首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Northern blot and "dot" blot analyses using a myelin basic protein (MBP) specific cDNA probe and in vitro translation techniques were utilized to estimate the relative levels of myelin basic protein messenger RNA (mRNA) in the brains of C57BL/6J control mice, three dysmyelinating mutants (qk/qk, jp/Y, and shi/shi), and three heterozygote controls (qk/+, jp/+, and shi+) during early postnatal development. In general, the MBP mRNA levels measured directly by Northern blot and "dot" blot analyses correlated well with the indirect in vitro translation measurements. The Northern blots indicated that the size of MBP mRNAs in quaking and jimpy brain polysomes appeared to be similar to controls. Very low levels of MBP mRNAs were observed in shi/shi brain polyribosomes throughout early postnatal development. Compared to C57BL/6J controls, accumulation of MBP mRNAs in qk/qk and qk/+ brain polyribosomes was delayed by several days. That is, whereas MBP mRNA levels were below normal between 12 and 18 days, normal levels of message had accumulated in both qk/qk and qk/+ brain polyribosomes by 21 days. Furthermore, normal levels of MBP mRNAs were observed to be maintained until at least 27 days. MBP mRNA levels remained well below control levels in jp/Y brain polyribosomes throughout early postnatal development. The levels did, however, fluctuate slightly and peaked at 15 days in both jp/Y and jp/+ brains, 3 days earlier than in normal mice. Thus, it appears that jimpy and quaking mice exhibit developmental patterns of MBP expression different from each other and from C57BL/6J control mice.  相似文献   

2.
Total cytoplasmic brain RNA was isolated at two different ages from three neurological mutant mice (qk/qk, jp/Y, and shi/shi) and their apparently normal littermates. This RNA was translated in vitro in a rabbit reticulocyte lysate system. Myelin-associated glycoprotein (MAG)-related polypeptides were immunoprecipitated from equal amounts of total translation products derived from mRNA of mutant animals, normal littermates, or control animals. The developmentally regulated synthesis of MAG polypeptides was compared among the mutants and normal animals. mRNA from qk/qk brains synthesized an overabundance of p67MAG (five- to sevenfold) which may be compensation for a decreased synthesis of p72MAG. mRNA from jp/Y brains synthesized less than 10% of normal amounts of both MAG polypeptides. The quantity of MAG synthesized by 15-day shi/shi brain mRNA was slightly decreased compared with normal brain mRNA but the quantity of MAG synthesized by adult shi/shi brain mRNA was normal. No apparent differences were detected in the sizes of the MAG polypeptides synthesized by any of the mutants studied. The data suggest that the genetic defect in qk/qk mutants directly or indirectly affects the coordinated developmental regulation of MAG polypeptide synthesis leading to an overabundance of the MAG polypeptide that is normally found in older animals. The jp/Y mutation appears to affect general myelin protein synthesis. Finally, shi/shi mutants may have a delayed synthesis of MAG. The data are discussed in the light of recent observations concerning the synthesis of myelin proteins and their proposed role in myelin assembly.  相似文献   

3.
The levels of myelin basic protein, proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37) in cerebral hemispheres of wild-type, heterozygous jp/+, and hemizygous jp/Y mice of different ages were determined by radioimmunoassay and immunoblotting. In jp/Y brain the level of myelin basic protein was 8% that of wild-type at all ages. All forms of the protein were reduced although the 21.5K Mr form was relatively spared at early ages compared to the 18.5K, 17K, and 14K Mr forms. The level of 2',3'-cyclic nucleotide 3'-phosphohydrolase was 8% that of wild-type at all ages, and proteolipid protein was undetectable at any age. These results are consistent with the hypothesis that the jimpy mutation blocks myelin morphogenesis subsequent to incorporation of 21.5K Mr myelin basic protein but prior to incorporation of proteolipid protein. In jp/+ brain the levels of the three proteins were reduced commensurately to 60-70% those of wild-type. The deficit was apparent as early as 10 days after birth and remained proportionately constant throughout development. These results suggest that in jp/+ mice, X-chromosome inactivation produces a mosaic population of functionally wild-type and functionally jimpy oligodendrocytes. The former elaborate normal amounts of myelin but do not completely compensate for the myelin deficit due to the latter.  相似文献   

4.
Myelin was purified from the spinal cords of normal mice and mice heterozygous for the shiverer mutation, and measurements were made of the major myelin proteins and lipids and the specific activities of three myelin-associated enzymes. The myelin purified from the spinal cords of the heterozygotes (shi/+) was deficient by 30-40% in yield and had an apparently unique composition. In particular, when compared with normal mouse spinal cord myelin, there were more high-molecular-weight protein, less myelin basic protein, a higher protein-to-lipid ratio, and higher specific activities of 2',3'-cyclic nucleotide-3'-phosphohydrolase (EC 3.1.4.37) and carbonic anhydrase (EC 4.2.1.1) in the myelin purified from the shi/+ animals. These abnormalities were reflected in the composition of shi/+ whole spinal cord, where the protein-to-lipid ratio was intermediate between the respective values for +/+ and shi/shi spinal cords. Whole brains from shi/+ mice showed deficiencies in galactocerebroside and galactocerebroside sulfate and an increase in total phospholipid, and the lipid composition in the brains of the shi/shi mice was similar to that reported for another dysmyelinating mutant, quaking. The findings provide the first values for the lipids in normal mouse spinal cord myelin and show that heterozygotes are affected by the shiverer mutation. The observations imply that there can be considerable deviation from the normal CNS myelin content and composition without apparent qualitative morphological abnormalities or loss of function and that the amount of myelin basic protein available during myelination may influence the incorporation of other constituents into the myelin membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The mld mutation on chromosome 18 in the mouse is a putative allele of the shiverer (shi) mutation. We have analyzed the structure of myelin basic protein (MBP) gene sequences in mld DNA by restriction mapping of genomic DNA. The results indicate that the mld chromosome carries two copies of the MBP structural gene, one of which is intact and one of which is interrupted. Genetic analysis indicates that the interrupted gene is close to the intact MBP structural gene and cosegregates with the mld mutation. We have also analyzed the levels of MBP polypeptides and MBP-specific mRNA in wild-type, homozygous and heterozygous shiverer and mld mice and in mice carrying both mutations. The results indicate that both shi and mld are cis-acting codominant mutations that cause severely reduced steady state levels of MBP-specific mRNA and MBP polypeptides in the brain. We have analyzed the total number of oligodendrocytes and the number of MBP-positive oligodendrocytes in mld and shi brain primary cultures. In shi cultures, none of the oligodendrocytes expresses MBP. However, in mld cultures, approximately 5% of the oligodendrocytes express MBP. The nature of the "revertant" mld oligodendrocytes is not known.  相似文献   

6.
Abstract: Myelin-deficient ( mld ) is a complex mutation affecting the myelin basic protein (MBP) locus of the mouse. It consists of duplication and partial inversion of the MBP gene and results in a dysfunctional MBP locus. The mutant phenotype is reversed, both in vivo and in vitro, in ∼5% of mld oligodendrocytes. One possible mechanism for the somatic reversion is recombination between homologous sequences of the duplicated gene copies to reconstitute a functional MBP locus. There are several possible recombination events that could reconstitute a functional MBP locus by DNA rearrangement. Two of these would result in reinversion and circularization of specific MBP gene sequences, respectively. In this work polymerase chain reaction analysis was used to detect both reinverted and circularized MBP gene sequences in mld mouse tissues, indicating that DNA rearrangement at the MBP locus does occur. Analysis of individually harvested cells showed that in revertant MBP-positive mld oligodendrocytes DNA rearrangement at the MBP locus was correlated with reactivation of the MBP gene. Fluctuation analysis showed that reactivation of the MBP locus is a stochastic event occurring with a frequency of ∼1.4 × 10−6 per cell per cell cycle during oligodendrocyte development. The frequency of rearrangement and reactivation of the MBP locus was comparable in double mutant ( mld/mld , scid/scid ) and single mutant ( mld/mld , + scid /+ scid ) mice, indicating that the scid factor is not required for MBP gene reactivation in mld . The significance of DNA rearrangement in mammalian development is discussed.  相似文献   

7.
Myelin basic protein (MBP) and P2 protein are small positively charged proteins found in oligodendrocytes of rabbit spinal cord. Both proteins become incorporated into compact myelin. We have begun investigations into the mechanisms by which MBP and P2 become incorporated into the myelin membrane. We find that P2, like the MBPs, is synthesized on free polysomes in rabbit spinal cord. Cell fractionation experiments reveal that rabbit MBP mRNAs are preferentially segregated to the peripheral myelinating regions whereas P2 mRNAs are predominantly localized within the perikaryon of the cell. In vitro synthesized rabbit MBP readily associates with membranes added to translation mixtures, whereas P2 protein does not. It is possible that P2 requires a "receptor" molecule, perhaps a membrane-anchored protein, for association with the cytoplasmic face of the myelin membrane.  相似文献   

8.
9.
A hereditary dysmyelinating mutation, named myelin deficient (shi(mld)), is characterized by reduced expression of myelin basic protein (MBP). In shi(mld), the MBP gene is duplicated and its reduced expression is mainly determined by the level of mRNA. We have characterized the structure and function of the promoter regions of the duplicated MBP genes in shi(mld). Among the lambda clones containing promoter regions of the duplicated MBP genes in shi(mld), one (gene 1) had the same restriction enzyme pattern as that in control mice, but another (gene 2) had a rearrangement on a distal part of the promoter. A 712-bp nucleotide sequence upstream of the first exons of both of the duplicated MBP genes of shi(mld) was completely consistent with that of the control. Promoter activities of 1.3-kb 5'-flanking regions from respective genes of shi(mld) measured by in vitro run-off assay using HeLa whole-cell extracts were indistinguishable from that of the control MPB gene. Chromosomal mapping by in situ hybridization suggested that the duplicated MBP genes were located closely to each other at the distal part of chromosome 18. A recombinational event including the inversion seemed to have occurred within gene 1 and its possible relationship to the reduced expression of MBP is discussed.  相似文献   

10.
The myelin-deficient (mld) mutation is autosomal recessive mutation in the murine CNS exhibiting severe hypomyelination. The primary defect results in a drastic reduction of myelin basic protein synthesis caused by a duplication of the myelin basic protein gene with partial inversion of the upstream gene copy. The severe deficit of myelin basic protein is responsible for the absence of the major dense line but cannot explain the heterogeneity of myelin compaction found in mld. We have tested the hypothesis that the endogenous cerebellar soluble lectin (CSL) and/or its endogenous glycoprotein ligands could be involved in myelin abnormalities in the dysmyelinating mutant, mld. Immunocytochemical and immunoblotting techniques showed that the CSL level was not reduced significantly in the mld mutant. Furthermore, two ligands of CSL, the myelin-associated glycoprotein and an axonal glycoprotein, with a relative molecular mass of 31 kDa, were not decreased in level in the purified myelin fraction isolated from mld mice. In contrast, three minor glycoprotein ligands of CSL of relative molecular mass of 23, 18, and 16 kDa were greatly reduced in content. The reduced concentration of these low-molecular-mass glycoproteins in mld myelin suggests that they are constituents of compact myelin. Furthermore, the observation that CSL is specifically localized in vivo in regions where mld myelin is more compact and absent from regions devoid of myelin compaction may suggest that the endogenous CSL lectin, as well as its minor glycoprotein ligands, plays a role in the stabilization of the myelin sheath.  相似文献   

11.
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.  相似文献   

13.
In Vivo Methylation of an Arginine in Chicken Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: The amino acid sequence around the sole methylarginine residue in chicken myelin basic protein was determined and was found to be similar to that previously reported for mammalian myelin basic protein. The ratio N G, N 'G-dimethylarginine: N G-monomethylarginine:arginine was approximately 1.3:0.9:1.0. No N G, N G-dimethylarginine was detected in the protein. The in vivo incorporation of methyl groups from [methyl-3H]methionine into methylarginines in myelin was found to occur readily in 2-day-old chickens. Radioactively labelled N G, N 'G-dimeth-ylarginine and N G-monomethylarginine in myelin were derived solely from myelin basic protein. Radioactivity was also incorporated into N G, N G-dimeth-ylarginine, although this was not derived from myelin basic protein. As N G-monomethylarginine was easily separated from the dimethylarginines, and as it was derived from myelin basic protein, it may be a good marker for myelin basic protein turnover in vivo. A time course study of the incorporation showed that radioactivity was incorporated into N G-monomethylarginine up to 6 h after injection, and decayed slowly, with an apparent half-life of about 40 days.  相似文献   

14.
We studied metabolism of brain DNA in three myelin deficient mutants qk, jp and jpmsd mice. The DNA content, the in vivo incorporation of [14C]thymidine in DNA and the activity of acid DNase in tissues (cerebellum and cerebrum) from normal littermates and affected mice were compared. The results showed that neither the DNA content, the incorporation of [14C]thymidine in DNA nor the activity of acid DNase in brain were altered in qk affected mice. In jpmsd mice, however, the DNA content as well as the incorpation of thymidine in DNA were reduced in both cerebellum and cerebrum, but the activity of acid DNase was reduced in cerebrum only. In jp mice, although the DNA content was reduced in both cerebellum and cerebrum, the incorporation of thymidine in DNA and the activity of acid DNase were reduced in cerebrum only. The data suggest a) that in qk mutants DNA metabolism and hence cell (glial) proliferation is not affected; b) that in jpmsd mutants DNA synthesis, and thus the cell proliferation is reduced in cerebellum as well as in cerebrum of the affected mice and c) that in jp mutants the synthesis of DNA and the cell proliferation is reduced in cerebrum but not in cerebellum.  相似文献   

15.
N S Shetty  R A Meyer 《Teratology》1991,44(4):463-472
X-Linked hypophosphatemia is the most common cause of metabolic rickets in humans and is characterized by a reduced renal TmP/GFR and hypophosphatemia. Clinically, these changes are associated with growth retardation including attenuated craniofacial growth, femoral and tibial bowing, and radiologic and histomorphometric evidence of rickets and osteomalacia. Similar mutations occur in mice at the Hyp and Gy gene loci. Direct craniometric measurements were made on mouse skulls to investigate the pattern of craniofacial growth differences in the Hyp/+, Hyp/Hyp and Gy/+ genotypes and to compare these to littermate normals in the C57BL/6J mouse strain. There was generalized attenuation in craniofacial growth in all mutants. The heterozygous Hyp and Gy mutants showed similar patterns of craniofacial growth with diminished neurocranial length, viscerocranial length, and mandibular height. The Gy/+ was significantly smaller than the Hyp/+ in neurocranial width. The homozygous Hyp mouse was not affected more severely than the heterozygous Hyp except in overall cranial length, nasal bone length, and mandibular length from mandibular foramen to third molar. In summary, the heterozygous Hyp and Gy mutant mice showed similar patterns of craniofacial growth. The homozygous Hyp mouse was not affected more severely than the heterozygous Hyp except in three of the 15 measured variables. Thus, these data demonstrate the almost complete dominance of the Hyp gene. In contrast, the Gy gene is incompletely dominant. The heterozygous Gy females survive, but the hemizygous Gy males do not, on a C57BL/6J background. This suggests that there is a family of closely linked genes on the X chromosome which, while similar in their effects on phosphate homeostasis, have differing mechanisms of action.  相似文献   

16.
Jimpy (jp), myelin synthesis-deficient (jpmsd), and quaking (qk) are mutations which affect myelination to different degrees in the mouse central nervous system (CNS). Total messenger RNA (mRNA) and myelin basic protein (MBP)-specific mRNA from brains of these three mutants have been analyzed by in vitro translation and immunoprecipitation with antibody to MBP. The results indicate that the three mutations do not affect the level of total MBP-specific mRNA in the CNS but do affect the relative proportions of the various MBP-related translation products encoded in vitro. In each case the proportions of 14K and 12K Mr MBP-related translation products are reduced and the proportions of 21.5K, 18.5K, and 17K Mr MBP-related translation products are increased relative to wild type. This effect is most pronounced in jp, less so in jpmsd, and least pronounced in qk animals. The MBP-related polypeptides that accumulate in vivo have also been analyzed in the three mutants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting with antibody to MBP. The levels of all the major MBP-related polypeptides that accumulate in vivo are reduced in all three mutations. The reduction is most pronounced in jp, less in jpmsd, and least pronounced in qk animals. These results indicate that the jp, jpmsd, and qk mutations exhibit qualitatively similar phenotypic effects on MBP gene expression but the magnitude of the effect is proportional to the extent of hypomyelination in each mutant.  相似文献   

17.
We previously described a locus on chromosome (Chr) 17 of the mouse that is critical for normal testis development. This locus was designated "T-associated sex reversal" (Tas) because it segregated with the dominant brachyury allele hairpin tail (Thp) and caused gonads of C57BL/6J XY, Thp/+ individuals to develop as ovaries or ovotestes rather than as testes. To clarify the inheritance of Tas, we investigated the effects of T-Orleans (TOrl), another brachyury mutation, on gonad development. We found that gonads of C57BL/6J XY, Thp/+ and TOrl/+ mice develop ovarian tissue if the Y chromosome is derived from the AKR/J inbred strain, whereas normal testicular development occurs in the presence of a Y chromosome derived from the C57BL/6J inbred strain. From these observations we conclude that: (1) Tas is located in a region on Chr 17 common to the deletions associated with Thp, and TOrl, and (2) the Y-linked testis determining gene, Tdy, carried by the AKR/J inbred strain differs from that of the C57BL/6J inbred strain. We suggest that in mammals Tdy is not the sole testis determinant because autosomal loci must be genetically compatible with Tdy for normal testicular development.  相似文献   

18.
Computer-generated "hydropathic" profiles were constructed for graphic comparison of the amino acid sequences for P2 protein, 18.5 kilodalton (kDa) myelin basic protein (BP), and myelin proteolipid protein (PLP). Profiles were also obtained for cytochrome b5, a membrane protein known to be capable of reversible association with lipid bilayers and of a size comparable to that of the myelin BPs. Analysis of the PLP sequence produced profiles generally compatible with the suggestions that PLP has three transbilayer and two bilayer intercalating segments. Profiles for P2 and 18.5 kDa BP were found to contain hydrophilic segments separated by relatively short hydrophobic regions. Whereas hydropathic indices in hydrophobic regions of P2, 18.5 kDa BP, and PLP fall in the value ranges recently reported for cores of globular proteins and intrabilayer domains of membrane proteins, hydrophobic sections of P2 and 18.5 kDa BP have hydropathic indices similar to those in the hydrophobic core (transprotein) regions of globular proteins. None of them are comparable to the region of cytochrome b5 known to anchor that protein in its membrane or to the segments of PLP sequence proposed as intrabilayer domains. This comparison suggests that neither BP has structural characteristics compatible with insertion into the hydrocarbon core of the myelin lipid bilayer, a conclusion that is consistent with a recently published study that identified the bilayer penetrating proteins of myelin with a hydrophobic probe. The above findings suggest an enhancement for some details of myelin architecture and a cautious approach to interpreting data for BP intercalation into bilayers.  相似文献   

19.
Mice homozygous for the mutation myelin deficient (mld), an allele of shiverer, exhibit decreased CNS myelination, tremors, and convulsions of progressively increasing severity leading to an early death. In this report we demonstrate in mld mice that the gene encoding myelin basic protein (MBP) is expressed at decreased levels and on an abnormal temporal schedule relative to the wild-type gene. Southern blot analyses, field-inversion gel electrophoresis studies, and analyses of mld MBP cosmid clones indicate that there are multiple linked copies of the MBP gene in mld mice. We have introduced an MBP transgene into mld mice and found that myelination increases and tremors and convulsions decrease. Mld and shiverer mice with zero, one, or two copies of the MBP transgene express distinct levels of MBP mRNA and myelin. The availability of a range of mice expressing graded levels of myelin should facilitate quantitative analysis of the roles of MBP in the myelination process and of myelin in nerve function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号