首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When heat-activated F1-ATPase from chloroplasts was repeatedly exposed to Mg2+ and 2-azido-ATP, followed by separation from medium nucleotides and photolysis, a total of two sites per enzyme, both catalytic and noncatalytic, were labeled. In a coupled assay with pyruvate kinase about half the activity was lost when one site per enzyme was modified. However, increased modification resulted in no further loss of activity. In contrast, methanol-sulfite activation of the enzyme showed a loss of most of the catalytic capacity when one site per enzyme was modified. Predominant labeling of either one catalytic or one noncatalytic site caused a loss of most of the activity in either assay. An indication that the enzyme modified at one site retained some catalytic activity was verified by measurement of the [18O]Pi species formed when [gamma-18O]ATP was hydrolyzed by partially derivatized enzyme. With either catalytic or noncatalytic site modification, the distributions of [18O]Pi species formed showed that the modified enzyme had different catalytic characteristics. An interpretation is that with modification by azido nucleotides at either catalytic or noncatalytic sites, capacity for rapid catalysis is largely lost but the remaining sites retain weak modified catalytic properties.  相似文献   

2.
O-GlcNAcase is a family 84 beta-N-acetylglucosaminidase catalyzing the hydrolytic cleavage of beta-O-linked 2-acetamido-2-deoxy-d-glycopyranose (O-GlcNAc) from serine and threonine residues of posttranslationally modified proteins. O-GlcNAcases use a double-displacement mechanism involving formation and breakdown of a transient bicyclic oxazoline intermediate. The key catalytic residues of any family 84 enzyme facilitating this reaction, however, are unknown. Two mutants of human O-GlcNAcase, D174A and D175A, were generated since these residues are highly conserved among family 84 glycoside hydrolases. Structure-reactivity studies of the D174A mutant enzyme reveals severely impaired catalytic activity across a broad range of substrates alongside a pH-activity profile consistent with deletion of a key catalytic residue. The D175A mutant enzyme shows a significant decrease in catalytic efficiency with substrates bearing poor leaving groups (up to 3000-fold), while for substates bearing good leading groups the difference is much smaller (7-fold). This mutant enzyme also cleaves thioglycosides with essentially the same catalytic efficiency as the wild-type enzyme. As well, addition of azide as an exogenous nucleophile increases the activity of this enzyme toward a substrate bearing an excellent leaving group. Together, these results allow unambiguous assignment of Asp(174) as the residue that polarizes the 2-acetamido group for attack on the anomeric center and Asp(175) as the residue that functions as the general acid/base catalyst. Therefore, the family 84 glycoside hydrolases use a DD catalytic pair to effect catalysis.  相似文献   

3.
Summary The enzymatic characteristics and the mode of hormone-dependent stimulation of cAMP phosphodiesterase are reviewed. The hormone-sensitive phosphodiesterase is a low Km enzyme, which has been found in liver and fat cells. The fat cell enzyme is mostly associated with the endoplasmic reticulum. The liver cell enzyme is also associated with certain subcellular structures.The hormone-sensitive phosphodiesterase appears to have catalytic and regulatory domains and is thought to be attached to subcellular structures at the regulatory portion of the enzyme. The catalytic domain of the fat cell enzyme can be obtained in a soluble form from the microsomal preparation by mild proteolysis or by dithiothreitol treatment at 0–4 °C. The catalytic domain of the liver enzyme can be solubilized by either hypotonic treatment or mild trypsin digestion. The catalytic domains solubilized from the basal and hormonally activated forms of the enzyme are apparently identical.The membrane-bound basal enzyme from adipocytes is activated in a concentrated salt solution without being solubilized. On the other hand, the plus-insulin activity is deactivated in a low salt solution or by a short dithiothreitol treatment at 37°, apparently without suffering any changes in the catalytic domain. In contrast, p-chloromercuriphenyl sulfonate seems to inactivate the enzyme by interacting with SH-groups in the catalytic domain. Although the liver enzyme is not similarly affected by salt concentrations, its catalytic activity is blocked by p-chloromercuribenzoate.The adipocyte enzyme can be solubilized with a mixture of Lubrol WX and Zwittergent 3–14. The apparent Stokes radius of the basal enzyme is approximately 87 A, while that of the hormone-stimulated enzyme is approximately 94 A.Apparently, the same species of phosphodiesterase is activated by both insulin and epinephrine in fat cells and by insulin and glucagon in liver, possibly being mediated by reactions involving phosphorylation. However, it is yet to be ascertained how phosphorylation is involved and how the apparent Stokes radius of the adipocyte enzyme is increased as a result of stimulation.  相似文献   

4.
A hybrid version of Escherichia coli aspartate transcarbamoylase was investigated in which one catalytic subunit has the wild-type sequence, and the other catalytic subunit has Glu-239 replaced by Gln. Since Glu-239 is involved in intersubunit interactions, this hybrid could be used to evaluate the extent to which T state stabilization is required for homotropic cooperativity and for heterotropic effects. Reconstitution of the hybrid holoenzyme (two different catalytic subunits with three wild-type regulatory subunits) was followed by separation of the mixture by anion-exchange chromatography. To make possible the resolution of the three holoenzyme species formed by the reconstitution, the charge of one of the catalytic subunits was altered by the addition of six aspartic acid residues to the C terminus of each of the catalytic chains (AT-C catalytic subunit). Control experiments indicated that the AT-C catalytic subunit as well as the holoenzyme formed with AT-C and wild-type regulatory subunits had essentially the same homotropic and heterotropic properties as the native catalytic subunit and holoenzyme, indicating that the addition of the aspartate tail did not influence the function of either enzyme. The control reconstituted holoenzyme, in which both catalytic subunits have Glu-239 replaced by Gln, exhibited no cooperativity, an enhanced affinity for aspartate, and essentially no heterotropic response identical to the enzyme isolated without reconstitution. The hybrid containing one normal and one mutant catalytic subunit exhibited homotropic cooperativity with a Hill coefficient of 1.4 and responded to the nucleotide effectors at about 50% of the level of the wild-type enzyme. Small angle x-ray scattering experiments with the hybrid enzyme indicated that in the absence of ligands it was structurally similar, but not identical, to the T state of the wild-type enzyme. In contrast to the wild-type enzyme, addition of carbamoyl phosphate induced a significant alteration in the scattering pattern, whereas the bisubstrate analog N-phosphonoacetyl-L-aspartate induced a significant change in the scattering pattern indicating the transition to the R-structural state. These data indicate that in the hybrid enzyme only three of the usual six interchain interactions involving Glu-239 are sufficient to stabilize the enzyme in a low affinity, low activity state and allow an allosteric transition to occur.  相似文献   

5.
A chromosomal DNA fragment with a length of 2,025 bp, carrying the structural gene coding for glucoamylase in Thermoanaerobacterium thermosaccharolyticum, was cloned and sequenced. It coded for 695 amino acids, representing a polypeptide with a predicted molecular mass of 77.5 kDa. The deduced amino acid sequence exhibited high homologies with the glucoamylase sequence of another bacterial glucoamylase (Clostridium sp. G0005) and with fungal glucoamylases. The catalytic domain (amino acids 271 to 695) of the T. thermosaccharolyticum enzyme shared a high degree of similarity (five conserved regions) with the catalytic domain of Aspergillus awamori glucoamylase. By comparing the secondary structure of the sequence of the catalytic domain of the T. thermosaccharolyticum enzyme with that of glucoamylase from A. awamori, and on the basis of X-ray crystallographic data available for the A. awamori enzyme, it turned out that, most probably, both enzymes have a catalytic domain organized into an "(alpha/alpha)(6)-barrel" and an overall size and shape that is very similar. These findings confirm and extend our working model for the macromolecular architecture of the T. thermosaccharolyticum glucoamylase obtained, in earlier experiments, by electron microscopy of negatively stained isolated enzyme molecules. Antibodies for an enzyme-specific peptide located near the active site were successfully applied for inhibition studies of enzyme activity and for electron microscopic epitope mapping. A study comparing the site of attachment of this kind of antibody to the T. thermosaccharolyticum glucoamylase molecule with the expected attachment site as deduced from the A. awamori enzyme structure confirmed the close similarity of both glucoamylases regarding the macromolecular architecture of that part of the enzyme carrying the catalytic center, though helices H9, H10, and H11 in peripheral parts of the A. awamori enzyme are missing in the T. thermosaccharolyticum enzyme.  相似文献   

6.
Clostridium thermocellum CelJ is a modular enzyme containing a family 30 carbohydrate-binding module (CBM) and a family 9 catalytic module at its N-terminal moiety. To investigate the functions of the CBM and the catalytic module, truncated derivatives of CelJ were constructed and characterized. Isothermal titration calorimetric studies showed that the association constants (K(a)) of the CBM polypeptide (CBM30) for the binding of cellopentaose and cellohexaose were 1.2 x 10(4) and 6.4 x 10(4) M(-1), respectively, and that the binding of CBM30 to these ligands is enthalpically driven. Qualitative analyses showed that CBM30 had strong affinity for cellulose and beta-1,3-1,4-mixed glucan such as barley beta-glucan and lichenan. Analyses of the hydrolytic action of the enzyme comprising the CBM and the catalytic module showed that the enzyme is a processive endoglucanse with strong activity towards carboxymethylcellulose, barley beta-glucan and lichenan. By contrast, the catalytic module polypeptide devoid of the CBM showed negligible activity toward these substrates. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.  相似文献   

7.
The activity, protein concentration and catalytic efficiency of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase was determined in rats aged 1 to 199 days. Microsomal enzyme total activity peaked on day 24, during weaning, and again on day 63, during the onset of puberty. Increased enzyme activity during weaning resulted primarily from an increase in the catalytic efficiency of the enzyme with a slight reduction in enzyme protein content. The rise in enzyme activity during the onset of puberty, however, was primarily the result of an increase in enzyme protein concentration. Thus, the activity of reductase in mammalian livers reflects, at different stages in development, the modulating influence of both the total number of reductase molecules and the catalytic efficiency of the enzyme.  相似文献   

8.
Amyloid precursor protein (APP) cleaving enzyme (BACE) is the enzyme responsible for beta-site cleavage of APP, leading to the formation of the amyloid-beta peptide that is thought to be pathogenic in Alzheimer's disease (AD). Hence, BACE is an attractive pharmacological target, and numerous research groups have begun searching for potent and selective inhibitors of this enzyme as a potential mechanism for therapeutic intervention in AD. The mature enzyme is composed of a globular catalytic domain that is N-linked glycosylated in mammalian cells, a single transmembrane helix that anchors the enzyme to an intracellular membrane, and a short C-terminal domain that extends outside the phospholipid bilayer of the membrane. Here we have compared the substrate and active site-directed inhibitor binding properties of several recombinant constructs of human BACE. The constructs studied here address the importance of catalytic domain glycosylation state, inclusion of domains other than the catalytic domain, and incorporation into a membrane bilayer on the interactions of the enzyme active site with peptidic ligands. We find no significant differences in ligand binding properties among these various constructs. These data demonstrate that the nonglycosylated, soluble catalytic domain of BACE faithfully reflects the ligand binding properties of the full-length mature enzyme in its natural membrane environment. Thus, the use of the nonglycosylated, soluble catalytic domain of BACE is appropriate for studies aimed at understanding the determinants of ligand recognition by the enzyme active site.  相似文献   

9.
James CL  Viola RE 《Biochemistry》2002,41(11):3720-3725
The bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli catalyzes non-consecutive reactions in the aspartate pathway of amino acid biosynthesis. Both catalytic activities are subject to allosteric regulation by the end product amino acid L-threonine. To examine the kinetics and regulation of the enzymes in this pathway, each of these catalytic domains were separately expressed and purified. The separated catalytic domains remain active, with each of their catalytic activities enhanced in comparison to the native enzyme. The allosteric regulation of the kinase activity is lost, and regulation of the dehydrogenase activity is dramatically decreased in these separate domains. To create a new bifunctional enzyme that can catalyze consecutive metabolic reactions, the aspartokinase I domain was fused to the enzyme that catalyzes the intervening reaction in the pathway, aspartate semialdehyde dehydrogenase. A hybrid bifunctional enzyme was also created between the native monofunctional aspartokinase III, an allosteric enzyme regulated by lysine, and the catalytic domain of homoserine dehydrogenase I with its regulatory interface domain still attached. In this hybrid the kinase activity remains sensitive to lysine, while the dehydrogenase activity is now regulated by both threonine and lysine. The dehydrogenase domain is less thermally stable than the kinase domain and becomes further destabilized upon removal of the regulatory domain. The more stable aspartokinase III is further stabilized against thermal denaturation in the hybrid bifunctional enzyme and was found to retain some catalytic activity even at temperatures approaching 100 degrees C.  相似文献   

10.
Alkaline phosphatase activity of HeLa cells is increased 5-20-fold during growth in medium with cortisol. The increase in enzyme activity is due to an enhanced catalytic efficiency rather than an increase in alkaline phosphatase protein in induced cells. In the present study the chemical composition of control and induced forms of alkaline phosphatase were investigated to determine the enzyme modification that may be responsible for the increased catalytic activity. HeLa alkaline phosphatase is a phosphoprotein and the induced form of the enzyme has approximately one-half of the phosphate residues associated with control enzyme. The decrease in phosphate residues of the enzyme apparently alters its catalytic activity. Other chemical components of purified alkaline phosphatase from control and induced cells are similar; these include sialic acid, hexosamine and sulfhydryl residues.  相似文献   

11.
12.
Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme responsible for the catabolism of neuromodulatory fatty acid amides, including anandamide and oleamide. FAAH's primary structure identifies this enzyme as a member of a diverse group of alkyl amidases, known collectively as the "amidase signature family". At present, this enzyme family's catalytic mechanism remains poorly understood. In this study, we investigated the catalytic features of FAAH through mutagenesis, affinity labeling, and steady-state kinetic methods. In particular, we focused on the respective roles of three serine residues that are conserved in all amidase signature enzymes (S217, S218, and S241 in FAAH). Mutation of each of these serines to alanine resulted in a FAAH enzyme bearing significant catalytic defects, with the S217A and S218A mutants showing 2300- and 95-fold reductions in k(cat), respectively, and the S241A mutant exhibiting no detectable catalytic activity. The double S217A:S218A FAAH mutant displayed a 230 000-fold decrease in k(cat), supporting independent catalytic functions for these serine residues. Affinity labeling of FAAH with a specific nucleophile reactive inhibitor, ethoxy oleoyl fluorophosphonate, identified S241 as the enzyme's catalytic nucleophile. The pH dependence of FAAH's k(cat) and k(cat)/K(m) implicated a base involved in catalysis with a pK(a) of 7.9. Interestingly, mutation of each of FAAH's conserved histidines (H184, H358, and H449) generated active enzymes, indicating that FAAH does not contain a Ser-His-Asp catalytic triad commonly found in other mammalian serine hydrolytic enzymes. The unusual properties of FAAH identified here suggest that this enzyme, and possibly the amidase signature family as a whole, may hydrolyze amides by a novel catalytic mechanism.  相似文献   

13.
Protein ubiquitination requires the sequential activity of three enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-ligase (E3). The ubiquitin-transfer machinery is hierarchically organized; for every ubiquitin-activating enzyme, there are several ubiquitin-conjugating enzymes, and most ubiquitin-conjugating enzymes can in turn interact with multiple ubiquitin ligases. Despite the central role of ubiquitin-activating enzyme in this cascade, a crystal structure of a ubiquitin-activating enzyme is not available. The enzyme is thought to consist of an adenylation domain, a catalytic cysteine domain, a four-helix bundle, and possibly, a ubiquitin-like domain. Its adenylation domain can be modeled because it is clearly homologous to the structurally known adenylation domains of the activating enzymes for the small ubiquitin-like modifier (SUMO) and for the protein encoded by the neuronal precursor cell-expressed, developmentally down-regulated gene 8 (NEDD8). Low sequence similarity and vastly different domain lengths make modeling difficult for the catalytic cysteine domain that results from the juxtaposition of two catalytic cysteine half-domains. Here, we present a biochemical and crystallographic characterization of the two half-domains and the crystal structure of the larger, second catalytic cysteine half-domain of mouse ubiquitin-activating enzyme. We show that the domain is organized around a conserved folding motif that is also present in the NEDD8- and SUMO-activating enzymes, and we propose a tentative model for full-length ubiquitin-activating enzyme.  相似文献   

14.
Aspartate-162 in the catalytic chain of aspartate transcarbamoylase is conserved in all of the sequences determined to date. The X-ray structure of the Escherichia coli enzyme indicates that this residue is located in a loop region (160's loop) that is near the interface between two catalytic trimers and is also close to the active site. In order to test whether this conserved residue is important for support of the internal architecture of the enzyme and/or involved in transmitting homotropic and heterotropic effects, the function of this residue was studied using a mutant version of the enzyme with an alanine at this position (Asp-162----Ala) created by site-specific mutagenesis. The Asp-162----Ala enzyme exhibits a 400-fold reduction in the maximal observed specific activity, approximately 2-fold and 10-fold decreases in the aspartate and carbamoyl phosphate concentrations at half the maximal observed specific activity respectively, a loss of homotropic cooperativity, and loss of response to the regulatory nucleotides ATP and CTP. Furthermore, equilibrium binding studies indicate that the affinity of the mutant enzyme for CTP is reduced more than 10-fold. The isolated catalytic subunit exhibits a 660-fold reduction in maximal observed specific activity compared to the wild-type catalytic subunit. The Km values for aspartate and carbamoyl phosphate for the Asp-162----Ala catalytic subunit were within 2-fold of the values observed for the wild-type catalytic subunit. Computer simulations of the energy-minimized mutant enzyme indicate that the space once occupied by the side chain of Asp-162 may be filled by other side chains, suggesting that Asp-162 is important for stabilizing the internal architecture of the wild-type enzyme.  相似文献   

15.
Guan C  Kumar S  Kucera R  Ewel A 《Biochemistry》2004,43(14):4313-4322
Phage-encoded resolvase T7 endonuclease I is a structure-specific endonuclease. The enzyme acts on a broad spectrum of substrates with a variety of DNA structures. The enzyme is a dimer with two separated catalytic domains connected by an elongated beta-sheet bridge. The activities of enzymes with mutations in the beta-bridge segment were studied. Mutations that did not affect catalytic domain folding and function but did alter the relative positions of these domains retained catalytic activity but with altered specificity and metal ion dependence. Our results suggest that the enzyme recognizes its substrates by DNA conformation exclusion and offer a simple explanation for the broad substrate specificity of phage resolvase.  相似文献   

16.
Two active mutants of aspartate transcarbamoylase from Escherichia coli have been purified from strains which produce large quantities of enzyme. Each enzyme was isolated from a different spontaneous revertant of a pyrimidine auxotrophic strain produced by mutagenesis with nitrogen mustard. Both enzymes exhibit allosteric properties with one having significantly less and the other more cooperativity than wild-type enzyme. Isolated catalytic subunits had different values of Km and Vmax. Studies on hybrids constructed from mutant catalytic and wild-type regulatory subunits (and vice versa) indicate that catalytic chains encoded by pyrB and not the regulatory chains encoded by pyrI were affected by the mutations. Differential scanning calorimetry experiments support these conclusions. Both mutant enzymes undergo ligand-promoted conformational changes analogous to those exhibited by wild-type enzyme: a 3% decrease in the sedimentation coefficient and a 5-fold increase in the reactivity of the sulfhydryl groups of the regulatory chains. Interactions between catalytic and regulatory chains in the mutants are weaker than those in the wild-type enzyme. The gross conformational changes of the mutants upon adding the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate, in the presence of the substrate, carbamoylphosphate, and the activator, ATP, correlate with differences in cooperativity. The mutant with lower cooperativity is more readily converted from the low-affinity, compact, T-state to the high-affinity, swollen, R-state than is wild-type enzyme; this conversion for the more cooperative enzyme is energetically less favorable.  相似文献   

17.
The process of deducing the catalytic mechanism of an enzyme from its structure is highly complex and requires extensive experimental work to validate a proposed mechanism. As one step towards improving the reliability of this process, we have gathered statistics describing the typical geometry of catalytic residues with regard to the substrate and one another. In order to analyse residue-substrate interactions, we have assembled a dataset of structures of enzymes of known mechanism bound to substrate, product, or a substrate analogue. Despite the challenges presented in obtaining such experimental data, we were able to include 42 enzyme structures. We have also assembled a separate dataset of catalytic residues which act upon other catalytic residues, using a set of 60 enzyme structures. For both datasets, we have extracted the distances between residues with a given catalytic function and their target moieties. The geometry of residues whose function involves the transfer or sharing of hydrogens (either with substrate or another residue) was analysed more closely. The results showed that the geometry for such productive interactions (prior to the transition state) closely resembles that seen in non-catalytic hydrogen bonds, with distances and angles in the normal expected range. Such statistics provide limits on "expected geometries" for catalytic residues, which will help to identify these residues and elucidate enzyme mechanisms.  相似文献   

18.
A psychrophilic alkaline phosphatase (EC 3.1.3.1) from Shewanella sp. is a cold-active enzyme that has high catalytic activity at low temperature [Ishida et al. (1998) Biosci. Biotechnol. Biochem., 62, 2246-2250]. Here, we identified the nucleotide sequence of a gene encoding the enzyme after cloning with the polymerase chain reaction (PCR) and inverted PCR techniques. The deduced amino acid sequence of the enzyme contained conserved amino acids found among mesophilic alkaline phosphatases and showed some structural characteristics including a high content of hydrophobic amino acid residues and the lack of single alpha-helix compared with the alkaline phosphatase of Escherichia coli, which were possibly efficient for catalytic reaction at low temperatures. The recombinant enzyme expressed in E. coli was purified to homogeneity with the molecular mass of 41 kDa. The recombinant enzyme had a specific activity of 1,500 units/mg and had high catalytic activity at low temperatures.  相似文献   

19.
Bacillus intermedius ribonuclease (binase), which is known to exert a growth-stimulating effect at low concentrations and a genotoxic effect at high concentrations, loses these abilities completely after exposure to 100 degrees C for 10 min, but retains approximately 96% of its catalytic activity and structural integrity. Other types of modification, such as photoinactivation and site-specific mutagenesis, gave rise to enzyme forms with unaltered structure but reduced (sometimes to trace amounts) catalytic activity. Genotoxicity was always proportional to the catalytic activity of the native enzyme, while a notable growth-stimulating effect may be exerted by enzymes with low activity. The loss of biological activity of thermoinactivated binase was related to the increase in the number of negatively charged groups on the enzyme surface, which led to a substantial decline in the adhesive properties of the enzyme.  相似文献   

20.
Bacterial L-asparaginases have been used as anti-cancer drugs for over 4 decades though presenting, along with their therapeutic efficacy, several side effects due to their bacterial origin and, seemingly, to their secondary glutaminase activity. Helicobacter pylori type II L-asparaginase possesses interesting features, among which a reduced catalytic efficiency for L-GLN, compared to the drugs presently used in therapy. In the present study, we describe some enzyme variants with catalytic and in vitro cytotoxic activities different from the wild type enzyme. Particularly, replacements on catalytic threonines (T16D and T95E) deplete the enzyme of both its catalytic activities, once more underlining the essential role of such residues. One serendipitous mutant, M121C/T169M, had a preserved efficiency vs L-asparagine but was completely unable to carry out L-glutamine hydrolysis. Interestingly, this variant did not exert any cytotoxic effect on HL-60 cells. The M121C and T169M single mutants had reduced catalytic activities (nearly 2.5- to 4-fold vs wild type enzyme, respectively). Mutant Q63E, endowed with a similar catalytic efficiency versus asparagine and halved glutaminase efficiency with respect to the wild type enzyme, was able to exert a cytotoxic effect comparable to, or higher than, the one of the wild type enzyme when similar asparaginase units were used. These findings may be relevant to determine the role of glutaminase activity of L-asparaginase in the anti-proliferative effect of the drug and to shed light on how to engineer the best asparaginase/glutaminase combination for an ever improved, patients-tailored therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号