首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Replication of latent Epstein-Barr virus genomes in Raji cells.   总被引:32,自引:22,他引:10       下载免费PDF全文
A Adams 《Journal of virology》1987,61(5):1743-1746
The replication of the 50 to 60 latent, predominantly extrachromosomal, Epstein-Barr virus genomes maintained by the Burkitt-lymphoma-derived Raji cell line was investigated by using a Meselson-Stahl density transfer approach. Samples of DNA isolated from cells cultivated for different periods in bromodeoxyuridine-supplemented medium were fractionated according to density, and the distribution of viral and cellular DNAs among the heavy-, hybrid-, and light-density species was quantitated. The results indicate that the majority of latent Epstein-Barr virus DNA plasmids each replicate once during the cell cycle.  相似文献   

3.
The random association of Epstein-Barr virus DNA with host cell metaphase chromosomes of all sizes in Burkitt's lymphoma-derived cell lines was demonstrated by two substantially different techniques, namely fluorescence-activated chromosome sorting and in situ hybridization. The nature and potential importance of this association are discussed.  相似文献   

4.
5.
6.
Circular Epstein-Barr virus (EBV) DNA molecules have been purified and characterized from a human lymphoid cell line derived from a case of heterophile antibody-positive, blood transfusion-induced infectious mononucleosis, 883L. The circular EBV DNA in three cell lines obtained by transformation of human umbilical cord blood leukocytes with a strain of EBV originally derived from 883L was also studied. As estimated from sedimentation velocity data and electron microscopy, the circular EBV DNA molecules are 10 to 15% smaller than either the circular EBV DNA previously found intracellularly in several other types of EBV-transformed cells or the linear EBV DNA present extracellularly in virus particles. In addition, the EBV-transformed cord blood cell lines studied here differed from other EBV-transformed cells in that integrated virus DNA sequences could not be detected.  相似文献   

7.
Latent episomal genomes of Epstein-Barr virus, a human gammaherpesvirus, represent a suitable model system for studying replication and methylation of chromosomal DNA in mammals. We analyzed the methylation patterns of CpG dinucleotides in the latent origin of DNA replication of Epstein-Barr virus using automated fluorescent genomic sequencing of bisulfite-modified DNA samples. We observed that the minimal origin of DNA replication was unmethylated in 8 well-characterized human cell lines or clones carrying latent Epstein-Barr virus genomes as well as in a prototype virus producer marmoset cell line. This observation suggests that unmethylated DNA domains can function as initiation sites or zones of DNA replication in human cells. Furthermore, 5' from this unmethylated region we observed focal points of de novo DNA methylation in nonrandom positions in the majority of Burkitt's lymphoma cell lines and clones studied while the corresponding CpG dinucleotides in viral genomes carried by lymphoblastoid cell lines and marmoset cells were completely unmethylated. Clustering of highly methylated CpG dinucleotides suggests that de novo methylation of unmethylated double-stranded episomal viral genomes starts at discrete founder sites in vivo. This is the first comparative high-resolution methylation analysis of a latent viral origin of DNA replication in human cells.  相似文献   

8.
Treatment of human lymphoblastoid cells with either phytohemagglutinin (PHA), concanavalin A, Staphylococcus protein A, or polyinosinic acid-polycytidylic acid, in combination with 5-iodo-2' deoxyuridine (IUdR) markedly increased the expression of Epstein-Barr virus (EBV) early antigen (EA) relative to IUdR alone. Such treatment did not, however, modify the production of virus capsid antigen in any of the lymphoid cell lines tested. The effect of PHA on EA induction in Raji cells was not accompanied by changes in the incorporation of labeled precursors into cellular DNA, or in the intracellular concentration of either adenosine 3'5' cyclic monophosphate or guanosine 3'5' cyclic monophosphate. However, those mitogens that stimulated EA expression in Raji cells also increased the fluorescence polarization of 1,6 diphenyl 1,3,5-hexatriene-labeled Raji cells. The possible role of cell surface changes in the mitogen activation of latent EBV in human lymphoblastoid cells is discussed.  相似文献   

9.
10.
The size of non-integrated circular Epstein-Barr virus (EBV) DNA molecules isolated from seven different human lymphoblastoid cell lines of infectious mononucleosis origin has been determined by sedimentation analysis and by direct contour length measurements on electron micrographs. Six lines had intracellular circular EBV genomes of the same size as linear virion DNA molecules. The seventh line, established with the B95-8 strain of EBV, was the only one found to have circular EBV DNA molecules significantly smaller than virion DNA. The data show that intracellular EBV DNA circles of reduced size do not generally occur in infectious mononucleosis-derived cell lines.  相似文献   

11.
12.
J Luka  T Lindahl    G Klein 《Journal of virology》1978,27(3):604-611
The Epstein-Barr virus-determined nuclear antigen (EBNA) was purified from extracts of the human lymphoid cell lines Raji, Namalwa, and B95-8/MLD by two different methods. In the first approach, the apparently native antigen was purified 1,200-fold by a four-step procedure involving DNA-cellulose chromatography, blue dexptran-agarose chromatography, hydroxyapatite chromatography, and gel filtration, employing complement fixation as the assay procedure. Such EBNA preparations specifically inhibited the anticomplement immunofluorescence test for EBNA and bound to methanol/acetic acid-fixed metaphase chromosomes. The purified antigen, which has a molecular weight of 170,000 to 200,000, yielded a single protein band of molecular weight about 48,000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. These data indicate that native EBNA has a tetrameric structure. In the second purification method, EBNA-containing cell extracts containing radioactively labeled proteins were incubated with anti-EBNA-positive sera, and antigen-antibody complexes were adsorbed to matrix-bound staphylococcal protein A. The bound proteins were then released with an SDS-containing buffer, and denatured EBNA was separated from antibody chains by SDS-polyacrylamide gel electrophoresis and visualized by fluorography. The denatured EBNA obtained in radiochemically pure form by this procedure has a molecular weight of about 48,000, so both methods yield an EBNA monomer of the same size.  相似文献   

13.
14.
Latent Epstein-Barr virus (EBV) infection activates B-lymphocyte proliferation through mechanisms which are partially known. One approach to further delineate these mechanisms is to identify cellular genes whose expression is augmented in cells latently infected with EBV. Since EBV-negative Burkitt's lymphoma cells can be grown in continuous culture and EBV can establish growth-altering latent infection in these cells, some effects of EBV on B-lymphocyte gene expression can be studied by using this in vitro system. Pursuing this latter approach, we have used cDNA cloning and subtractive hybridization to identify a gene whose expression is increased after EBV infection. This gene encodes the cytoskeletal protein vimentin. Latent infection of established EBV-negative Burkitt's lymphoma cell lines with the transforming EBV strain, B95-8, resulted in dramatic increases in vimentin mRNA and protein levels, while infection with the nontransforming P3HR1 strain failed to do so. Vimentin induction was reproduced by the expression of the single EBV gene which encodes the latent infection membrane protein (LMP). An amino-terminal LMP deletion mutant did not induce vimentin. These results are of particular interest in light of the transforming potential of LMP, as demonstrated in rodent fibroblasts, and the interaction between vimentin and LMP observed in immunofluorescent colocalization and cell fractionation studies.  相似文献   

15.
Micrococcal nuclease digestion was used to analyze Epstein-Barr virus (EBV) DNA structure in nuclei of transformed cells. Digests of virus-producing (P3HR-1), non-virus-producing (Raji), and superinfected Rajii cell nuclei were fractionated by electrophoresis on agarose gels, transferred to nitrocellulose, and hybridized to 32P-labeled EBV DNA. The viral DNA of Raji nuclei produced a series of bands on electrophoresis whose lengths were integral multiples of a unit size, which was the same as the repeat length of host DNA. Viral DNA in nuclei of P3HR-1 and superinfected Raji cells produced faintly visible bands superimposed on a smear of viral DNA which dominated the hybridization pattern. No differences were detected in the patterns when total DNA digests from Raji, P3HR-1, and an EBV DNA-negative cell line (U-698M) were analyzed by ethidium bromide staining or by hybridization with the use of 32P-labeled lymphoblastoid cell DNA as probe. We conclude that the EBV episomal DNA of Raji cells is folded into nucleosomes, whereas most of the viral DNA of P3HR-1 and superinfected Raji cells is not. This pattern of DNA organization differs signficantly from that in papova group viruses.  相似文献   

16.
Neurovirulent TYCSA strain and attenuated Schwarz strain of measles virus and Halle strain of subacute sclerosing panencephalitis (SSPE) virus replicated in cultures of human lymphoid cell lines of the T-cell type, MOLT-3, MOLT-4 and CCRF-CEM. TYCSA and Halle strains grew rapidly, but Schwarz strain grew slowly in these cell lines. Furthermore, these three strains established persistent infection in CCRF-CEM cells but not in the other cell lines. In these persistently infected cultures an almost entire population of cells were shown to be infected and infectious virus was produced constantly for over 100 days. Cells persistently infected with Schwarz strain contained nucleocapsid structures in both the nucleus and cytoplasm and produced low titered infectious virus, whereas nucleocapsid structures were observed only in the cytoplasm of cells persistently infected with either TYCSA or Halle strain and the titers of infectious virus produced from these cells were high.  相似文献   

17.
Our group has initiated experiments to epigenetically profile CpG island hypermethylation in genomic DNA from tissue specimens of head and neck squamous cell carcinoma (HNSCC) using a microarray of 12,288 CpG island clones. Our technique, known as a methylation-specific restriction enzyme (MSRE) analysis, is a variation of the differential methylation hybridization (DMH) technique, in that it is not an array comparison of two DNA samples using methylation-specific restriction enzymes. Instead, it is a comparison of a single DNA sample's response to a methylation-sensitive restriction enzyme (HpaII) and its corresponding methylation-insensitive isoschizomer (MspI). Estimation of the reproducibility of this microarray assay by intraclass correlation (ICC) demonstrated that in four replicate experiments for three tumor specimens, the ICC observed for a given tumor specimen ranged from 0.68 to 0.85 without filtering of data. Repeated assays achieved 87% concordance or greater for all tumors after filtering of array data by fluorescence intensity. We utilized hierarchical clustering on a population of 37 HNSCC samples to cluster tumor samples with similar DNA methylation profiles. Supervised learning techniques are now being utilized to allow us to identify associations between specific epigenetic signatures and clinical parameters. Such techniques will allow us to identify select groups of CpG island loci that could be used as epigenetic markers for both diagnosis and prognosis in HNSCC.  相似文献   

18.
Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes   总被引:29,自引:1,他引:29  
Summary The dinucleotide CpG is a hotspot for mutation in the human genome as a result of (1) the modification of the 5 cytosine by cellular DNA methyltransferases and (2) the consequent high frequency of spontaneous deamination of 5-methyl cytosine (5mC) to thymidine. DNA methylation thus contributes significantly, albeit indirectly, to the incidence of human genetic disease. We have attempted to estimate for the first time the in vivo rate of deamination of 5mC from the measured rate of 5mC deamination in vitro and the known error frequency of the cellular G/T mismatch-repair system. The accuracy and utility of this estimate (m d ) was then assessed by comparison with clinical data, and an improved estimate of m d (1.66x10-16 s-1) was derived. Comparison of the CpG mutation rates exibited by globin gene and pseudogene sequences from human, chimpanzee and macaque provided further estimates of m d , all of which were consistent with the first. Use of this value in a mathematical model then permitted the estimation of the length of time required to produce the level of CpG suppression currently found in the bulk DNA of vertebrate genomes. This time span, approximately 450 million years, corresponds closely to the estimated time since the emergence and adaptive radiation of the vertebrates and thus coincides with the probable advent of heavily methylated genomes. An accurate estimate of the 5mC deamination rate is important not only for clinical medicine but also for studies of gene evolution. Our data suggest both that patterns of vertebrate gene methylation may be comparatively stable over relatively long periods of evolutionary time, and that the rate of CpG deamination can, under certain limited conditions, serve as a molecular clock.  相似文献   

19.
Recent studies suggest the existence of cancer stem cells (CSC) and cancer progenitor cells (CPC), although strict definitions of neither CSC nor CPC have been developed. We have produced evidence that the principal oncoprotein of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1), which is associated with human malignancies, especially nasopharyngeal carcinoma (NPC), promotes tumor cell invasion and metastasis, as well as the epithelial-mesenchymal transition (EMT). However, whether LMP1 is involved in the development of CSC/CPC is still unclear. This study investigates whether the expression of EBV-LMP1 is related to the development of CSC/CPC. Analysis of cancer stem cell markers reveals that LMP1 induces the CD44(high) CD24(low) CSC/CPC-like phenotype as well as self-renewal abilities in LMP1-expressing epithelial cell lines. In addition, we show here that LMP1 induction in epithelial cells causes high tumorigenicity and rapid cellular proliferation. Furthermore, we found that LMP1 expression increased the expression of several CPC markers as well as producing increased levels of EMT markers. Our findings indicate that LMP1 can induce a CPC-like rather than a CSC-like phenotype in epithelial cells and suggest that LMP1-induced phenotypic changes contribute to the development of NPC.  相似文献   

20.
Epstein-Barr virus (EBV) is a strict human pathogen for which no small animal models exist. Plasmids that contain the EBV plasmid origin of replication, oriP, and express EBV nuclear antigen 1 (EBNA1) are stably maintained extrachromosomally in human cells, whereas these plasmids replicate poorly in rodent cells. However, the ability of oriP and EBNA1 to maintain the entire EBV episome in proliferating rodent cells has not been determined. Expression of the two human B-cell receptors for EBV on the surfaces of murine B cells allows efficient viral entry that leads to the establishment of latent EBV infection and long-term persistence of the viral genome. Latent gene expression in these cells resembles the latency II profile in that EBNA1 and LMP1 can be detected whereas EBNA2 and the EBNA3s are not expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号