首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Membrane fragments containing the H+K-ATPase from parietal cells have been adsorbed to a planar lipid membrane. The transport activity of the enzyme was determined by measuring electrical currents via the capacitive coupling between the membrane sheets and the planar lipid film. To initiate the pump currents by the ATPase a light-driven concentration jump of ATP from caged ATP was applied as demonstrated previously for Na+K+-ATPase (Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985.EMBO J. 4:3079–3085). Since H+K+-ATPase is an electroneutrally working enzyme no stationary pump currents were observed in the presence of K+. By separation of the H+ and K+ transport steps of the reaction cycle, however, the electrogenic step of the phosphorylation could be measured. This was achieved in the absence of K+ or at low concentrations of K+. The observed transient current is ATP dependent which can be assigned to the proton movement during the phosphorylation. From this it was conclueded that the K+ transport during dephosphorylation is electrogenic, too, in contrast to the Na+K+-ATPase where the K+ step is electroneutral. The transient current was measured at different ionic conditions and could be blocked by vanadate and by the H+K+-ATPase specific inhibitor omeprazole. An alternative mechanism for activation of this inhibitor is discussed.  相似文献   

2.
Summary Active H+ transport in the turtle urinary bladder is mediated by an ATPase. Although the source of ATP is usually mitochondrial oxidative phosphorylation, it is possible because of intracellular compartmentalization or cellular heterogeneity that one metabolic pathway exclusively provides ATP to the pump. To examine this we performed several types of experiments. In one, the coupling between the rate of transport and the rate of oxidation of14C-labeled substrates was studied. We found that there was coupling between H+ transport and glucose, butyrate, oleate, and -OH-butyrate oxidation. In another set of experiments we depleted turtle bladders of their endogenous substrates and tested the effect of a number of substrates on the rate of transport. We found that glucose, pyruvate, lactate, actetate, butyrate and -OH butyrate all stimulated H+ transport. In a third set of experiments we found no coupling between H+ transport and lactate production. Finally, we found that reduction of H+ transport by mucosal acidification resulted in an increase in epithelial cell ATP concentrations and a decrease in ADP levels.These results suggest that the H+ pump receives its ATP from carbohydrate and fatty acid oxidation. The changes in ATP and ADP levels provide an initial explanation for the coupling of H+ transport to the rate of cellular oxidative metabolism.  相似文献   

3.
We report here a new mode of ATP synthesis in living cells. The anaerobic bacterium Propionigenium modestum gains its total energy for growth from the conversion of succinate to propionate according to: succinate + H2O → propionate + HCO3- (Go' = -20.6 kJ/mol). The small free energy change of this reaction does not allow a substrate-linked phosphorylation mechanism, and no electron transport phosphorylation takes place. Succinate was degraded by cell-free extracts to propionate and CO2 via succinyl-CoA, methyl-malonyl-CoA and propionyl-CoA. This pathway involves a membrane-bound methylmalonyl-CoA decarboxylase which couples the exergonic decarboxylation with a Na+ ion transport across the membrane. The organism also contained a membrane-bound ATPase which was specifically activated by Na+ ions and catalyzed and transport of Na+ ions into inverted bacterial vesicles upon ATP hydrolysis. The transport was abolished by monensin but not by the uncoupler carbonylcyanide-p-trifluoromethoxy phenylhydrazone. Isolated membrane vesicles catalyzed the synthesis of ATP from ADP and inorganic phosphate when malonyl-CoA was decarboxylated and malonyl-CoA synthesis from acetyl-CoA when ATP was hydrolyzed. These syntheses were sensitive to monensin which indicates that Na+ functions as the coupling ion. We conclude from these results that ATP synthesis in P. modestum is driven by a Na+ ion gradient which is generated upon decarboxylation of methylmalonyl-CoA.  相似文献   

4.
The phosphorylation of plasma membrane proteins from red beet (Beta vulgaris L.) by radioactive inorganic phosphate was studied. Only few proteins were phosphorylated, among them was one polypeptide with an apparent molecular weight of about 100,000. The phosphorylation of this protein was decreased when orthovanadate was present in the reaction mixture, or when the phosphorylated protein was treated with hydroxylamine. These facts suggest that this protein is a transport ATPase which is phosphorylated in a carboxyl group during the catalytic cycle. This protein was identified immunologically as the plasma membrane H+-ATPase. The phosphorylation level of this enzyme was enhanced by dimethyl sulfoxide, whereas potassium ions did not have a significant effect on this level unless ATP was present. ATP stimulated the phosphorylation by inorganic phosphate. This stimulation was more apparent in the presence of potassium ions.  相似文献   

5.
ATPase activity, ATP-dependent H+ transport and the amount of antigenic tomato plasma membrane H+-APTase have been analysed in membrane vesicles isolated from Glomus mosseae- or Glomus intraradices-colonized roots and from non-mycorrhizal tomato roots. Microsomal protein content was higher in mycorrhizal than in control roots. The specific activity of the plasma membrane H+-ATPase was not affected by mycorrhizal colonization, although this activity increased in membranes isolated from mycorrhizal roots when expressed on a fresh weight basis. Western blot analysis of microsomal proteins using antibodies raised against the Arabidopsis thaliana plasma membrane H+ - ATPase showed that mycorrhizal colonization did not change the relative amount of tomato plasma membrane ATPase in the microsomes. However, on a fresh weight basis, there was a greater amount of this protein in roots of mycorrhizal plants. In addition, mycorrhizal membranes showed a higher specific activity of the vanadate-sensitive ATP-dependant H+ transport than membranes isolated from control roots. These results suggest that mycorrhiza might regulate the plasma membrane ATPase by increasing the coupling efficiency between H+ transport and ATP hydrolysis. The observed effects of mycorrhizal colonization on plasma membrane H+-ATPase were independent of the AM fungal species colonizing the root system.  相似文献   

6.
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state.  相似文献   

7.
An anion-sensitive H+-translocating ATPase was identified in membrane vesicles isolated from mature green tomato (Lycopersicon esculentum) fruit. The H+-ATPase was associated with a low density membrane population having a peak density of 1.11 grams per cubic centimeter, and its activity was inhibited by NO3, N,N′-dicyclohexylcarbodiimide and diethylstilbestrol but not by vanadate, azide, molybdate, or oligomycin. This H+-ATPase has an unusual pH dependence indicating both a slightly acidic and a near neutral peak of activity. Chloride was found to be a potent stimulator of ATPase activity. The Km for the H+-ATPase was approximately 0.8 millimolar ATP. The characteristics of this H+-ATPase are very similar to those described for a number of plant cell tonoplast H+-ATPases suggesting that the activity identified in tomato fruit membranes is tonoplast-associated. This report demonstrates the feasibility of isolating tonoplast vesicles from acidic fruit tissues for studies of transport activities associated with fruit development and maturation.  相似文献   

8.
Summary Studies were performed to determine if the Na+–H+ exchanger, solubilized from renal brush border membranes from the rabbit and assayed in reconstituted artificial proteoliposomes, could be regulated by cAMP-dependent protein kinase. Octyl glucoside solubilized renal apical membrane proteins from the rabbit kidney were phosphorylated by incubation with ATP and highly purified catalytic subunit of cAMP-dependent kinase.22Na+ uptake was determined subsequently after reconstitution of the proteins into proteoliposomes. cAMP-dependent protein kinase resulted in sustained protein phosphorylation and a concentration-dependent decrease in the amiloride-sensitive component of pH gradient-stimulated sodium uptake. The inhibitory effect of cAMP-dependent protein kinase demonstrated an absolute requirement for ATP and was blocked by the specific protein inhibitor of this kinase. cAMP-dependent protein kinase also inhibited22Na+ uptake in the absence of a pH gradient (pHin 6.0. pHout 6.0) and the inhibitory effect was blocked by the specific inhibitor of the kinase. Solubilized membrane proteins exhibited little endogenous protein kinase or protein phosphatase activity.These studies indicate that Na+–H+ exchange activity of proteoliposomes reconstituted with proteins from renal brush border membranes is inhibited by phosphorylation of selected proteins by cAMP-dependent protein kinase. These findings also indicate that the regulatory components of the Na+–H+ exchanger remain active during the process of solubilization and reconstitution of renal apical membrane proteins.  相似文献   

9.
A recently determined atomic structure of an H+-coupled ATP-synthase membrane rotor has revived the long-standing question of whether protons may be bound to these structures in the form of a hydronium ion. Using both classical and quantum-mechanical simulations, we show that this notion is implausible. Ab initio molecular dynamics simulations of the binding site demonstrate that the putative H3O+ deprotonates within femtoseconds. The bound proton is thus transferred irreversibly to the carboxylate side chain found in the ion-binding sites of all ATP-synthase rotors. This result is consistent with classical simulations of the rotor in a phospholipid membrane, on the 100-nanosecond timescale. These simulations show that the hydrogen-bond network seen in the crystal structure is incompatible with a bound hydronium. The observed coordination geometry is shown to correspond instead to a protonated carboxylate and a bound water molecule. In conclusion, this study underscores the notion that binding and transient storage of protons in the membrane rotors of ATP synthases occur through a common chemical mechanism, namely carboxylate protonation.  相似文献   

10.
David B. Hicks 《BBA》2010,1797(8):1362-1377
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values > 10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.  相似文献   

11.
The ATP4A encodes α subunit of H+, K+-ATPase that contains catalytic sites of the enzyme forming pores through cell membrane which allows the ion transport. H+, K+-ATPase is a membrane bound P-type ATPase enzyme which is found on the surface of parietal cells and uses the energy derived from each cycle of ATP hydrolysis that can help in exchanging ions (H+, K+ and Cl?) across the cell membrane secreting acid into the gastric lumen. The 3-D model of α-subunit of H+, K+-ATPase was generated by homology modeling. It was evaluated and validated on the basis of free energies and amino acid residues. The inhibitor binding amino acid active pockets were identified in the 3-D model by molecular docking. The two drugs Omeprazole and Rabeprazole were found more potent interactions with generated model of α-subunit of H+, K+-ATPase on the basis of their affinity between drug–protein interactions. We have generated ATP4A gene regulatory networks for interactions with other proteins which involved in regulation that can help in fine-tuning of proton pump and ion channels. These findings provide a new dimension for discovery and development of proton pump inhibitors and gene regulation of the ATPase. It can be helpful in better understanding of human physiology and also using synthetic biology strategy for reprogramming of parietal cells for control of gastric ulcers.  相似文献   

12.
Several plasma-membrane proteins from beet root (Beta vulgaris L.) have been functionally incorporated into reconstituted proteoliposomes. These showed H+-ATPase activity, measured both as ATP hydrolysis and H+ transport. The proton-transport specific activity was 10 times higher than in plasma membranes, and was greatly stimulated by potassium and valinomycin. These proteoliposomes also showed calcium-regulated protein kinase activity. This kinase activity is probably due to a calmodulin-like domain protein kinase (CDPK), since two protein bands were recognized by antibodies against soybean and Arabidopsis CDPK. This kinase phosphorylated histone and syntide-2 in a Ca2+-dependent manner. Among the plasma-membrane proteins phosphorylated by this kinase, was the H+-ATPase. When the H+-ATPase was either prephosphorylated or assayed in the presence of Ca2+, both the ATP-hydrolysis and the proton-transport activities were slower. This inhibition was reversed by an alkaline-phosphatase treatment. A trypsin treatment (that has been reported to remove the C-terminal autoinhibitory domain from the H+-ATPase) also reversed the inhibition caused by phosphorylation. These results indicate that a Ca2+-dependent phosphorylation, probably caused by a CDPK, inhibits the H+-ATPase activities. The substrate of this regulatory phosphorylation could be the H+-ATPase itself, or a different protein influencing the ATPase activities. Received: 1 May 1997 / Accepted: 25 June 1997  相似文献   

13.
Neurotransmitter transporters are essential components in the recycling of neurotransmitters released during neuronal activity. These transporters are the targets for important drugs affecting mood and behavior. They fall into at least four gene families, two encoding proteins in the plasma membrane and two in the synaptic vesicle membrane, although the known vesicular transporters have not all been cloned. Each of these transporters works by coupling the downhill movement of small ions such as Na+, Cl, K+, and H+ to the uphill transport of neurotransmitter. Plasma membrane transporters move the transmitter into the cytoplasm by cotransport with Na+. Many transporters also couple Cl cotransport to transmitter influx and these all belong to the NaCl-coupled family, although within the family the coupling stoichiometry can vary. Transporters for glutamate couple influx of this excitatory amino acid to Na+ and H+ influx and K+ efflux. Transporters in synaptic vesicles couple H+ efflux to neurotransmitter transport from the cytoplasm to the vesicle lumen.  相似文献   

14.
ShaA, a member of a multigene-encoded Na+/H+ antiporter in B. subtilis, is a large integral membrane protein consisting of 20 transmembrane helices (TM). Conservation of ShaA-like protein subunits in several cation-coupled enzymes, including the NuoL (ND5) subunit of the H+-translocating complex I, suggests the involvement of ShaA in cation transport. Bacillus subtilis ShaA contains six acidic residues that are conserved in ShaA homologues and are located in putative transmembrane helices. We examined the functional involvement of the six transmembrane acidic residues of ShaA by site-directed mutagenesis. Mutation in glutamate (Glu)-113 in TM-4, Glu-657 in TM-18, aspartate (Asp)-734 and Glu-747 in TM-20 abolished the antiport activity, suggesting that these residues play important roles in the ion transport of Sha. The acidic group was necessary and sufficient in Glu-657 and Asp-743, while it was not true of Glu-113 and Glu-747. Mutation in Asp-103 in TM-3, which is conserved in ShaA-types but not in ShaAB-types, partially affected on the antiport activity. Mutation in Asp-50 in TM-2 resulted in a unexpected phenotype: mutants retained the wild type level of ability to confer NaCl resistance to the Na+/H+ antiporter-deficient E. coli KNabc, but showed a very low antiport activity. The acidic group of Asp-50 and Asp-103 was not essential for the function. Our results suggested that these acidic residues are functionally involved in the ion transport of Sha, and some of them probably in cation binding and/or translocation.  相似文献   

15.
 Taking the binding of fusicoccin to plasma membranes as an indicator of complex formation between the 14-3-3 dimer and H+-ATPase, we assessed the effect of osmotic stress on the interaction of these proteins in suspension-cultured cells of sugar beet (Beta vulgaris L.). An increase in osmolarity of the cell incubation medium, accompanied by a decrease in turgor, was found to activate the H+ efflux 5-fold. The same increment was observed in the number of high-affinity fusicoccin-binding sites in isolated plasma membranes; the 14-3-3 content in the membranes increased 2- to 3-fold, while the H+-ATPase activity changed only slightly. The data obtained indicate that osmotic regulation of H+-ATPase in the plant plasma membrane is achieved via modulation of the coupling between H+ transport and ATP hydrolysis, and that such regulation involves 14-3-3 proteins. Received: 10 February 2000 / Accepted: 31 March 2000  相似文献   

16.
The stimulation of the plasma membrane (PM) H+-ATPase by boric acid was studied on a microsomal fraction (MF) obtained from ungerminated, boron-dependent pollen grains of Lilium longiflorum Thunb. which usually need boron for germination and tube growth. ATP hydrolysis and H+ transport activity increased by 14 and 18%, respectively, after addition of 2-4 mM boric acid. The optimum of boron stimulation was at pH 6.5-8.5 for ATP hydrolysis and at pH 6.5-7.5 for H+ transport. No boron stimulation was detected when vanadate was added to the MF, whereas an increase of 10-20% in ATP hydrolysis and H+ transport was still measured in the presence of inhibitors specific for V -type ATPase (nitrate and bafilomycin) and F-type ATPase (azide), respectively. A vanadate-sensitive increase in ATP hydrolysis activity was also observed in partially permeabilized vesicles (0.001%[w/v] Triton X-100) suggesting a direct interaction between borate and the PM H+-ATPase rather than a weak acid-induced stimulation. Additionally, we measured the effect of boron on membrane voltage (Vm) of ungerminated pollen grains and observed small hyperpolarizations in 48% of all experiments. Exposing pollen grains to a more acidic pH of 4 caused a depolarization, followed in some experiments by a repolarization (21%). In the presence of 2 mM boron such hyperpolarizations, perhaps caused by an enhanced activity of the H+-ATPase, were measured in 58% of all tested pollen grains. The effects of boron on Vm may be reduced by additional stimulation of a K+ inward current of opposite direction to the H+-ATPase. All experiments indicate that boron stimulates an electrogenic transport system in the plasma membrane which is sensitive to vanadate and has a pH optimum around 7, i.e. the plasma membrane H+-ATPase. A boron-increased PM H+-ATPase activity in turn may stimulate germination and growth of pollen tubes.  相似文献   

17.
Glucose utilization, energy metabolism and associated membrane changes, have been studied in D+ myeloid leukemic cells that can be induced to undergo cell differentiation to mature granulocytes by incubation with the appropriate conditioned medium (CM) and in D? myeloid leukemic cells that cannot be induced to differentiate to mature cells. Before incubation with CM, glycolysis and the glycolytic production of ATP were lower and the activity of the pentose cycle was higher in D+ than in D? cells. ATP depletion induced a higher degree of agglutination by concanavalin A in D? than in D+ cells, indicating a difference in their surface membrane. There were no detectable differences in the transport of glucose and the synthesis of sterols and fatty acids. After incubation with CM, the D+ cells, like normal granulocytes, showed a higher glycolysis, produced their ATP more through glycolysis than oxidative phosphorylation, became less dependent on the exogenous supply of glucose and oxygen and had a lower rate of sterol and fatty acid synthesis. The differentiating D+ cells also showed a change in their surface membrane resulting in an increased agglutinability without a change in ATP content and a stimulation of the pentose cycle by concanavalin A. These properties, which were not acquired by D? cells, were found before most of the D+ cells had differentiated to mature granulocytes. The data indicate, that the block in the ability of the D? cells to differentiate and the acquisition of the metabolic properties of normal granulocytes by differentiating D+ cells, were associated with differences in the organization of the cell surface membrane.  相似文献   

18.
19.
20.
It was found that a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum, possesses a membrane-bound ATPase, which was activated specifically by Na+. The Na+-stimulated ATPase activity reached a maximum value at 200 mM NaCl. In the presence of 200 mM NaCl, the activity was drastically reduced by vanadate, a potent inhibitor of P-type ATPase, with a half-maximal inhibition at 1 μM. Incubation of the membranes with [γ-32P]ATP followed by acidic lithium dodecyl sulfate–polyacrylamide gel electrophoresis demonstrated the existence of two phosphorylated intermediates with apparent molecular masses of 60 and 100 kDa. Only phosphorylation of the 100-kDa polypeptide was inhibited by vanadate. The membrane extract containing Na+-stimulated ATPase, when reconstituted into soybean phospholipid vesicles, exhibited 22Na+ transport by the addition of ATP, which was inhibited by vanadate and gramicidin. It is likely that the Na+-stimulated ATPase belongs to P-type and is involved in Na+ transport. Received: 3 February 1999 / Accepted: 3 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号