首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study used stratified random sampling to examine the spatial and temporal distribution of zooplankton communities in a large floodplain river (Mississippi River, USA). Potential mechanisms controlling zooplankton abundance and community structure were considered. Main channel and backwater habitats included in this study differed between a turbid upper pool reach where aquatic macrophytes were sparse and a lower pool reach which was considerably less turbid and had extensive aquatic macrophyte coverage. Samples were collected monthly during the summer over a 2-year period and multivariate analysis was used to examine the spatial and temporal distribution of zooplankton. Significant differences were found in zooplankton density and community composition among habitats and reaches within the pool. Rotifers were the dominant taxa and seasonality was pronounced, with peak densities often occurring in late-spring. Community structure varied by habitat and reach, which suggests that water quality, physical habitat characteristics, presence of aquatic macrophytes, and zooplankton sources can all influence the zooplankton communities of the Upper Mississippi River. Characterization of the zooplankton communities provides a basis for understanding changes in the river ecosystem and examination of zooplankton communities among habitats provides insight into the mechanisms affecting zooplankton dynamics.  相似文献   

2.
The meanders and floodplains of the Kushiro River were restored in March 2011. A 1.6‐km stretch of the straightened main channel was remeandered by reconnecting the cutoff former channel and backfilling the straightened reach, and a 2.4‐km meander channel was restored. Additionally, flood levees were removed to promote river–floodplain interactions. There were four objectives of this restoration project: to restore the in‐stream habitat for native fish and invertebrates; to restore floodplain vegetation by increasing flooding frequency and raising the groundwater table; to reduce sediment and nutrient loads in the core wetland areas; to restore a river–floodplain landscape typical to naturally meandering rivers. In this project, not only the natural landscape of a meandering river but also its function was successfully restored. The monitoring results indicated that these goals were likely achieved in the short term after the restoration. The abundance and species richness of fish and invertebrate species increased, most likely because the lentic species that formerly inhabited the cutoff channel remained in the backwater and deep pools created in the restored reach. In addition, lotic species immigrated from neighboring reaches. The removal of flood levees and backfilling of the formerly straightened reach were very effective in increasing the frequency of flooding over the floodplains and raising the water table. The wetland vegetation recovered rapidly 1 year after the completion of the meander restoration. Sediment‐laden floodwater spread over the floodplain, and approximately 80–90% of the fine sediment carried by the water was filtered out by the wetland vegetation.  相似文献   

3.
Questions: 1. How do physiography, flooding regime, landscape pattern, land‐cover history, and local soil conditions influence the presence, community structure and abundance of overstorey trees? 2. Can broad‐scale factors explain variation in the floodplain forest community, or are locally measured soil conditions necessary? Location: Floodplain of the lower 370 km of the Wisconsin River, Wisconsin, USA. Methods: Floodplain forest was sampled in 10 m × 20 m plots [n= 405) during summers of 1999 and 2000 in six 12‐ to 15‐km reaches. Results: Species observed most frequently were Fraxinus pennsylvanica, Acer saccharinum and Ulmus americana. Physiography (e.g. geographic province) and indicators of flooding regime (e.g. relative elevation and distance from main channel) were consistently important in predicting occurrence, community composition, and abundance of trees. Correspondence analysis revealed that flood‐tolerant and intolerant species segregated along the primary axis, and late‐successional species segregated from flood‐tolerant species along the secondary axis. Current landscape configuration only influenced species presence or abundance in forests that developed during recent decades. Land‐cover history was important for tree species presence and for the abundance of late‐successional species. Comparison of statistical models developed with and without soils data suggested that broad‐scale factors such as geographic province generally performed well. Conclusions: Physiography and indicators of flood regime are particularly useful for explaining floodplain forest structure and composition in floodplains with a relatively high proportion of natural cover types.  相似文献   

4.
1. Invertebrate assemblages were described for nine floodplain sites located on a longitudinal gradient of river discharge in the Altamaha River catchment. The Altamaha River and its tributaries constitute one of the few remaining ‘unregulated’ catchments in the southeastern U.S. We predicted that, as the character of lateral flood pulses into backwater swamps changed along the discharge gradient, so would the structure of invertebrate communities. We also examined the relationship between invertebrate assemblages and physicochemical factors (degree of floodplain inundation, pH, conductivity and nutrient concentrations). 2. Cluster analyses of both invertebrate abundance and biomass separated the nine sites into three groups corresponding to their positions in the catchment (upper, mid‐ and lower reach clusters). Non‐metric multidimensional scaling ordinations further corroborated the groupings (with combined axis scores of 92% and 73% for abundance and biomass, respectively) and showed significant correlations with degree of inundation and conductivity (abundance), and conductivity, nitrate and phosphate concentrations (biomass). 3. Floodplains in the upper reaches were dominated by terrestrial taxa, such as earthworms, oribatid mites, collembolans and assorted terrestrial fly larvae, and some rapidly developing aquatics (harpacticoid crustaceans and mosquitoes). In the mid‐reach, the dominant taxa were longer lived aquatic organisms such as mayflies and aquatic oligochaetes, although some terrestrial organisms (elaterid beetles and mites) were still common. Invertebrate families dependent on water flow, such as riffle beetles and some mayflies, were common only in mid‐reach floodplain sites. Lower reaches were dominated by lentic aquatic taxa such as dytiscid beetles and asellid isopods, which commonly persist in wetlands after they dry. 4. Our study indicates that invertebrate community structure varies predictably among floodplains in the Altamaha catchment, with headwater habitats being dominated by terrestrial and rapidly‐developing aquatic invertebrates, mid‐reaches characterised by an influx of invertebrates from the river and lower reaches being dominated by wetland taxa with desiccation‐resistant stages. This spatial variability should be considered when applying the Flood Pulse Concept.  相似文献   

5.
We examined seasonal patterns of spatial variation in understory bird assemblages across a mosaic of upland and floodplain forests in central Amazonia, where variation in flooding patterns and floodwater nutrient load shapes a marked spatial heterogeneity in forest structure and composition. Despite great differences in productivity due to flooding by either nutrient-rich “white waters” (várzea) or nutrient-poor “black waters” (igapó), bird assemblages in the two floodplain forest types were relatively similar, showing lower abundances than adjacent upland forests (terra firme) and sharing a set of species that were absent or scarce elsewhere. Species that breed in pensile nests overhanging water were abundant in floodplain forests, whereas species that feed on the ground were generally scarce. Flooding affected assemblage dynamics in floodplain forests, with some influx of ground-dwelling species such as ant-following birds from adjacent upland during the low-water season, and the occupation by riverine and aquatic species such as kingfishers during floods. Spatial configuration influenced the seasonal pattern of assemblage structuring, with movements from terra firme occurring primarily to adjacent igapó forests. No such influx was detected in várzea forests that were farther from terra firme and isolated by wide river channels. Results support the view that habitat heterogeneity created by flooding strongly contributes to maintain diverse vertebrate assemblages in Amazonia forest landscapes, even in the case of largely sedentary species such as understory forest birds. Including both upland and floodplain forests in Amazonia reserves may thus be essential to preserve bird diversity at the landscape scale.  相似文献   

6.
辽宁省辽河水生态系统健康评价   总被引:20,自引:1,他引:20  
2009年6-8月,在对辽宁省辽河铁岭段、沈阳段、盘锦段20个断面水文、水质、着生藻类、栖息地状况实地调查的基础上,采用主成分分析方法,进行指标的筛选与指标权重的确定,构建了该河流水生态系统健康评价指标体系和健康评价标准体系,并用改进的灰色关联度法对辽河6个断面的水生态系统健康状况进行了评价.结果表明:辽宁省辽河3个评价断面的水生态系统健康程度一般,2个评价断面分别为较差和极差,仅有1个评价断面达到了亚健康程度,说明辽河河流水生态系统生态退化严重,需要进一步加强辽河水系的生态恢复及水环境污染综合治理.  相似文献   

7.
Anthropogenic habitat alteration interferes the natural aquatic habitats and the system''s hydrodynamics in the Yangtze River floodplain lakes, resulting in a serious decline in freshwater biodiversity. Zooplankton communities possess major position in freshwater ecosystems, which play essential parts in maintaining biological balance of freshwater habitats. Knowledge of processes and mechanisms for affecting variations in abundance, biomass, and diversity of zooplankton is important for maintaining biological balance of freshwater ecosystems. Here, we analyzed that the temporal and spatial changes in the structure of zooplankton community and their temporal and spatial variations respond to changes in environmental factors in the middle reach of Yangtze River floodplain lakes. The results showed that zooplankton samples were classified into 128 species, and Rotifera was the most common taxa. Significant seasonal differences were found among the abundance and diversity of zooplankton. Similarly, we also found significant seasonal differences among the biomass of zooplankton functional groups. The spatial turnover component was the main contributor to the β diversity pattern, which indicated that study areas should establish habitat restoration areas to restore regional biodiversity. The NMDS plot showed that the structure of zooplankton community exhibited significant seasonal changes, where the community structure was correlated with pH, water temperature, water depth, salinity, total nitrogen, chlorophyll‐a, and total phosphorus based on RDA. This study highlights that it is very important to ensure the floodplain ecosystem''s original state of functionality for maintaining the regional diversity of the ecosystem as a whole.  相似文献   

8.
We assessed the relationship between habitat heterogeneity and bird species richness and composition within wetlands of the floodplain of the Middle Paraná River, Argentina. Given the high habitat heterogeneity in these wetland systems, we sought to determine whether (i) there was a positive relationship between bird species richness and habitat heterogeneity; (ii) whether bird species richness was associated with certain types of individual habitat types; (iii) whether there was a pattern of species nestedness and turnover between sites as a function of habitat heterogeneity and composition, respectively; and (iv) whether individual species exhibited associations with habitat heterogeneity. Point counts were used to survey birds at 60 sites. We estimated the area of eight habitat types found within a 200‐m radius from the centre of each site and calculated number and Pielou's evenness of habitat types. These indices, together with area proportion of each habitat type, were used as explanatory factors of bird species richness in linear regression models. Habitat heterogeneity per se rather than area of individual habitat types was a more important predictor of species richness in these fluvial wetlands. Sites with more habitat types supported more bird species. Results showed that individual bird species were associated with different habitat types and, therefore, sites that contained more habitat types contained more species. Number of habitat types accounted for species nestedness between sites whereas composition of habitat types accounted for species turnover between sites. Results suggest that selection of heterogeneous sites by individual species could help explain the positive heterogeneity–species richness relationship. Our findings highlight the importance of habitat heterogeneity per se resulting from flood disturbances in maintaining bird richness in fluvial systems.  相似文献   

9.
塔里木河中游洪水漫溢区荒漠河岸林实生苗更新   总被引:2,自引:1,他引:1  
赵振勇  张科  卢磊  周生斌  张慧 《生态学报》2011,31(12):3322-3329
以塔里木河中游荒漠河岸林为研究对象,2008年6月至2009年8月,对洪水漫溢区河漫滩裸地、林下及林隙三种生境植物一年生实生苗进行了调查。结果表明:实生苗更新主要依赖洪水漫溢,在非漫溢区没有发现实生苗存在;洪水降低了漫溢区的土壤盐度,更重要的是其提供了宝贵的水分条件,在时间和水量上都有效地满足了胡杨等植物种子萌发和幼株生长的水分需求;河漫滩是河岸林种子实生苗产生的基地,洪水漫溢后的河漫滩种子实生苗密度显著大于其余两生境内实生苗密度,同时该生境内物种多样性也显著高于林下和林隙生境;光照决定着漫溢区实生苗能否成林,光照不同的空间样点上,实生苗发生数量和个体生长均存在显著差异,光照强的河漫滩,实生苗发生数量较多且幼苗能保持较高的生长活力和较多的生物量积累。  相似文献   

10.
The construction of Pongolapoort Dam in 1973 on the Phongolo River in KwaZulu-Natal, South Africa, has considerably altered the hydrological behaviour and ecological response of the downstream floodplain. Changes in the flooding regime have had implications for the socio-economic importance of the floodplain and for the structure and functioning of its associated wetlands. Previous studies have recommended annual releases of water from the dam to sustain floodplain ecosystem goods and services. The current artificial water releases are limited by the size of the dam's sluices and by the demand for water from the local community. Therefore, water releases do not always follow the original natural flooding regime. To date, the influence of the changed hydrology on the ecology of the Phongolo floodplain system remains poorly known. As a basis for future integrated interdisciplinary research we synthesised the ecological and hydrological work conducted to date on the Phongolo floodplain. We suggest hydro-ecology as an important research direction needed to set environmental flows for the sustainable utilisation and management of the floodplain. Understanding the hydrological behaviour and ecological response of the Phongolo floodplain could help in the implementation of environmental flows by managers at the Department of Water and Sanitation and other stakeholders such as Ezemvelo KZN Wildlife.  相似文献   

11.
Australian floodplain wetlands are sites of high biodiversity that depend on flows from rivers. Dams, diversions and river management have reduced flooding to these wetlands, altering their ecology, and causing the death or poor health of aquatic biota. Four floodplain wetlands (Barmah‐Millewa Forest and Moira Marshes, Chowilla floodplain, Macquarie Marshes, Gwydir wetlands) illustrate these effects with successional changes in aquatic vegetation, reduced vegetation health, declining numbers of water‐birds and nesting, and declining native fish and invertebrate populations. These effects are likely to be widespread as Australia has at least 446 large dams (>10 m crest height) storing 8.8 × 107 ML (106 L) of water, much of which is diverted upstream of floodplain wetlands. More than 50% of floodplain wetlands on developed rivers may no longer flood. Of all of the river basins in Australia, the Murray‐Darling Basin is most affected with dams which can store 103% of annual runoff and 87% of divertible water extracted (1983–84 data). Some floodplain wetlands are now permanent storages. This has changed their biota from one tolerant of a variable flooding regime, to one that withstands permanent flooding. Plans exist to build dams to divert water from many rivers, mainly for irrigation. These plans seldom adequately model subsequent ecological and hydrological impacts to floodplain wetlands. To avoid further loss of wetlands, an improved understanding of the interaction between river flows and floodplain ecology, and investigations into ecological impacts of management practices, is essential.  相似文献   

12.
Habitat change in braided flood plains (Tagliamento, NE-Italy)   总被引:5,自引:0,他引:5  
1. Relative changes and age distribution of habitats were investigated in the active channel of a bar‐braided and an island‐braided reach of the Tagliamento River (NE‐Italy). Between September 1999 and January 2002, six habitat types were delineated with a differential Global Positioning System on five dates following floods of different magnitude. Overlay maps were employed to calculate age and relative change of habitats. We established exponential decay rates (k‐values) for islands and major aquatic habitats. 2. Relative changes of all aquatic habitats combined were up to 82% between survey dates in the bar‐braided flood plain, with a cumulative rate of 85% over the 2.5‐year period. Relative habitat changes in the island‐braided flood plain were lower with a cumulative change of almost 60% during the study period. In the bar‐braided flood plain significant exponential decay relationships were established for channels, alluvial channels, backwaters, and ponds. 3. Half‐lives were particularly short for backwaters and ponds. In the island‐braided reach, significant relationships existed for channels and alluvial channels. The half‐lives of channels and alluvial channels increased with the presence of vegetated islands. Relative habitat composition within the active corridor remained almost constant, supporting the applicability of the shifting mosaic steady state model to braided floodplain ecosystems. 4. Our results indicate that under natural conditions aquatic floodplain habitats can be highly dynamic over short time‐scales. Even small water level fluctuations (‘flow pulses’) can lead to major habitat changes with important consequences for the fauna and flora.  相似文献   

13.
1. The Gambia River is the last major West African river that has not been impounded. However, a hydroelectric dam is being constructed and substantial changes to the hydrology and ecology of the system are expected. 2. Little information is available on the impact of water impoundments in semi‐arid regions on downstream floodplain fish communities, due to the scarcity of pre‐intervention data. Because profound impacts on physical habitat, salinity and nutrient transport can occur downstream of such impoundments, a knowledge of the species‐habitat associations of biota such as fishes is necessary for understanding likely changes and how to limit them. 3. Fish were sampled using cast and hand nets along two transects on the floodplain, and with fyke nets in two ‘bolongs’ (creeks) from May to November 2005 and 2006 in the lower reaches of the Gambia River, close to the salt water front where ecological changes due to the construction of the dam are likely to be pronounced. 4. Greatest fish species richness was associated with low conductivity, low pH and deep water. Bolongs held greater species richness compared with other floodplain habitats, probably because they acted as conduits for fish moving on and off the floodplain. Species richness and catch biomass increased rapidly following the first rains and then declined. 5. Using a multivariate analysis, three main species groups were identified on the floodplain; one associated with deeper water, one with less brackish water and one with shallow, open water. Tilapia guineensis was the commonest species on the floodplains. 6. The floodplains provide nursery habitats as many fish captured were immature, particularly for species where adults are mainly encountered in the main channel. Several small‐sized floodplain specialists were also represented by a high proportion of mature individuals. 7. Impoundment is expected to reduce seasonal flooding of the floodplain in the lower Gambia River, downstream of the impoundment, resulting in reduced occurrence of aquatic habitats, especially bolongs, together with lower dissolved oxygen and increased salinity, leading to alteration of the floodplain fish communities, benefiting salt‐tolerant species, reducing overall species richness and probably reducing floodplain fish production.  相似文献   

14.
三峡库区支流生境因子对库区蓄水的响应   总被引:2,自引:0,他引:2  
三峡水库的运行调度,使库区支流形成了截然不同的3种河段类型:完全受水库蓄水影响的145m回水段(完全河段),既受蓄水影响又受自然洪汛影响的145—175m回水段(双重河段)以及不受蓄水影响的大于175m的自然河流段(自然河段)。为明确库区蓄水对河流不同河段生境因子的影响程度及差异,对三峡库区36条重要支流的254个河段进行河流生境调查,进行不同河段下生境指标的因子分析,并进一步分析水文情势自然性与不同河段各生境因子的相关关系。结果表明,植被状况对3种不同河段来说均为重要生境因子,但受三峡水库蓄水影响,完全河段植被结构不完整;受库区蓄水影响,完全河段与双重河段及自然河段相比,流速流态状况、表层覆盖物状况、河岸带宽度、湿润率等生境因子有明显改变;水文情势自然性对不同河段生境因子的影响不同。  相似文献   

15.
We investigated temporal effects of restoration on river morphology, on species and functional composition of benthic invertebrates, floodplain vegetation and carabid beetles at three study sites in the mountain river Lahn (Germany). We sampled restored and nearby non-restored sections 3–5 years and 7–9 years after restoration. In the restored sections, instream microhabitat heterogeneity was higher due to the increased presence of finer substrates, while cobbles and coarse gravel were still dominant. Instream habitat composition did not change between the two sampling events. Areas of restored floodplain were characterized by a more diverse habitat mosaic and by unvegetated bars, vegetated islands and secondary channels. In restored sections, floodplain habitat heterogeneity was maintained 7–9 years after restoration, but vegetated areas increased, while unvegetated bars and aquatic areas decreased. The species composition of all studied groups was more variable over time in restored than non-restored sections. In contrast to benthic invertebrates, the immigration rate of floodplain vegetation and carabid beetle species was higher in restored sections. Assemblage composition of all three organism groups changed over time, with the highest change in carabid beetles and smallest in benthic invertebrates. Restoration changed the abundances of functional response groups, mainly for carabid beetles, by supporting species that indicate increased hydrodynamics and early successional stages. Changes of functional response groups in non-restored and restored sections across time indicated decreased hydrodynamics or hydrological connectivity for all organism groups. Although the response of organism groups differed, our results support the conjecture that restored sections accumulate species and enhance the local species pool.  相似文献   

16.
Abstract. Changes are described in aquatic vegetation in oligotrophic, groundwater-fed Rhine floodplain streams in Alsace (eastern France), resulting from disturbance. Disturbance factors include changes in nutrients, either permanent ones - effluent from a waste water treatment plant or trout hatcheries - or periodic ones: flooding. Regular inputs of high levels of phosphate and ammonia modified the macrophyte vegetation in these streams. The floristic composition, which was characteristic of oligotrophic waters upstream of the eutrophicated sector, changed to that of a eutrophic situation as originally found downstream. Periodic disturbance by floods which normally occur once a year, irregularly eutrophicates the small streams, causing the development of a mixture of eutrophic and oligotrophic species. Six macrophyte communities are distinguished, indicating different trophic levels. The aquatic vegetation is adapted to the variations of phosphate and ammonia levels. Hence, aquatic macrophytes can be used as bio-indicators of fluctuations in water nutrient levels in relation to the type of disturbance.  相似文献   

17.
River floodplains are composed of a shifting mosaic of aquatic and terrestrial habitats. Each habitat type exhibits distinct environmental and ecological properties. Temperature is a key property driving ecological processes and controlling the composition and distribution of biota. However, given the size and complexity of floodplains, ground surveys based on point measurements are spatially limited. In this study, we applied thermal infrared (IR) imagery to quantify surface temperature patterns at 12–15 min intervals over 24 h cycles in two near-natural Alpine river floodplains (Roseg, Tagliamento). Furthermore, vertical temperature distribution was measured at 3–5 min intervals in unsaturated gravel sediment deposits (at 1 cm distances; 0–29 cm depth). Each habitat type exhibited a distinct thermal signature creating a complex thermal mosaic. The diel temperature pulse and maximum daily temperature were the main thermal components that differentiated habitat types. In both floodplains, exposed gravel sediments exhibited the highest diel pulse (up to 23°C), whereas in aquatic habitats the pulse was as low as 11°C (main channel in the Roseg floodplain). In the unsaturated gravel sediment deposits, the maximum diel kinetic temperature pulse ranged from 40.4°C (sediment surface) to 2.7°C (29 cm sediment depth). Vertically, the spatiotemporal variation of temperature was about as high as horizontally across the entire floodplain surface. This study emphasized that remotely sensed thermal IR imagery provides a powerful non-invasive method to quantitatively assess thermal heterogeneity of complex aquatic and terrestrial ecosystems at a resolution required to understand ecosystem processes and the distribution of biota.  相似文献   

18.
Aim Aspects of connectivity and continuity operating in the River Meuse were analysed for their contribution to the biodiversity of the floodplain. From this analysis of the diversity and composition of the meadow communities, we aimed to derive effective biodiversity conservation strategies. Location The River Meuse is one of the larger rivers in the European Western Plains ecoregion. The alluvial plains of the river have a long history of cultivation, and for these plains the floodplain meadow vegetation is a highly appreciated and valuable nature conservation asset. Method We sampled floodplain meadows from 400 km of the six geomorphic reaches of the middle to lower course of the River Meuse. For each, 50 vascular plant relevés were recorded, representing the spectrum of floodplain meadow communities of that reach. Beta diversity was calculated to quantify similarity in species pools between the reaches. A dissimilarity formula was used to determine the turnover between the reaches, and these dissimilarities were compared with a Mantel test to detect whether species composition of the floodplain meadows exhibited connectivity and continuity between the reaches. Species richness for the floodplain vegetation data of the reaches was compared with data for riparian invertebrate communities. The vegetation data sets were ordinated using detrended correspondence analysis (DCA) to reveal patterns in the floodplain meadow species composition, and the DCA axes were related to plant functional groups and population strategies. The axis scores of the species and plots were linked to river and plant species traits. Results We did not observe an overall continuity trend in similarity, nor one in diversity in a downstream direction. Lateral connectivity was highlighted by the dissimilarity between the reaches and in the influxes of species from adjacent ecoregions. The DCA ordination showed statistically significant separations between reaches and between the plant functional groups. The second DCA axis related to the longitudinal gradient of the river, whereas the first axis showed stronger correlations with river and plant species traits. We termed this axis the ‘disorder axis’. Plant invaders and avoiders are located at the left side of the disorder axis, whereas the true river‐adapted categories of resisters and endurers are at the right extremity. Contributions to the disorder were identified in terms of connectivity with adjacent ecoregions and the physical disturbance regime of natural and anthropogenic perturbations, resulting in community changes between the reaches. Main conclusions We concluded that a single overall strategy for biodiversity conservation of the river or its floodplains is not feasible. Strategies can, however, be derived for separate river reaches based on functional groups in the communities, the disorder characteristics of the reach, and the influence of surrounding ecoregions.  相似文献   

19.
Jan Douda 《植被学杂志》2010,21(6):1110-1124
Questions: What is the relative importance of landscape variables compared to habitat quality variables in determining species composition in floodplain forests across different physiographic areas? How do species composition and species traits relate to effects of particular landscape variables? Do lowland and mountain areas differ in effects of landscape variables on species composition? Location: Southern Czech Republic. Methods: A total of 240 vegetation relevés of floodplain forests with measured site conditions were recorded across six physiographic areas. I tested how physiographic area, habitat quality variables and landscape variables such as current land‐cover categories, forest continuity, forest size and urbanization influenced plant species composition. I also compared how mountain and lowland areas differ in terms of the relative importance of these variables. To determine how landscape configuration affects the distribution of species traits, relationships of traits and species affinity with landscape variables were tested. Results: Among landscape variables, forest continuity, landscape forest cover and distance to nearest settlement altered the vegetation. These variables also influenced the distributions of species traits, i.e. life forms, life strategies, affinity to forest, dispersal modes, seed characteristics, flooding tolerance and Ellenberg indicator values for nitrogen, light, moisture and soil reaction. Nevertheless, physiographic area and habitat quality variables explained more variation in species composition. Landscape variables were more important in lowland areas. Forest continuity affected species composition only in lowlands. Conclusions: Although habitat quality and physiographic area explained more vegetation variability, landscape configuration was also a key factor influencing species composition and distribution of species traits. However, the results are dependent on forest geographical location, with lowland forests being more influenced by landscape variables compared to mountain forests.  相似文献   

20.
Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号