首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal transducing photoreceptors of plants   总被引:1,自引:0,他引:1  
Light signals are amongst the most important environmental cues regulating plant development. In addition to light quantity, plants measure the quality, direction and periodicity of incident light and use the information to optimise growth and development to the prevailing environmental conditions. Red and far-red wavelengths are perceived by the photoreversible phytochrome family of photoreceptors, whilst the detection of blue and ultraviolet (UV)-A wavelengths is conferred by the cryptochromes and phototropins. Higher plants contain multiple discrete phytochromes, the apoproteins of which are encoded by a small divergent gene family. In Arabidopsis, two cryptochrome and two phototropin family members have been identified and characterized. Photoreceptor action regulates development throughout the lifecycle of plants, from seed germination through to architecture of the mature plant and the onset of reproduction. The roles of individual photoreceptors in mediating plant development have, however, often been confounded by redundant, synergistic and in some cases mutually antagonistic mechanisms of action. The isolation of mutants null for individual photoreceptors and the construction of mutants null for multiple photoreceptors have therefore been paramount in elucidating photoreceptor functions. Photoreceptor action does not, however, operate in isolation from other signalling systems. The integration of light signals with other environmental cues enables plants to adapt their physiology to changing seasonal environments. This paper summarises current understanding of photoreceptor families and their functions throughout the lifecycle of plants. The integration of light signals with other environmental stimuli is also discussed.  相似文献   

2.
Phytochrome controlled signalling cascades in higher plants   总被引:7,自引:0,他引:7  
  相似文献   

3.
Using monoclonal antibodies specific for each apoprotein and full-length purified apoprotein standards, the levels of the five Arabidopsis phytochromes and their patterns of expression in seedlings and mature plants and under different light conditions have been characterized. Phytochrome levels are normalized to the DNA content of the various tissue extracts to approximate normalization to the number of cells in the tissue. One phytochrome, phytochrome A, is highly light labile. The other four phytochromes are much more light stable, although among these, phytochromes B and C are reduced 4- to 5-fold in red- or white-light-grown seedlings compared with dark-grown seedlings. The total amount of extractable phytochrome is 23-fold lower in light-grown than dark-grown tissues, and the percent ratios of the five phytochromes, A:B:C:D:E, are measured as 85:10:2:1.5:1.5 in etiolated seedlings and 5:40:15:15:25 in seedlings grown in continuous white light. The four light-stable phytochromes are present at nearly unchanging levels throughout the course of development of mature rosette and reproductive-stage plants and are present in leaves, stems, roots, and flowers. Phytochrome protein expression patterns over the course of seed germination and under diurnal and circadian light cycles are also characterized. Little cycling in response to photoperiod is observed, and this very low amplitude cycling of some phytochrome proteins is out of phase with previously reported cycling of PHY mRNA levels. These studies indicate that, with the exception of phytochrome A, the family of phytochrome photoreceptors in Arabidopsis constitutes a quite stable and very broadly distributed array of sensory molecules.  相似文献   

4.
Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant’s life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues.  相似文献   

5.
Photoreceptors are critical molecules that function at the interface between organism and environment. Plants use specific light signals to determine their place in time and space, allowing them to synchronize their growth, metabolism, and development to the environments in which they occur. Thus, innovation in light sensing mechanisms is expected to coincide with adaptation and diversification. Three studies involving the well-characterized phytochrome photoreceptor system in plants indicate that much work is yet needed to test this expectation. In early diverging flowering plants, episodic positive selection influenced the evolution of phytochrome A, but little of the functional data needed to link molecular adaptation with a change in gene function are available. In the model plant Arabidopsis thaliana, known functional differences between a recently duplicated gene pair remain difficult to characterize at the sequence level. In parasitic plants, patterns of development that in autotrophs are under the control of light signals are highly modified, suggesting that phytochromes and other photoreceptors function differently in nonphotosynthetic plants. Analyses of phytochrome A coding sequences indicate that they are evolving under relaxed constraints in nonphotosynthetic Orobanchaceae, consistent with the expectation of functional change. Further work is needed to determine which of the processes mediated by phyA may have been altered, a line of investigation that may improve our understanding of divergence points in downstream signaling pathways.  相似文献   

6.
How light signals are transduced by phytochromes is still poorly understood. Recent studies have provided evidence that a PAS domain protein, PIF3, physically interacts with phytochromes, plays a role in phytochrome signal transduction and might be a component of a novel signalling pathway in plants.  相似文献   

7.
8.
Regulation of brassinosteroid responses by phytochrome B in rice   总被引:2,自引:0,他引:2  
  相似文献   

9.
Phytochrome photoreceptors sense red and far-red light through photointerconversion between two stable conformations, a process mediated by a linear tetrapyrrole chromophore. Originally, phytochromes were thought to be confined to photosynthetic organisms including cyanobacteria, but they have been recently discovered in heterotrophic bacteria and fungi, where little is known about their functions. It was shown previously in the ascomycetous fungus Aspergillus nidulans that asexual sporulation is stimulated and sexual development repressed by red light. The effect was reminiscent of a phytochrome response, and indeed phytochrome-like proteins were detected in several fungal genomes. All fungal homologs are more similar to bacterial than plant phytochromes and have multifunctional domains where the phytochrome region and histidine kinase domain are combined in a single protein with a C-terminal response-regulator domain. Here, we show that the A. nidulans phytochrome FphA binds a biliverdin chromophore, acts as a red-light sensor, and represses sexual development under red-light conditions. FphA-GFP is cytoplasmic and excluded from the nuclei, suggesting that red-light photoperception occurs in the cytoplasm. This is the first phytochrome experimentally characterized outside the plant and bacterial kingdoms and the second type of fungal protein identified that functions in photoperception.  相似文献   

10.
The adaptation of plant growth and development to changes in the light environment is dependent upon photoperception by information transducing photoreceptors. The red/far-red light-absorbing phytochromes are perhaps the best characterized of these regulatory photoreceptors. Higher plants possess multiple, discrete phytochromes, the apoprotein components of which are the products of a small, divergent gene family. Different phytochromes have different biochemical and physiological properties, and are differentially expressed in the growing plant. This has led to the proposal that different phytochromes have different physiological roles. Mutations that disrupt the normal perception of light signals have proved to be a valuable resource in assigning physiological roles to different phytochromes as well as in identifying residues/domains critical for phytochrome function and in attempting to elucidate the signal transduction pathway(s) downstream of phytochromes. This article reviews some recent progress in these areas from the study of conventional and transgenic photomorphogenic mutants.  相似文献   

11.
Germination of Arabidopsis seeds is light dependent and under phytochrome control. Previously, phytochromes A and B and at least one additional, unspecified phytochrome were shown to be involved in this process. Here, we used a set of photoreceptor mutants to test whether phytochrome D and/or phytochrome E can control germination of Arabidopsis. The results show that only phytochromes B and E, but not phytochrome D, participate directly in red/far-red light (FR)-reversible germination. Unlike phytochromes B and D, phytochrome E did not inhibit phytochrome A-mediated germination. Surprisingly, phytochrome E was required for germination of Arabidopsis seeds in continuous FR. However, inhibition of hypocotyl elongation by FR, induction of cotyledon unfolding, and induction of agravitropic growth were not affected by loss of phytochrome E. Therefore, phytochrome E is not required per se for phytochrome A-mediated very low fluence responses and the high irradiance response. Immunoblotting revealed that the need of phytochrome E for germination in FR was not caused by altered phytochrome A levels. These results uncover a novel role of phytochrome E in plant development and demonstrate the considerable functional diversification of the closely related phytochromes B, D, and E.  相似文献   

12.
Phytochromes are a family of photoreceptor molecules, absorbing primarily in red and far-red, that are important in many aspects of plant development. These studies investigated the role of phytochromes in phototropism and gravitropism of seedlings of Arabidopsis thaliana. We used two transgenic lines, one which lacked phytochromes specifically in the roots (M0062/UASBVR) and the other lacked phytochromes in the shoots (CAB3::pBVR). These transgenic plants are deficient in the phytochrome chromophore in specific tissues due the expression of biliverdin IXa reductase (BVR), which binds to precursors of the chromophore. Experiments were performed in both light and dark conditions to determine whether roots directly perceive light signals or if the signal is perceived in the shoot and then transmitted to the root during tropistic curvature. Kinetics of tropisms and growth were assayed by standard methods or with a computer-based feedback system. We found that the perception of red light occurs directly in the root during phototropism in this organ and that signaling also may occur from root to shoot in gravitropism.  相似文献   

13.
Plant photoreceptors regulate various developmental processes. Among the photoreceptors, phytochromes, red and far-red light receptors, regulate light responses through many signaling components, including phytochrome-interacting proteins. The functional relationships among phytochromes and their interacting proteins, however, have not been clearly established. Here, we sought to identify a functional relationship between phytochromes and phytochrome interacting factor 3 (PIF3). We demonstrate that PIF3 is polyubiquitinated rapidly and subsequently degraded in PHYA and PHYB-mediated light signaling. We also show that the degradation of PIF3 is mediated by the 26S proteasome. Our data indicate that light-stimulated phytochromes cause the degradation of their interacting protein, PIF3, by the 26S proteasome.  相似文献   

14.
15.
16.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings. Received: 12 July 1998 / Accepted: 13 August 1998  相似文献   

17.
18.
Phytochromes are chromoproteins which mediate several light responses in plants. Phytochrome proteins are encoded by a gene family which is currently being characterized in several plant species. Analysis of type-specific mutants of two well-characterized members of the family, PhyA and PhyB, indicates that these proteins have distinct functions. Much remains to be learned about the mechanisms by which the phytochromes carry out their distinct and diverse functions. It is hoped that information concerning the localization of phytochromes, at the whole plant and subcellular levels, will aid in elucidating the mechanism of phytochrome function. This review, which summarizes information about phytochrome distribution, has an emphasis on recent reports in which the molecular species of phytochrome are differentiated. However, classical data are also included and reinterpreted using knowledge of the phytochrome family.  相似文献   

19.
Phototropins and phytochromes are the major photosensory receptors in plants and they regulate distinct photomorphogenic responses. The molecular mechanisms underlying functional interactions of phototropins and phytochromes remain largely unclear. We show that the tomato (Lycopersicon esculentum) phytochrome A deficient mutant fri lacks phototropic curvature to low fluence blue light, indicating requirement for phytochrome A for expression of phototropic response. The hp1 mutant that exhibits hypersensitive responses to blue light and red light reverses the impairment of second-positive phototropic response in tomato in phytochrome A-deficient background. Physiological analyses indicate that HP1 functions as a negative regulator of phototropic signal transduction pathway, which is removed via action of phytochrome A. The loss of HP1 gene product in frihp1 double mutant allows the unhindered operation of phototropic signal transduction chain, obviating the need for the phytochrome action. Our results also indicate that the role of phytochrome in regulating phototropism is restricted to low fluence blue light only, and at high fluence blue light, the phytochrome A-deficient fri mutant shows the normal phototropic response.  相似文献   

20.
The developmental pattern of dark-grown Arabidopsis thaliana is dramatically shifted by exposure of the seedlings to light: inhibition of hypocotyl (stem) growth is one of the typical responses. Here, we show that the hypocotyl growth of dark-grown seedlings is reduced by exposure of the seeds to light. The light signal is perceived by phytochromes A and B during the hours immediately prior to seed germination. The effect is obviously selective, as other processes under phytochrome control were not equally affected by the pre-germination light cue. The hypocotyl response persists for two days after termination of the light signal, which is more than the persistence observed when the seedlings themselves receive the light stimulus. Treatment with far-red light, which converts phytochrome to the inactive form, did not reduce the hypocotyl growth response to pre-germination light, indicating that the persistent signal was not active phytochrome itself. We propose that trans-developmental phase signals could help plants to adjust to their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号