首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
骨髓间质干细胞(MSCs)是目前基因工程正在探讨应用的靶细胞,为构建带有脑源性神经营养因子(Bdnf)基因慢病毒载体并使其在大鼠骨髓间质干细胞中表达,采用RT-PCR技术获得大鼠Bdnf基因编码区(CDS)片段,限制性内切酶酶切和基因重组构建慢病毒载体质粒PNL-BDNF-IRES2-EGFP,在脂质体介导下与包装质粒HELPER,包膜质粒VSVG共转染293T细胞包装生产慢病毒。所获慢病毒感染大鼠MSCs(rMSCs)后,PCR和免疫细胞化学法检测在rMSCs中Bdnf基因的插入和表达。结果显示所获的Bdnf基因经测序后与GenBank报道序列完全一致。重组慢病毒载体质粒PNL-BDNF-IRES2-EGFP经鉴定正确。三质粒共转染293T细胞成功,收集、浓缩病毒后测定其滴度为6.7×10~7TU/mL,PCR证实Bdnf基因插入病毒基因组。感染rMSCs后RT-PCR、免疫细胞化学染色及Western检测各组细胞均有BDNF蛋白表达,其中试验组BDNF-rMSCs更大量表达BDNF,与其余2组(Mock-rMSCs、rMSCs)比较差异具有统计学意义。构建带有Bdnf基因慢病毒载体并在大鼠骨髓间质干细胞中成功表达,为今后基因修饰干细胞的移植后长期观察研究奠定了基础。  相似文献   

2.
骨髓间质干细胞(MSCs)是目前基因工程正在探讨应用的靶细胞,为构建带有脑源性神经营养因子(Bdnf)基因慢病毒载体并使其在大鼠骨髓间质干细胞中表达,采用RT-PCR技术获得大鼠Bdnf基因编码区(CDS)片段,限制性内切酶酶切和基因重组构建慢病毒载体质粒PNL-BDNF-IRES2-EGFP,在脂质体介导下与包装质粒HELPER,包膜质粒VSVG共转染293T细胞包装生产慢病毒。所获慢病毒感染大鼠MSCs(rMSCs)后,PCR和免疫细胞化学法检测在rMSCs中Bdnf基因的插入和表达。结果显示所获的Bdnf基因经测序后与GenBank报道序列完全一致。重组慢病毒载体质粒PNL-BDNF-IRES2-EGFP经鉴定正确。三质粒共转染293T细胞成功,收集、浓缩病毒后测定其滴度为6.7×107TU/mL, PCR证实Bdnf基因插入病毒基因组。感染rMSCs后RT-PCR、免疫细胞化学染色及Western检测各组细胞均有BDNF蛋白表达,其中试验组BDNF-rMSCs更大量表达BDNF,与其余2组(Mock-rMSCs、rMSCs)比较差异具有统计学意义。构建带有Bdnf基因慢病毒载体并在大鼠骨髓间质干细胞中成功表达,为今后基因修饰干细胞的移植后长期观察研究奠定了基础。  相似文献   

3.
骨髓间质干细胞(MSCs)是目前基因工程正在探讨应用的靶细胞,为构建带有脑源性神经营养因子(Bdnf)基因慢病毒载体并使其在大鼠骨髓间质干细胞中表达,采用RT-PCR技术获得大鼠Bdnf基因编码区(CDS)片段,限制性内切酶酶切和基因重组构建慢病毒载体质粒PNL-BDNF-IRES2-EGFP,在脂质体介导下与包装质粒HELPER,包膜质粒VSVG共转染293T细胞包装生产慢病毒。所获慢病毒感染大鼠MSCs(rMSCs)后,PCR和免疫细胞化学法检测在rMSCs中Bdnf基因的插入和表达。结果显示所获的Bdnf基因经测序后与GenBank报道序列完全一致。重组慢病毒载体质粒PNL-BDNF-IRES2-EGFP经鉴定正确。三质粒共转染293T细胞成功,收集、浓缩病毒后测定其滴度为6.7×107TU/mL, PCR证实Bdnf基因插入病毒基因组。感染rMSCs后RT-PCR、免疫细胞化学染色及Western检测各组细胞均有BDNF蛋白表达,其中试验组BDNF-rMSCs更大量表达BDNF,与其余2组(Mock-rMSCs、rMSCs)比较差异具有统计学意义。构建带有Bdnf基因慢病毒载体并在大鼠骨髓间质干细胞中成功表达,为今后基因修饰干细胞的移植后长期观察研究奠定了基础。  相似文献   

4.
目的采用电生理的研究方法,观察脑源性神经营养因子(BDNF)基因修饰的骨髓间充质干细胞对脊髓损伤的修复作用。方法随机将大鼠分成3组:空白组10只(只切除椎板,暴露脊髓硬脊膜);SCI组10只;SCI术后细胞移植组10只;从以上三组大鼠随机抽取8只于细胞移植后1 d、7 d、14 d、21 d、30 d、60 d进行SEP(皮层体感诱发电位)、MEP(运动诱发电位)等电生理检测技术,并观察大鼠的运动评分恢复程度。结果细胞移植4d后,大鼠饮食和活动开始增加;后肢变化过程如下:损伤后1~4 d损伤侧后肢迟缓性瘫痪,拖地行走,损伤对侧后肢由损伤初期的运动减弱逐渐恢复,损伤后5~9 d损伤侧后肢痉挛性瘫痪;10~14 d损伤侧下肢恢复少量活动,损伤对侧后肢恢复至较损伤前稍弱的状态;15~21 d损伤侧后肢活动能力较之前有明显改善,至30 d损伤侧后肢活动能力及肌张力恢复程度最明显,30 d以后无更明显改善。免疫组化发现损伤处诱导标记的骨髓间充质干细胞存活,行为学观察发现细胞移植改善了损伤大鼠运动能力。结论骨髓间充质干细胞经BDNF基因修饰后可以促进脊髓损伤大鼠的神经再生及部分传导功能恢复。  相似文献   

5.
目的初步探讨骨髓间充质干细胞诱导为神经细胞,及其移植对大鼠脊髓半横断损伤神经功能恢复和运动的影响。方法贴壁培养法分离培养大鼠骨髓间充质干细胞(mesenchymal stem cells,MSCs),大鼠脊髓匀浆上清诱导第3代向神经细胞分化,经免疫组化鉴定分化后细胞的性质。制备大鼠半横断脊髓损伤模型,脊髓损伤局部注射BrdU标记诱导后的神经细胞。细胞移植5周后观察移植细胞在脊髓内存活分布情况。结果倒置显微镜下可见MSCs呈纺锤形和多角形,有1~2个核仁,经脊髓匀浆上清诱导后,发出数个细长突起,并交织成网,诱导后的细胞表达Nestin,可推测诱导后的细胞为MSCs源神经细胞。5周后移植的MSCs在宿主损伤脊髓内聚集并存活,表达MAP-2、NF、GFAP与对照组比较有统计学意义(P0.05)。大鼠运动功能较移植前有所改善。结论MSCs经脊髓匀浆上清诱导后移植治疗大鼠半横断脊髓损伤可使运动功能得到改善。  相似文献   

6.
本文旨在研究人源胚胎神经干细胞(human embryonic neural stem cells,h NSCs)移植到脑缺血/再灌注损伤大鼠脑内后的迁移、分化,以及对大鼠脑卒中的疗效。我们在大脑中动脉栓塞(middle cerebral artery occlusion,MCAO)1 h的大鼠模型上,于血流再灌注后第7天注射h NSCs到缺血侧侧脑室,通过焦油紫染色测量大鼠的脑梗死体积,通过检测大鼠的感觉运动行为评估其神经功能的恢复水平,通过免疫荧光共标观察移植后的h NSCs在脑内的迁移与分化。结果显示,h NSCs移植后能够显著减小脑卒中大鼠脑梗死体积,并改善脑卒中大鼠的转棒、错步和转角等运动行为能力;侧脑室注射的h NSCs优先向胼胝体以及梗死区周边迁移,迁移到胼胝体的h NSCs可以分化成少突胶质细胞和星形胶质细胞,迁移到梗死区周边的细胞能够分化成神经元。以上这些结果提示,侧脑室移植的h NSCs可能通过向特定脑区的迁移和分化发挥对脑缺血/再灌注损伤大鼠的保护作用。  相似文献   

7.
目的探讨骨髓间充质干细胞(bone marrow derived mesenchymal stem cells,bMSCs)移植对大鼠缺血再灌注损伤脑肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、转化生长因子β1(transforming growth factorβ1,TGFβ1)表达的影响。方法首先分离、培养与鉴定大鼠bMSCs。72只大鼠随机分为假手术组、模型组、bMSCs移植组和移植对照组,每组18只。模型组、bMSCs移植组与移植对照组均复制大脑中动脉栓塞缺血/再灌注(middle cerebral artery occlusion infarction/reperfusion,MCAO I/R)脑卒中大鼠脑梗死模型。模型复制1d后,bMSCs移植组于右侧脑室移植bMSCs,移植对照组注射相同剂量的生理盐水。细胞移植后第1d、第3d和第7d,分别对各组动物进行神经功能缺损度评分法(neurological severity scores,NSS)评分。采用TTC法检测脑梗死体积,随后取梗死灶周围缺血半暗带脑组织及其余各组相应组织,采用Real-time PCR、Western blot与免疫荧光染色分别检测各组织TNF-α、TGFβ1 m RNA及其蛋白的表达变化。结果 bMSCs移植后第3 d和第7d,bMSCs移植组NSS明显低于移植对照组和模型组。bMSCs移植后7d,bMSCs移植组脑梗死体积明显低于模型组及移植对照组。bMSCs移植后第1d、第3d和第7d,模型组与移植对照组中TNF-α和TGFβ1的表达明显高于假手术组,BMSCs移植组的TNF-α表达增加不如模型组与移植对照组明显,而TGFβ1表达的增加显著高于模型组与移植对照组。结论 bMSCs移植可促进脑梗死大鼠神经功能恢复,减少脑梗死体积,其机制可能与其抑制促炎细胞因子TNF-α的表达增加和促进抗炎细胞因子TGFβ1的表达增加有关。  相似文献   

8.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

9.
目的:观察经侧脑室移植pIRESneo-EGFP-BDNF修饰骨髓间充质干细胞(MSCs)对帕金森病(PD)大鼠纹状体多巴胺(DA)及代谢产物的影响。方法:采用电穿孔法将pIRESneo-EGFP-BDNF转染至骨髓MSCs;制备PD大鼠模型,随机分为Sham组,PD组,MSCs组,脑源性神经生长因子(BDNF)组,经侧脑室移植MSCs或pIRESneo-EGFP-BDNF修饰骨髓MSCs,术后2周,4周,8周,腹腔注射阿朴吗啡(APO)诱导PD大鼠旋转行为;应用高效液相色谱测定各组大鼠纹状体内多巴胺(DA)、高香草酸(HVA)及二羟苯乙酸(DOPAC)。结果:移植术后2周,4周,8周BDNF组、MSCs组大鼠与PD组比较旋转次数明显减少(P<0.05),以BDNF组改善更为明显。移植细胞干预PD模型8周后BDNF组、MSCs组大鼠纹状体DA、HVA、DOPAC较PD组明显提高(P<0.01),以BDNF组更为显著。结论:经侧脑室移植pIRESneo-EGFP-BDNF修饰的骨髓MSCs干预PD大鼠模型,显著降低PD大鼠纹状体内DA代谢率,提高DA水平,改善PD大鼠的行为能力。  相似文献   

10.
目的:研究骨髓间充质干细胞源性神经元样细胞移植治疗成鼠脊髓损伤的可行性。方法:选取成年SD大鼠32只,两只用以提取骨髓间充质干细胞,其余被分为3组,其中细胞移植组10只,PBS缓冲液组10只,空白对照组10只。骨髓间充质干细胞分离传代培养并诱导成神经元样细胞后用Hoechst33342标记,损伤1周后采取静脉注射移植的方法移植于大鼠脊髓损伤区,移植六周后用免疫荧光方法检测细胞的存活及与宿主脊髓的整合情况。脊髓损伤后的1~6周对各组动物进行BBB评分,用SPSS12.0进行数据分析。结果:细胞移植组动物的BBB评分提高显著,于其他两组差异有统计学意义。细胞移植组免疫荧光显示,移植细胞在体内大量存活并桥接于脊髓损伤区的两端,存活的多数细胞神经元特异性标记物NSE、NF-200、星形胶质细胞特异性标记物GFAP表达呈阳性。结论:移植定向诱导的神经元样细胞有助于大鼠脊髓损伤后的功能恢复。  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) plays an essential regulatory role in the survival and differentiation of various neural cell types during brain development and after injury. In this study, we used neural stem cells (NSCs) genetically modified to encode BDNF gene (BDNF/NSCs) and naive NSCs transplantation and found that BDNF/NSCs significantly improved neurological motor function following traumatic brain injury (TBI) on selected behavioral tests. Our data clearly demonstrate that the transplantation of BDNF/NSCs causes overexpression of BDNF in the brains of TBI rats. The number of surviving engrafted cells and the proportion of engrafted cells with a neuronal phenotype were significantly greater in BDNF/NSCs than in naive NSCs-transplanted rats. The expression of pre- and post-synaptic proteins and a regeneration-associated gene in the BDNF/NSCs-transplanted rats was significantly increased compared to that in NSCs-transplanted rats, especially at the early stage of post-transplantation. These data suggest that neurite growth and overexpression of synaptic proteins in BDNF/NSCs-transplanted rats are associated with the overexpression of BDNF, which is hypothesized to be one of the mechanisms underlying the improved functional recovery in motor behavior at the early stage of cell transplantation following TBI. Therefore, the protective effect of the BDNF-modified NSCs transplantation is greater than that of the naive NSCs transplantation.  相似文献   

12.
Although stem cells are likely to improve neurological deficits seen after cerebral ischemia, the effects of neural progenitor cells (NPCs) on cerebral ischemia-induced learning dysfunction remain to be clarified. We tested whether the delayed injection of exogenous NPCs could prevent learning dysfunction after cerebral ischemia. Cerebral ischemia was produced by the injection of microspheres into the right hemisphere of each rat. Injection of NPCs obtained from green fluorescent protein transgenic rats into the hippocampus on Day 7 after the induction of cerebral ischemia improved the modified neurological severity score and reduced the prolongation of the escape latency seen in the water maze task. A few of the injected NPCs were positive for mature neuronal markers. In addition, the injected NPCs expressed BDNF on Day 28 after cerebral ischemia. Thus, the exogenous NPCs delivered by injection could act as a source of neurotrophic factors and prevent cerebral ischemia-induced learning dysfunction.  相似文献   

13.

Background

The efficacy of mesenchymal stem cell (MSC) transplantation in ischemic stroke might depend on the timing of administration. We investigated the optimal time point of MSC transplantation. After MSC treatment, we also investigated the expression of matrix metalloproteinases (MMPs), which play a role in vascular and tissue remodeling.

Methods

Human bone marrow-derived MSCs (2 × 106, passage 5) were administrated intravenously after permanent middle cerebral artery occlusion (MCAO) was induced in male Sprague-Dawley rats. First, we determined the time point of MSC transplantation that led to maximal neurological recovery at 1 h, 1 day, and 3 days after MCAO. Next, we measured activity of MMP-2 and MMP-9, neurological recovery, infarction volume, and vascular density after transplanting MSCs at the time that led to maximal neurological recovery.

Results

Among the MSC-transplanted rats, those of the MSC 1-hour group showed maximal recovery in the rotarod test (P = 0.023) and the Longa score (P = 0.018). MMP-2 activity at 1 day after MCAO in the MSC 1-hour group was significantly higher than that in the control group (P = 0.002), but MMP-9 activity was not distinct. The MSC 1-hour group also showed smaller infarction volume and higher vascular density than did the control group.

Conclusions

In a permanent model of rodent MCAO, very early transplantation of human MSCs (1 h after MCAO) produced greater neurological recovery and decreased infraction volume. The elevation of MMP-2 activity and the increase in vascular density after MSC treatment suggest that MSCs might help promote angiogenesis and lead to neurological improvement during the recovery phase after ischemic stroke.  相似文献   

14.
目的:研究骨髓间充质干细胞(MSC)对大鼠脑缺血再灌注损伤的治疗机制。方法:20只Wistar大鼠随机分为对照组和MSC治疗组。应用GFP阳性MSC,再灌注1d后经尾静脉注射MSC(1×106),对照组则注射PBS。采用线栓法建立脑缺血再灌注模型。术后每天由双盲于试验组的研究人员应用爬杆计分法评定大鼠神经功能。缺血2h再灌注8d取脑组织,用免疫组织化学方法检测脑组织中bFGF的表达。结果:MSC治疗组大鼠的神经功能缺损评分明显低于手术组和对照组(P<0.05)。MSC治疗组缺血侧缺血周边区脑组织中观察到GFP阳性与bFGF免疫组化染色阳性细胞。结论:经尾静脉给予的MSC可促进脑缺血再灌注大鼠的运动功能恢复;bFGF表达升高,可能是MSC脑保护作用机制之一。  相似文献   

15.
Chen  Zhenzhen  Hu  Quan  Xie  Qingfeng  Wu  Shamin  Pang  Qiongyi  Liu  Meixia  Zhao  Yun  Tu  Fengxia  Liu  Chan  Chen  Xiang 《Neurochemical research》2019,44(4):930-946

Exercise has been regarded as an effective rehabilitation strategy to facilitate motor and cognitive functional recovery after stroke, even though the complex effects associated with exercise-induced repair of cerebral ischemic injury are not fully elucidated. The enhancement of angiogenesis and neurogenesis, and the improvement of synaptic plasticity following moderate exercise are conducive to functional recovery after ischemic damage. Our previous studies have confirmed the angiogenesis and neurogenesis through the caveolin-1/VEGF pathway in MCAO rats. As an essential neurotrophic factor, BDNF has multiple effects on ischemic injury. In this study, we attempted to determine an additional mechanism of treadmill exercise-mediated motor and cognitive functional recovery through the caveolin-1/VEGF pathway associated with BDNF in the ischemic penumbra of MCAO mice. We found that mice exposed to treadmill exercise after the MCAO operation showed a significant up-regulation in expression of caveolin-1, VEGF, BDNF, synapsin I and CYFIP1 proteins, numbers of cells positive for BrdU/CD34, BDNF, BrdU/NeuN, BrdU/Synapsin I and CYFIP1 expression were increased, which support the reduction in neurological deficit and infarction volume, as well as improved synaptic morphology and spatial learning abilities, compared with the non-exercise mice. However, the caveolin-1 inhibitor, daidzein, resulted in increase in neurological deficit and infarction volume. The selective VEGFR2 inhibitor, PD173074, significantly induced larger infarction volume and neurological injury, and decreased the expression of BDNF in the ischemic penumbra. These findings indicate that exercise improves angiogenesis, neurogenesis and synaptic plasticity to ameliorate motor and cognitive impairment after stroke partially through the caveolin-1/VEGF pathway, which is associated with the coregulator factor, BDNF.

  相似文献   

16.
Ziprasidone is a benzisothiazolyl piperazine derivative that was developed from the chemically related antipsychotic drug tiospirone, and it improves neurological functions of the ischemic brain and is effective in treatment of schizophrenia. Mesenchymal stem cells (MSCs) are considered as a leading candidate for neurological regenerative therapy because of their neural differentiation properties in damaged brain. We investigated whether the transplantation of neural progenitor cells (NPCs) derived from adipose mesenchymal stem cells combined with ziprasidone enhances neuroprotective effects in an animal model of focal cerebral ischemia. In combination therapy groups, significant reduction of infarct volume and improvement of neurological functions were observed at 3 days after middle cerebral artery occlusion (MCAO) compared with monotherapy. Co-administration of ziprasidone and NPCs enhanced the anti-apoptotic effect and reduced the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells compared with the NPCs alone group at 7 days after MCAO. Ziprasidone or the combination of ziprasidone and NPCs induced the expression of endogenous neurotrophic factor gene brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell-derived neurotrophic factor (GDNF). The immunohistochemical investigation revealed that the ziprasidone and NPCs attenuated the increased intensity of microglial marker (Iba-1) in the infarcted cortical area. Moreover, the number of transplanted NPCs on day 7 with combination therapy was significantly higher than with NPCs alone. These effects might be responsible for improved functional behavior and increased survival of NPCs. Our finding indicates that combination therapy of ziprasidone and NPCs enhances neuroprotection against ischemic brain injury.  相似文献   

17.
目的探讨骨髓间充质干细胞(BMSCs)移植对大鼠脑缺血再灌注损伤海马区凋亡相关基因Livin和Caspase-3表达及神经元细胞凋亡的影响。方法实验动物分为假手术组、模型组和BMSCs组,进行神经功能评分,应用TTC法检测脑梗死体积,追踪PKH26标记的移植BMSCs,应用免疫组化方法和Western blot检测Livin、Caspase-3蛋白表达,应用TUNEL法检测细胞凋亡。结果 PKH26标记的BMSCs在海马区有表达。与模型组比较,BMSCs组神经功能评分显著降低(P〈0.05),脑梗死体积显著减少(P〈0.05)。BMSCs组与模型组相比Livin蛋白表达显著增高(P〈0.05),Caspase-3蛋白表达明显下降(P〈0.05),神经元细胞凋亡指数显著降低(P〈0.05)。结论 BMSCs对脑缺血再灌注损伤具有保护作用,其作用机制可能与上调Livin表达,下调Caspase-3表达,抑制细胞凋亡有关。  相似文献   

18.
The generation of dopamine (DA) neurons from stem cells holds great promise in the treatment of Parkinson's disease and other neural disease associated with dysfunction of DA neurons. Mesenchymal stem cells (MSCs) derived from the adult bone marrow show plasticity with regards to generating cells of other germ layers. In addition to reduced ethical concerns, MSCs could be transplanted across allogeneic barriers, making them desirable stem cells for clinical applications. We have reported on the generation of DA cells from human MSCs using sonic hedgehog (SHH), fibroblast growth factor 8 and basic fibroblast growth factor. Despite the secretion of DA, the cells did not show evidence of functional neurons, and were therefore designated DA progenitors. Here, we report on the role of brain-derived neurotrophic factor (BDNF) in the maturation of the MSC-derived DA progenitors. 9-day induced MSCs show significant tropomyosin-receptor-kinase B expression, which correlate with its ligand, BDNF, being able to induce functional maturation. The latter was based on Ca2+ imaging analyses and electrophysiology. BDNF-treated cells showed the following: increases in intracellular Ca2+ upon depolarization and after stimulation with the neurotransmitters acetylcholine and GABA and, post-synaptic currents by electrophysiological analyses. In addition, BDNF induced increased DA release upon depolarization. Taken together, these results demonstrate the crucial role for BDNF in the functional maturation of MSC-derived DA progenitors.  相似文献   

19.
Role of mesenchymal stem cells in neurogenesis and nervous system repair   总被引:1,自引:0,他引:1  
Bone marrow-derived mesenchymal stem cells (MSCs) are attractive candidates for use in regenerative medicine since they are easily accessible and can be readily expanded in vivo, and possess unique immunogenic properties. Moreover, these multipotent cells display intriguing environmental adaptability and secretory capacity. The ability of MSCs to migrate and engraft in a range of tissues has received significant attention. Evidence indicating that MSC transplantation results in functional improvement in animal models of neurological disorders has highlighted exciting potential for their use in neurological cell-based therapies. The manner in which MSCs elicit positive effects in the damaged nervous system remains unclear. Cell fusion and/or ‘transdifferentiation’ phenomena, by which MSCs have been proposed to adopt neural cell phenotypes, occur at very low frequency and are unlikely to fully account for observed neurological improvement. Alternatively, MSC-mediated neural recovery may result from the release of soluble molecules, with MSC-derived growth factors and extracellular matrix components influencing the activity of endogenous neural cells. This review discusses the potential of MSCs as candidates for use in therapies to treat neurological disorders and the molecular and cellular mechanisms by which they are understood to act.  相似文献   

20.
Human mesenchymal stem cells (MSCs) modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF) and the expression of BDNF receptor tyrosine receptor kinase B (TrkB) correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε) and kinesin heavy chain (KIF5B) increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1) decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号