首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.  相似文献   

2.
Realizing the potential of Embryo transfer (ET) for rapid, cheap and widespread dissemination of genetic material, the risk of transmission disease through the embryos must be considered. The aim of this paper is to evaluate theses risks at each step of production, storage and transfer. The pathogen agent may potentially originate from the donor male (semen) or the donor female (oocytes, embryos) and finally from the environmental conditions. As the differences between in vivo and in vitro derived embryos have been well described, evaluation of the potential risks should be assessed separately for in vivo and in vitro produced embryos. Even if this paper insist on the diseases or diseases agents that are more questionable, it clearly appears that ET remains the more safety way to transfer gene, provided prevention measures are properly handled (use of donor that are specific pathogen free, washing of embryos, additional treatment...) and furthermore it can be easily seen as the best way to prevent some disease transmissions (TSEs, leukosis, foot-and-mouth disease...).  相似文献   

3.
Infectious agents in systems for producing bovine embryos might reduce the number and quality of embryos generated, result in transmission of disease to recipients and offspring, or confound findings of research. Embryo-associated pathogens might also jeopardize human health when the goal of embryo production is creating transgenic animals intended to be a source of pharmaceuticals or organs. This paper addresses risks and resulting hazards of pathogen and microbial contaminant introduction into in vivo or in vitro embryo production systems. Additionally, methods for prevention and quality control are discussed.  相似文献   

4.
This study examined whether the viability, determined in vitro, of DNA-injected bovine embryos produced in vitro was affected by freezing, and if the frozen embryos developed to term following transfer to recipients. In vitro fertilized zygotes were injected with the pBL1 gene and then co-cultured with mouse embryonic fibroblasts (MEF) in CR1aa medium. Embryos were prepared for cryopreservation by exposure to a 10% (v/v) glycerol solution, loaded into 0.25 ml straws and then frozen by conventional slow freezing. Thawing was by rapid warming in water (37 degrees C) and embryos were rehydrated in PBS diluents of 6%, 3% and 0% (v/v) glycerol supplemented with 0.25 M sucrose and 0.5% (w/v) BSA. In Experiment 1, blastocysts that developed from DNA-injected embryos were individually classified into three morphological groups and three stages of development prior to freezing. DNA-injected blastocysts of excellent quality at freezing showed a higher survival rate (78.8+/-10.6%) after thawing than those of good (60. 9+/-16.4%) or fair (12.5+/-5.9%) quality (P<0.05). Post-thaw survival rate, judged in vitro, increased with more advanced stage of blastocyst development at freezing (early 48.8+/-15.9%, mid 52. 1+/-12.6% and expanded 71.2+/-1.1; P<0.05). In Experiment 2, the frozen/thawed embryos were transferred to recipients to examine in vivo viability. Following transfer of one or two embryos per recipient, pregnancy rates at 60 days of gestation were 13.6% (13/96) for frozen embryos and 26.5% (43/162) for fresh embryos (P<0. 05). Of the 12 live calves born from the frozen/thawed embryos, two males (18.3%) were transgenic. None of the live-born calves derived from fresh embryos exhibited the transgene. One of transgenic bulls did not produce transgenic sperm. Three out of 23 calves (13.0%) produced from cows inseminated with semen of the other bull were transgenic, suggesting that this animal was a germ-line mosaic. These studies indicated that the viability of in vitro produced, DNA-injected bovine blastocysts was affected by freezing and by both the quality and stage of development of the embryo prior to freezing. The generation of transgenic cattle demonstrates that it is feasible to freeze DNA-injected, in vitro produced embryos.  相似文献   

5.
Dattena M  Ptak G  Loi P  Cappai P 《Theriogenology》2000,53(8):1511-1519
Ovine blastocysts were produced by maturation, fertilization and in vitro culture (IVM/IVF/IVC) of oocytes from slaughtered adult and prepubertal ewes and collection from superovulated and inseminated adult animals. Dulbecco's PBS supplemented with 0.3 mM Na Pyruvate and 20% FCS was used as the basic cryopreservation solution. The embryos were exposed to the vitrification solution as follows: 10% glycerol (G) for 5 min, then 10% G +20% ethylene glycol (EG) for 5 min. Embryos were placed into 25% G + 25% EG in the center of 0.25- mL straws and plunged immediately into LN2. Warming was done by placing the straws into a water bath at 37 degrees C for 20 sec, and their contents were expelled into a 0.5 M sucrose solution for 3 min; the embryos were then transferred into 0.25 M and 0.125 M sucrose solution for 3 min each. Warmed blastocysts were transferred to the culture medium for 24 h. Survival was defined as the re-expansion of the blastocoele. All surviving blastocysts were transferred to synchronized recipient ewes, and the pregnancy was allowed to go to term. Of 68 vitrified in vitro produced blastocysts, 46 re-expanded (67.6%) and 10 lambs were born (14.7%). From the 62 in vivo derived and vitrified embryos, 52 re-expanded (83.8%) and 39 lambs were born (62.9%). The lambing rate of in vitro produced fresh transfer embryos was 40% (20 lambs/50 blastocysts transferred), and of the 32 in vivo derived blastocysts and transferred fresh, 26 lambs were born (81.2%). The results indicate that in vitro produced embryos can be successfully cryopreserved by vitrification.  相似文献   

6.
In general, pig embryos established by somatic cell nuclear transfer (SCNT) are transferred at the one‐cell stage because of suboptimal embryo culture conditions. Improvements in embryo culture can increase the practical application of late embryo transfer. The goal of this study was to evaluate embryos cultured with granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) in vitro, and to track the in vivo developmental competency of SCNT‐derived blastocysts from these GM‐CSF embryos. The receptor for GM‐CSF was up‐regulated in in vitro‐produced embryos when compared to in vivo‐produced cohorts, but the level decreased when GM‐CSF was present. In vitro fertilized (IVF) embryos, supplemented with GM‐CSF (2 or 10 ng/ml), showed a higher frequency of development to the blastocyst stage compared to controls. The total cell numbers of the blastocysts also increased with supplementation of GM‐CSF. Molecular analysis demonstrates that IVF‐derived blastocysts cultured with GM‐CSF exhibit less apoptotic activity. Similarly, an increase in development to the blastocyst stage and an increase in the average total‐cell number in the blastocysts were observed when SCNT‐derived embryos were cultured with either concentration of GM‐CSF (2 or 10 ng/ml). When SCNT‐derived embryos, cultured with 10 ng/ml GM‐CSF, were transferred into six surrogates at Day 6, five of the surrogates became pregnant and delivered healthy piglets. Our findings suggest that supplementation of GM‐CSF can provide better culture conditions for IVF‐ and SCNT‐derived embryos, and pig SCNT‐derived embryos cultured with GM‐CSF in vitro can successfully produce piglets when transferred into surrogates at the blastocyst stage. Thus, it may be practical to begin performing SCNT‐derived embryo transfer at the blastocyst stage. Mol. Reprod. Dev. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Perturbations of the development of preimplantation embryos may have long-term consequences for the health of progeny. There are no standardized methods for assessing such risks. The OECD/OCDE 416 Guideline for Testing of Chemicals (Two-Generation Reproduction Toxicity Study) is a standardized assay for detecting potential toxic effects of chemicals. The present study assessed the utility of this guideline for identifying long-term consequences of perturbing preimplantation development. Extended culturing of mammalian zygotes commonly results in retarded preimplantation development. Mouse zygotes were cultured in vitro for 96 h until the blastocyst stage (cultured blastocysts) or blastocysts were collected from the Day-3.5 uterus (in vivo blastocysts). The resulting blastocysts were transferred to the uteri of pseudopregnant recipients (P generation). Progeny from both treatments were mated for a further two generations (F1 and F2 generations). There was no effect of treatment group on gross fertility across the generations tested. Progeny of the cultured blastocysts had lower body weights to the time of weaning compared to in vivo blastocysts in the P and F1 generations, but not in the F2 generation. At maturity, there was no effect of treatment group on body weight, although thyroid weight was higher in the in vivo blastocyst group in the P generation, while the brain, pituitary, and kidneys were larger in the progeny of the cultured blastocysts of the F1 generation. The OECD/OCDE 416 assessment may have a role as a standardized test for the assessment of the biological consequences of perturbing the growth environment of the preimplantation embryo. Embryo culture influenced the somatometric parameters of the resulting progeny, some of which were maintained across a generation.  相似文献   

8.
To date, cloned farm animals have been produced by nuclear transfer from embryonic, fetal, and adult cell types. However, mice completely derived from embryonic stem (ES) cells have been produced by aggregation with tetraploid embryos. The objective of the present study was to generate offspring completely derived from bovine ES-like cells. ES-like cells isolated from the inner cell mass of in vitro-produced embryos were aggregated with tetraploid bovine embryos generated by electrofusion at the 2-cell stage. A total of 77 embryo aggregates produced by coculture of two 8-cell-stage tetraploid embryos and a clump of ES-like cells were cultured in vitro. Twenty-eight of the aggregates developed to the blastocyst stage, and 12 of these were transferred to recipient cows. Six calves representing 2 singletons and 2 sets of twins were produced from the transfer of the chimeric embryos. Microsatellite analysis for the 6 calves demonstrated that one calf was chimeric in the hair roots and the another was chimeric in the liver. However, unfortunately, both of these calves died shortly after birth. Two of the placentae from the remaining pregnancies were also chimeric. These results indicate that the bovine ES-like cells used in these studies were able to contribute to development.  相似文献   

9.
It has long been known that several embryos are needed to establish and maintain pregnancy during early gestation in pigs. In this study, we assessed whether co-transfer of parthenogenotes with a single embryo was sufficient to maintain development of the embryo. Embryos were recovered at morula and early blastocyst stages from gilts that had been artificially inseminated. Parthenogenotes were produced from oocytes matured in vitro, activated by electrical stimulation, and then cultured for 110h. Those that had developed to morula- or blastocyst-like stages at 110h post-activation were transferred to recipient pigs either with or without morula or blastocyst stage embryos. Parthenogenotes that were transferred to recipients in the absence of embryos were viable up to 30 days post-activation and formed limb-buds; at 40 days, however, all were dead or degenerate. Among pigs that received both parthenogenotes and a single embryo, seven of nine (77.8%) delivered a normal piglet at full-term. This study therefore demonstrates that parthenogenotes can be used in place of embryos to establish pregnancy and promote development of a single co-transferred embryo. This method may be applied to rescue high value porcine embryos that are difficult to produce, such as transgenic cloned embryos, or for embryos frozen as a genetic resource.  相似文献   

10.
11.
To accurately analyze the function of transgene(s)of interest in transgenic mice,and togenerate credible transgenic animal models for multifarious human diseases to precisely mimic human dis-ease states,it is critical to tightly regulate gene expression in the animals in a conditional manner.The abilityto turn gene expression on or off in the restricted cells or tissues at specific time permits unprecedentedflexibility in dissecting gene functions in health and disease.Pioneering studies in conditional transgene ex-pression have brought about the development of a wide variety of controlled gene expression systems,whichmeet this criterion.Among them,the tetracycline-controlled expression systems(e.g.Tet-off system andTet-on system)have been used extensively in vitro and in vivo.In recent years,some strategies derived fromtetracycline-inducible system alone,as well as the combined use of Tet-based systems and Cre/lox P switch-ing gene expression system,have been newly developed to allow more flexibility for exploring gene functionsin health and disease,and produce credible transgenic animal models for various human diseases.In thisreview these newly developed strategies are discussed.  相似文献   

12.
Vitrification of in vivo and in vitro produced ovine blastocysts.   总被引:2,自引:0,他引:2  
Although cryopreservation of bovine embryo has made great progress in recent years, little achievement was obtained in ovine embryo freezing, especially in vitro produced embryos. However, a simple and efficient method for cryopreservation of sheep embryos will be important for application of ovine embryonic techniques such as in vitro fertilization, transgenic, cloning and etc. In this study ovine blastocysts, produced in vivo or in vitro, were cryopreserved by vitrification in EFS40 (40% ethylene glycol (EG), 18% ficoll and 0.5 M sucrose) or GFS40 (40% glycerol (GL), 18% ficoll and 0.5 Mol sucrose). In vitro produced, early blastocysts were directly plunged into liquid nitrogen (LN2) after preparation by one of the following procedures at 25 degrees C: (A) equilibration in EFS40 for 1 min; (B) equilibration in EFS40 for 2 min; (C) equilibration in EFS40 for 30 s following pretreatment in 10% EG for 5 min; (D) equilibration in EFS40 for 30 s following pretreatment in EFS20 for 2 min (E) equilibration in GFS30 for 30 s following pretreatment in 10% GL for 5 min. The survival rates observed after thawing and in vitro culture for 12 h were A 78.0% (39/50), B 50.0% (26/52), C 93.3% (70/75), D 92.0% (46/50) and E 68.0% (34/50). Survival rates were not significantly different for treatments C and D (p>0.05), but those for groups C and D were significantly higher than for A, B and E (p<0.05). After 24 h in vitro culture, hatched blastocyst rates were A 28.0% (14/50), B 21.1% (11/52), C 49.3% (37/75), D 48.0% (24/50), E 32.0% (16/50) and control 54.0% (27/50). The hatching rates for groups A, B and E were significantly lower than the control (p<0.05) in which early IVF blastocysts were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min, but for groups C and D it was similar to the control (p>0.05). The freezing procedures A, B and C were used to vitrify in vivo produced, early blastocysts recovered from superovulated ewes. The survival rates of frozen-thawed in vivo embryos were A 94.7% (72/76), B 75.0% (45/60) and C 96.4% (54/56) and for group B was significantly lower than for the other two treatment groups (p<0.05). Hatched blastocyst rates were A 46.0% (35/76), B 26.6% (16/60), C 51.8% (29/56) and the control 56.7% (34/60) in which early blastocysts from superovulation were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min. The hatching rate for treatment B was significantly lower than for the control (p<0.05) but did not differ between groups A, C and the control (p>0.05). Frozen-thawed embryos vitrified by procedure C were transferred into synchronous recipient ewes. Pregnancy and lambing rates were similar for embryos transferred fresh or frozen/thawed for both in vivo and in vitro produced embryos. These rates did not differ between in vivo and in vitro embryos transferred fresh (p>0.05). However, for frozen-thawed embryos, both rates were significantly lower for in vitro than for in vivo produced embryos (p<0.05).  相似文献   

13.
We produced aggregate chimeric embryos between blastomeres from the somatic cell nuclear transfer (SCNT) embryos and blastomeres from normal embryos. The SCNT embryos were produced by fusing enucleated oocytes with GFP gene introduced fibroblast cells, which were derived from a day 16 fetus. GFP gene-introduced fibroblast cells were cultured and passaged four to 12 times over a period of 45-79 days before SCNT. After transferring them into pseudopregnant recipient rabbits, the 15-day postcoitus fetuses were collected. We examined the existence of the cells derived from SCNT embryos in the fetus stage of pregnancy to detect the GFP gene. Fetuses that were not collected continued to develop into newborn rabbits. Two hundred and thirty-six chimeric embryos were produced using 39 SCNT morula stage embryos, and these embryos were transferred to 11 recipient rabbits. As a result, 27 normally developed and 16 degenerated concepti were obtained. The GFP gene-positive signals were detected in one of the fetuses, two of the placentae, and two of the degenerated concepti. In this study, we found that the rabbit SCNT embryos have the ability to develop and differentiate in vivo. We also demonstrated a novel method of producing a transgenic rabbit using SCNT.  相似文献   

14.
Hosaka K  Sato K 《Human cell》2002,15(4):224-229
This study was carried out to transform embryonic stem (ES) cells and to produce the reconstituted embryos derived from transgenic ES cell nuclei. Then, in vitro/vivo developmental potency of transgenic ES cells were compared to that of control ES cells (non-transgenic ES cells) in the reconstituted embryos. Unfertilized B6D2F1 ooplasm at metaphase II (M II) and two kinds of ES cell lines, 129SV and transgenic (tg) 129SV transformed by EGFP gene, were used as nuclear recipients and nuclear donors, respectively. The M II chromosome-spindle complex was aspirated into the pipette with a minimal volume of ooplasm. After enucleation, the ES cell nuclei was injected into the enucleated ooplasm directly. Then, reconstituted embryos were activated in SrCl2, and they were cultured in HTF medium. There was no difference of developmental rate between reconstituted embryos derived from the control (non-transgenic) and the tg ES cells. From this result, we indicated that transgenic ES cells might not change the property of peculiarity of the ES cell by gene transfer. The expression of GFP gene in the embryos was observed by fluorescence microscope at the 4-cell and more stage. As comparison with development of the embryos derived from the control and tg ES cells, the difference of the development could not be confirmed between the two cell groups. When the reconstituted embryos derived from the control and tg ES cells were transferred into oviduct or uterus of pseudopregnant females, fetuses were observed 13.5 days post coitum. However, in all fetuses, developmental arrest and regression were seen 19.5 days post coitum.  相似文献   

15.
Eyestone WH 《Theriogenology》1999,51(2):509-517
Transgenic technology permits major modifications of phenotype by introducing subtle changes in genotype. For domestic farm species, genetic modification may be used to enhance agricultural production or to generate novel genotypes capable of producing heterologous proteins for biomedical applications. The advent of in vitro embryo production techniques has facilitated the large-scale, commercial use of transgenic technology in cattle. Accordingly, we employed in vitro-produced zygotes and embryos in an effort to generate transgenic cattle. Overall, pronuclei in 36,530 in vitro matured and fertilized zygotes were microinjected with a construct designed to express human alpha-lactalbumin in the mammary gland. Of these, 1,472 developed and were transferred to recipients, including 148 twin transfers. Initial pregnancy rate on Day 30 of gestation was 28% (374/1,324). Subsequent calving rate was 17% (226/1,324). Eighteen calves (8%) were transgenic. In vitro produced embryos were used to facilitate breeding of transgenic bulls. Frequency of transgene transmission varied from 3 to 54% between bulls, indicating varying degrees mosaicism. Embryos produced in vitro by these bulls were biopsied and screened for transgenesis prior to transfer to recipients; so far all (6/6) calves born from screened, transgenic embryos were themselves transgenic.  相似文献   

16.
The efficiency of transgenic animal production would increase if microinjected embryos with a successfully integrated transgene could be identified prior to transfer. It is possible to detect microinjected DNA in embryos. However, no reliable system is able to distinguish between transgenes merely present as extrachromosomal DNA and those that have been integrated into chromatin. The experiments reported here were designed to determine if the inclusion of matrix attachment regions (MARs) would enhance the efficiency of transgenic embryos identification using a selection scheme based on the expression of green fluorescent protein (GFP). Pronuclei of mouse embryos were microinjected with GFP reporter gene under the control of three different promoters and flanked or not by three different MAR elements. Transgene expression profiles were followed by direct visualization of GFP in cultured microinjected embryos. Embryos at different developmental stages were classified according to their GFP expression and groups with the same expression pattern were transferred into oviducts of pseudopregnant female mice. Fetuses were collected between days 12–15, and their genomic DNA was purified and analyzed to detect transgene integration. We did not find any statistically significant difference between the percentage of transgenic fetuses produced from GFP-positive or GFP-negative embryos transferred at 4-cell, morula, or blastocyst stage. However, when MAR elements were included in the construct, we found that GFP-positive embryos transferred at the 2-cell stage produced a significantly higher percentage of transgenic fetuses than GFP-negative embryos, but MAR sequences did not completely eliminate false positives.  相似文献   

17.
The efficacy of different vitrification solutions to cryopreserve in vitro produced bovine blastocysts was evaluated based upon in vitro development of embryos in culture and on in vivo development of embryos transferred into recipients. In the first experiment, ethylene glycol + glycerol (Eg + Gly) + different sucrose concentrations were evaluated. There were no significant differences in development rates among solutions. As for hatching, the Eg + Gly + 0.1 M sucrose group had a greater rate as compared with Eg + Gly + 0 M sucrose and Eg + Gly + 0.5 M sucrose groups in the evaluations of Day 6, Day 7 and Day 6 + Day 7 embryos; and, Eg + Gly + 0.3 M sucrose group had a greater rate as compared with the Eg + Gly + 0 M sucrose and Eg + Gly + 0.5 M sucrose groups in evaluations of Day 6 and Day 6 + Day 7 embryos. There were no significant differences in development and hatching rates between Day 6 and 7 in in vitro produced bovine embryos within each treatment group. There were significant differences in nuclei number after vitrification between Eg + Gly + 0.1 M and Eg + Gly + 0 M sucrose groups and the Eg + Gly + 0.5 M sucrose group. Pregnancy after 60 days of transfer and calving rates showed a difference between in vivo produced embryos freshly transferred and in vitro produced embryos vitrified with Eg + Gly + 0.3 M. There were no significant differences in gestation length and sex ratio between treatments. As for birth weight, there were significant differences between fresh in vivo produced embryos and all treatments of in vitro produced embryos. There were significant differences in dystocial parturition between in vivo produced embryos and all treatments with in vitro produced embryos. These results demonstrate that vitrification can be used successfully in the cryopreservation of in vitro produced bovine embryos, and that it might be considered for use in commercial programs.  相似文献   

18.
The majority of somatic cell nuclear transfer (SCNT) clones dies in the peri- or postimplantation period. Improvement of the full-term healthy pregnancy rates is a key issue for the economical viability and animal welfare profile of SCNT technology. In this study the effects of cotransfer of parthenogenetic or fertilized embryos on the pregnancy and implantation of SCNT mouse embryos have been investigated. SCNT embryos were produced by transferring cumulus cell nuclei into enucleated B6D2F1 mouse oocytes, whereas parthenogenetically activated (PA) and fertilized embryos were derived from ICR mice by artificial activation with strontium and in vivo fertilization, respectively. SCNT embryos were inferior in their developmental capacity to blastocyst compared to either PA or fertilized embryos. SCNT embryos were transferred alone (SCNT), or cotransferred with two to three PA (SCNT + PA) or fertilized (SCNT + Fert) embryos into the oviducts of an ICR recipient. Both pregnancy and implantation rates originating from clones in the SCNT + PA group were significantly higher than those of SCNT group (p < 0.05). The weight of placentas of clones derived from SCNT, SCNT + PA, or SCNT + Fert was in all cases significantly higher than that of fertilized controls (p < 0.001). Most of the clones derived from SCNT embryos cotransferred with PA or fertilized embryos survived to adulthood and were fertile and healthy according to histopathological observations. Our results demonstrate in mouse that cotransfer of PA embryos improves the pregnancy and implantation of SCNT embryos without compromising the overall health of the resulting clones.  相似文献   

19.
Kim MJ  Kang KH  Kim CH  Choi SY 《BioTechniques》2008,45(3):331-334
Mitochondria maintain a web-shaped network in cells through a balance between fusion and fission. Under certain physiological and pathological conditions, this balance is breached, and as a result, change in mitochondrial morphology ensues. Real-time monitoring of such change is of significant importance for studying mitochondrial physiology and pathology, such as apoptosis, aging, and neurodegeneration. Numerous studies have been conducted in animal cell culture systems concerning mitochondrial morphology change. However, very little is known to date about the real-time changes in mitochondrial morphology at the organism level due to difficulties in observation and administration of mitochondria-disrupting drugs. Here we report the generation of transgenic zebrafish (Danio rerio) expressing mitochondrially targeted green fluorescent protein (GFP). The transparency of transgenic zebrafish embryos make it possible to monitor mitochondrial morphology in real time and in vivo. Since zebrafish inhabit fresh water, incubating zebrafish in drug-dissolved water sufficed to administer drugs to the zebrafish. We observed real-time and in vivo fragmentation of mitochondria in the transgenic embryos upon incubation in water with the following apoptosis-inducing drugs: valinomycin, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), and staurosporine. Thus, the transgenic zebrafish we generated could provide a platform for research on apoptosis and mitochondrial physiology and a screen for apoptosis-modulating drugs. It could also facilitate study of the pathogenesis of apoptosis-related diseases.  相似文献   

20.
Li GP  Tan JH  Sun QY  Meng QG  Yue KZ  Sun XS  Li ZY  Wang HB  Xu LB 《Cloning》2000,2(1):45-52
Nuclear transplantation in the pig is more difficult than in other domestic animals and only one embryonic nuclear transplantation (NT) pig has been born to date. In this study, reconstituted porcine embryos were produced by electrofusion of blastomeres from in vivo four-cell embryos to enucleated in vivo or in vitro matured (IVM) oocytes. Nuclear transfer using cumulus cells as nuclear donors was also conducted. When blastomeres were used as donors, the electrofusion rate was significantly higher in oocytes matured in vivo (91.5%) than in those matured in vitro (66.1%) (p < 0.01). After fusion, the NT embryos reconstituted from in vivo matured oocytes developed to blastocysts at a rate of 10.3% after culture in rabbit oviducts for up to 5 days, while only 5.9% of the NT embryos reconstructed from in vitro matured oocytes developed to blastocyst stage. Electrofusion rate of cumulus cell nuclei with enucleated IVM oocytes was lower (47.6%) and only 1.5% (2/136) of the reconstituted eggs developed in vitro to morula stage, and 1.9% developed to blastocysts when cultured in the ligated rabbit oviducts. Transfer of 94 embryos reconstructed by blastomere NT with in vivo matured oocytes to five synchronous recipients resulted in the birth of two cloned piglets. No piglet was born following transfer to two recipients of embryos (n = 39) derived from NT with in vitro matured oocytes. The results demonstrate that in vivo matured oocytes are better recipients than those matured in vitro for pig cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号