the concentration of AZT in the maternal perfusates. For three different placentas, at 2 h after the start of perfusion, AZT-DNA incorporation values (molecules of AZT/10(6) nucleotides) were 11.8 for the 0.5 mg AZT/ml perfusate, 13.7 for the 1.0 mg AZT/ml perfusion, and 42.0 for the 5 mg AZT/ml perfusion. An additional placenta perfused with 1 mg AZT/ml did not have detectable values of AZT incorporated into DNA (data not shown). The data show that AZT crosses the human placenta and becomes rapidly incorporated into DNA of placental tissue in a dose-dependent fashion, suggesting that even short exposures to this drug might induce fetal genotoxicity and might also inhibit maternal-fetal viral transmission.  相似文献   

13.
Conjugates of three components namely folic acid, poly(ethyleneglycol) and 3 '-azido-3 '-deoxythymidine (AZT) are presented. Folate-PEG units were coupled to AZT to facilitate delivery of the nucleoside into the cell. A convenient separation of the polydisperse PEGylated-folic acid regioisomers produced upon conjugation is described. This is to select for the active gamma-regioisomer over the inactive alpha-regioisomer. In vitro cytotoxicity assays were conducted against an ovarian cell line (A2780/AD) that overexpresses the folate receptor (FR) and compared to a FR free control cell line. Compared to AZT a approximately 20-fold greater potency against the resistant ovarian line was observed for the conjugates.  相似文献   

14.
Zidovudine (3'-azido-3'-deoxythymidine, AZT), widely used for the therapy of the Human Immunodeficiency Virus-1 (HIV-1), is a nucleoside analog of thymidine that becomes phosphorylated and incorporated into nuclear and mitochondrial DNA. Levels of AZT incorporation into DNA of humans, monkeys, and mice are highly variable and suggest interindividual variability in phosphorylation pathways. In addition, studies in rhesus monkeys (1) have shown a lack of correlation between levels of unbound AZT in plasma and tissue AZT-DNA. However, the correlation between plasma AZT and tissue AZT-DNA has not been previously examined in the same primate. Here we examine the relationship between AZT-DNA incorporation in leukocytes and multiple organs, and levels of the drug circulating in plasma of adult female cynomolgus (Macaca fascicularis) monkeys. Three monkeys were dosed with 40.0 mg of AZT/day for 30 days by naso-gastric intubation. The average daily dose of 9.9 mg of AZT/kg/body wt was similar to the approximately 8.6 mg of AZT/kg/body wt (600 mg/day) given to adult HIV-1-infected patients. In all three monkeys, at the time of sampling, values for AZT concentrations in plasma were similar and values for AZT incorporation into leukocyte DNA (86.1, 100.0, and 114.1 molecules of AZT/10(6) nucleotides) were also similar. AZT-DNA incorporation was detected in liver, uterus, spleen, and kidney from the three AZT-exposed animals, with values for positive samples ranging from 5.8 to 97.4 molecules of AZT/10(6) nucleotides. In brain cortex and lung DNA from AZT-exposed animals, AZT incorporation was undetectable. The data suggest that organ-specific differences in AZT uptake and/or metabolism may contribute to AZT phosphorylation and subsequent drug incorporation into DNA. In addition, AZT-DNA levels in monkey organs were similar to or lower than values observed in peripheral leukocytes of adult AIDS patients.  相似文献   

15.
Sho-saiko-to (SST), a traditional Kampo medicine, has been examined for its inhibitory effect on human immunodeficiency virus type 1 (HIV-1) replication in peripheral blood mononuclear cells (PBMCs). SST alone moderately inhibited HIV-1 replication at a concentration of 25 μg/ml. When SST was combined with zidovudine (AZT), lamivudine (3TC) or AZT plus 3TC, SST enhanced the anti-HIV-1 activity of 3TC. In contrast, SST slightly enhanced the anti-HIV-1 activity of AZT plus 3TC but did not enhance the activity of AZT alone. These results suggest that the combination of SST and 3TC has potential as a chemother-apeutic modality of HIV-1 infection.  相似文献   

16.
17.
CBA/Ca male mice were given 3'-azido-3'-deoxythymidine (AZT) in drinking water (1 mg/ml) for up to 7 weeks. Water consumption and body weight decreased significantly. Neutropenia and lymphopenia were observed during and after exposure. Significant macrocytic anemia developed and disappeared as a function of red cell life span after stopping AZT intake. A microthrombocytosis was seen. Bone marrow cellularity and spleen colony-forming unit (CFU-s) content fell, but recovered completely and quickly after terminating AZT intake. Hemopoietic stem cell function measured by 2 different methods of rescuing fatally irradiated mice was normal 4 weeks after AZT exposure, suggesting that AZT treatment does not induce a long-lasting effect in genetic control of mitotic potential of stem cells. This is in marked contrast to exposure of CBA/Ca mice to benzene and ionizing radiation.  相似文献   

18.
19.
3'-Azido-3'-deoxythymidine (AZT) is HIV-inhibitory in human macrophages, which is surprising in view of the low AZT phosphorylation reported in macrophage extracts. To elucidate the mechanism of AZT activation, we studied AZT anabolism as well as catabolism in human lymphocytes and macrophages, and compared it to that of thymidine. Thymidine kinase (TK)-specific activity in mitogen-stimulated lymphocytes was 15 times higher than in macrophages. However, the TK activity per cell was only 1.3 times higher, because of the large macrophage cell volume. Total cellular TK activity, but not specific activity, matched the level of intracellular AZT anabolism. The substrate specificity of TK in macrophages strongly suggests that mitochondrial TK2 was the enzyme phosphorylating thymidine and AZT in these cells, whereas it was cytosolic TK1 in stimulated lymphocytes. In vivo thymidine catabolism was extensive, forming thymine and dihydrothymine. In macrophages more than 95% of the added thymidine (0.5 microM) was degraded within 60 min. AZT, in contrast, was not catabolized, which explains the high AZT nucleotide accumulation, a process opposed only by AZTMP excretion. The lack of catabolism together with phosphorylation by TK2 clarifies how AZT can inhibit human immunodeficiency virus in macrophages. The fact that TK2 and not TK1 phosphorylates AZT in macrophages should have important implications for combination chemotherapy.  相似文献   

20.
Since the discovery of 3'-azido-3'-deoxythymidine (AZT) and 2',3'-didehydro-2',3'-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2',3'-didehydro-2',3'dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号