首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional (2-D) gel electrophoresis and peptide mass fingerprinting were used to investigate the natural variation in the proteome among 8 Arabidopsis thaliana ecotypes, of which 3 were previously shown to display atypical responses to environmental stress. Comparison of 2-D maps demonstrated that only one-quarter of spots was shared by all accessions. On the other hand, only 15% of the 25 majors spots accounting for half the total protein amount could be classified as major spots in all ecotypes. Identification of these major spots demonstrated large differences between the major functions detected. Accordingly, the proteomes appeared to reveal important variations in terms of function between ecotypes. Hierarchical clustering of proteomes according to either the amount of all anonymous spots, that of the 25 major spots or the functions of these major spots identified the same classes of ecotypes, and grouped the three atypical ecotypes. It is proposed that proteome comparison has the capacity to evidence differences in the physiological status of ecotypes. Results are discussed with respect to the possibility to infer such differences from limited comparisons of major proteins. It is concluded that classical proteomics could constitute a powerful tool to mine the biodiversity between ecotypes of a single plant species.  相似文献   

2.
The tremendous functional, spatial, and temporal diversity of the plant proteome is regulated by multiple factors that continuously modify protein abundance, modifications, interactions, localization, and activity to meet the dynamic needs of plants. Dissecting the proteome complexity and its underlying genetic variation is attracting increasing research attention. Mass spectrometry (MS)-based proteomics has become a powerful approach in the global study of protein functions and their relationships on a systems level. Here, we review recent breakthroughs and strategies adopted to unravel the diversity of the proteome, with a specific focus on the methods used to analyze posttranslational modifications (PTMs), protein localization, and the organization of proteins into functional modules. We also consider PTM crosstalk and multiple PTMs temporally regulating the life cycle of proteins. Finally, we discuss recent quantitative studies using MS to measure protein turnover rates and examine future directions in the study of the plant proteome.  相似文献   

3.
This paper describes the application of the recently introduced fluorescence stain Ruthenium(II)-tris-(bathophenanthroline-disulphonate) (RuBP) on a comparative proteome analysis of two phenotypically different barley lines. We carried out an analysis of protein patterns from 2-D gels of the parental lines of the Oregon Wolfe Barley mapping population DOM and REC and stained with either the conventional colloidal Coomassie Brilliant Blue (cCBB) or with the novel RuBP solution. We wished to experimentally verify the usefulness of such a stain in evaluating the complex pattern of a seed proteome, in comparison to the previously used cCBB staining technique. To validate the efficiency of visualization by both stains, we first compared the overall number of detected protein spots. On average, 790 spots were visible by cCBB staining and 1200 spots by RuBP staining. Then, the intensity of a set of spots was assessed, and changes in relative abundance were determined using image analysis software. As expected, staining with RuBP performed better in quantitation in terms of sensitivity and dynamic range. Furthermore, spots from a cultivar-specific region in the protein map were chosen for identification to asses the gain of biological information due to the staining procedure. From this particular region, eight spots were visualized exclusively by RuBP and identification was successful for all spots, proving the ability to identify even very low abundant proteins. Performance in MS analysis was comparable for both protein stains. Proteins were identified by MALDI-TOF MS peptide mass fingerprinting. This approach was not successful for all spots, due to the restricted entry number for barley in the database. Therefore, we subsequently used LC-ESI-Q-TOF MS/MS and de novo sequencing for identification. Because only an insufficient number of proteins from barley is annotated, an EST-based identification strategy was chosen for our experiment. We wished to test whether under these limitations the application of a more sensitive stain would lead to a more advanced proteome approach. In summary, we demonstrate here that the application of RuBP as an economical but reliable and sensitive fluorescence stain is highly suitable for quantitative proteome analysis of plant seeds.  相似文献   

4.
Ly L  Wasinger VC 《Proteomics》2011,11(4):513-534
The identification, quantitation and global characterisation of all proteins within a given proteome are extremely challenging. This is due to the absolute detection limits of technology as well as the dynamic range in expression of proteins; and the extreme diversity and heterogeneity of the proteome. To overcome such issues, the use of separation technologies has played a critical role in reducing sample complexity. To date, a plethora of chromatographic and electrophoretic fractionation tools have evolved over the years assisting in simplifying complex protein and peptide mixtures. Here, we review a range of these technologies highlighting the challenges of protein and peptide analysis in the context of proteome research and some of the advantages and disadvantages of present techniques.  相似文献   

5.
Secreted proteins of the human pathogen Corynebacterium diphtheriae might be involved in important pathogen-host cell interactions. Here, we present the first systematic reference map of the extracellular and cell surface proteome fractions of the type strain C. diphtheriae C7s(-)tox-. The analysis window of 2-DE covered the pI range from 3 to 10 along with a MW range from 8 to 150 kDa. Computational analysis of the 2-D gels detected almost 150 protein spots in the extracellular proteome fraction and about 80 protein spots of the cell surface proteome. MALDI-TOF-MS and PMF with trypsin unambiguously identified 107 extracellular protein spots and 53 protein spots of the cell surface, representing in total 85 different proteins of C. diphtheriae C7s(-)tox-. Several of the identified proteins are encoded by pathogenicity islands and might represent virulence factors of C. diphtheriae. Additionally, four solute-binding proteins (HmuT, Irp6A, CiuA, and FrgD) of different iron ABC transporters were identified, with the hitherto uncharacterized FrgD protein being the most abundant one of the cell surface proteome of C. diphtheriae C7s(-)tox-.  相似文献   

6.
Using a combination of two-dimensional gel electrophoresis protein mapping and mass spectrometry analysis, we have established proteome reference maps of embryogenic cell suspensions of cowpea (Vigna unguiculata). The cell suspensions were generated from young primary leaves and contained basically pro-embryogenic masses, which enabled us to dissect their proteome composition while eliminating the complexity of too many cell types. Over 550 proteins could reproducibly be resolved over a pI range of 3–10. A total of 128 of the most abundant protein spots were excised, digested in-gel with trypsin and analyzed by tandem mass spectrometry. This enabled the identification of 67 protein spots. Two of the most abundant proteins were identified as a chitinase and as a ribonuclease belonging to the family of PR-4 and PR-10 proteins, respectively. The expression of the respective genes was confirmed by RT-PCR and the pattern of deposition of the PR-10 protein in cell suspensions as well as in developing cowpea seeds, roots, shoots and flowers were determined by Western blot experiments, using synthetic antibodies raised against a 14-amino acid synthetic peptide located close to the C-terminal region of the PR-10 protein.  相似文献   

7.
Borrelia burgdorferi, the cause of Lyme disease, produces excessive amounts of membrane lipoproteins such as outer surface protein A (OspA) when grown in vitro, and consequently many low or moderately abundant proteins are underrepresented when cell lysates are examined by 2-DE. We analyzed the B. burgdorferi B31 proteome computationally and by IPG or modified NEPHGE after subcellular fractionation into membrane-associated and soluble proteins. The B. burgdorferi B31 theoretical proteome is comprised of 1623 proteins and has a mean pI of 8.36 and a median pI of 9.03 with 68% of the proteome possessing a pI >/=7.5. Separation of soluble proteins by IPG resulted in 205 individual spots and identification of 78 protein spots by MALDI-TOF MS. Separation by modified NEPHGE routinely resulted in approximately 185 soluble and 160 membrane protein spots with the identification of 88 individual protein spots combined by MALDI-TOF MS. Homologues to GroEL and aminopeptidase I were present in greater amounts in the membrane faction, with enolase at nearly equivalent amounts in the soluble and membrane fractions. Identification of proteins isolated and separated by such methods will enable future determination of proteome changes in membrane and soluble protein fractions as spirochetes adapt to their changing environments.  相似文献   

8.
Thielaviopsis basicola, a soil-borne pathogen with a broad host range and a cosmopolitan distribution, is emerging as a major risk to sustainable cotton production in Australia. Previous studies suggested that host specialization has occurred making T. basicola an ideal model for a comparative proteomic analysis of strains isolated from different hosts. Elucidation of the genomic diversity and investigation of the functional differences in the Australian population could provide valuable information towards disease control. In this study, isolates of T. basicola were investigated for genomic (internal transcribed spacers region), proteomic and cotton virulence level variations. Internal transcribed spacers sequence analysis revealed that isolates are grouped based on host of origin irrespective of geographical origin. At the proteome level a degree of diversity was apparent and hierarchical clustering analysis of the data also demonstrated a close correlation between the proteome and the host of origin. LC-MS/MS analysis and identification using cross-species similarity searching and de novo sequencing of host-specific differentially expressed proteins and the virulence-correlated proteome allowed successful identification of 43 spots. The majority were found to be involved in metabolism. Spots that were correlated with host and virulence differences included a hypothetical protein with a Rossman-fold NAD(P)(+)-binding protein domain, glyceraldehyde-3-phosphate dehydrogenase, arginase and tetrahydroxynaphthalene reductase.  相似文献   

9.
Jin M  Drwal G  Bourgeois T  Saltz J  Wu HM 《Proteomics》2005,5(7):1940-1952
Plasma microparticles (MPs) are spherical cell membrane fragments derived from either apoptotic or activated cells. Characterized by a rich phospholipid moiety and many protein constituents, MPs normally circulate in the blood and contribute to numerous physiological processes. In disease states, MPs derived from the injured organ likely contain valuable markers for determining the site, type, and extent of disease pathology. However, the basic protein characteristics of plasma MPs have yet to be described. In this study, MPs from a pooled plasma sample derived from 16 healthy donors, all of group A blood type, were prepared by ultracentrifugation. Flow cytometry confirmed that a majority of these MPs are smaller than 1 microm. Factor Xa generation assay revealed the presence of tissue factor activity in these MPs, confirming MPs' role in initiating blood coagulation. The MP proteome was analyzed by two-dimensional (2-D) gel electrophoresis performed in triplicate, and compared with a 2-D gel of pooled whole plasma and blood platelets. Overall, plasma MPs displayed distinct protein features and a greater number of protein spots (1021-1055) than that detected in whole plasma (331-370). Protein spots expressed in high abundance in the MP proteome were then excised and submitted for protein identity determination. This process provided protein identification for 169 protein spots and reported their relative protein quantities within the MP proteome. These 169 protein spots represented 83 different proteins and their respective isoforms. Thirty of these proteins have never before been reported in previous proteome analyses of human plasma. These results provide unprecedented information on the MP proteome and create a basis for future studies to understand MP biology and pathophysiology.  相似文献   

10.
Brobey RK  Soong L 《Proteomics》2007,7(1):116-120
The recent completion of genome sequencing projects for Leishmania major and near completion for two other species, L. infantum and L. braziliensis, has provided the needed genomic information for investigating the proteomes of Leishmania parasites. However, the design of effective 2-DE-based proteome mapping for complex protozoan parasites like Leishmania has proven to be severely compromised due to extensive overcrowding of spots especially in the acidic regions, coupled to a relatively low representation of basic proteins. In the present study, we optimized a liquid-phase IEF in combination with 2-DE for L. amazonensis promastigote as a way of reducing protein complexity and enhancing representation for low-abundance proteins on gels. Of 20 pH-based fractions eluted from Rotofor cells, 5 representative fractions selected from acidic, basic or neutral regions of the proteome and with adequate protein concentration were further analyzed by 2-DE using medium-range IPG strips. On this basis, we were able to generate high-resolution 2-DE maps encompassing both the acidic and basic ends of the proteome with enhanced spot representation.  相似文献   

11.
12.
Dynamics of cold tolerance and crown proteome composition has been analysed in a set of two winter wheat cultivars Mironovskaya 808 and Bezostaya 1 and four reciprocal substitution lines with interchanged chromosomes 5A and 5B during a long-term cold-acclimation (CA) treatment. Proteome analysis has revealed 298 differently abundant spots during experiment. Most of them (260) were changed due to CA process and only 52 spots displayed differences between genotypes. Two hundred and seven protein spots were successfully identified by tandem mass spectrometry. Comparison of samples before and after vernalization fulfillment by a combination of ANOVA and Student' T-test displayed ten differentially abundant protein spots (e.g. chopper chaperones). However, differences in the accumulation of these spots did not reflect differences in vernalization requirement of genotypes. Therefore, our results indicate that vernalization process has not influenced total proteome of CA wheat crowns. A few protein spots (14 spots; e.g. malate dehydrogenase) revealed differential accumulation levels between the individual genotypes or their groups possessing chromosome 5A or 5B from Mironovskaya 808 versus Bezostaya 1. The study has shown the effect of chromosome 5A on physiological traits and also proteome in winter wheat. Putative candidate protein markers for cold tolerance in wheat are discussed.  相似文献   

13.
14.
We have analyzed the proteome of several strains of Haemophilus ducreyi by two-dimensional gel electrophoresis (2-DE) and mass spectrometry. Over 100 spots were analyzed from the soluble and insoluble protein fractions from the prototype strain 35000HP and 122 distinct proteins were identified. Functions of approximately 80% of the 122 proteins were deduced by identification with close homologues of Haemophilus influenzae. Four additional wild type and three mutant strains were also analyzed that vary in their virulence and/or outer-membrane lipooligosaccharide structures. Overall, the 2-DE gel maps of the wild type and mutant strains were similar to strain 35000HP, suggesting little proteome diversity in relation to carbohydrate expression and/or virulence. An exception was the Kenyan strain 33921 which contained significant differences in its proteome 2-DE map and also synthesizes an unusual LOS with a trisaccharide branch structure. This African strain may represent a prototype of a second clonal group of H. ducreyi.  相似文献   

15.
The characterization of the normal urinary proteome is steadily progressing and represents a major interest in the assessment of clinical urinary biomarkers. To estimate quantitatively the variability of the normal urinary proteome, urines of 20 healthy people were collected. We first evaluated the impact of the sample conservation temperature on urine proteome integrity. Keeping the urine sample at RT or at +4°C until storage at -80°C seems the best way for long-term storage of samples for 2D-GE analysis. The quantitative variability of the normal urinary proteome was estimated on the 20 urines mapped by 2D-GE. The occurrence of the 910 identified spots was analysed throughout the gels and represented in a virtual 2D gel. Sixteen percent of the spots were found to occur in all samples and 23% occurred in at least 90% of urines. About 13% of the protein spots were present only in 10% or less of the samples, thus representing the most variable part of the normal urinary proteome. Twenty proteins corresponding to a fraction of the fully conserved spots were identified by mass spectrometry. In conclusion, a "public" urinary proteome, common to healthy individuals, seems to coexist with a "private" urinary proteome, which is more specific to each individual.  相似文献   

16.
为了考察表达天冬氨酸转氨酶工程菌在转基因前后蛋白质水平的差异变化,采用固相pH梯度-SDS聚丙烯酰胺双向凝胶电泳对转基因前后的大肠杆菌(E.coli BL21)的总蛋白进行分离,银染、显色后,使用2D蛋白质图象分析系统Image Master 2D Platinum 5.0和SWISS-2D PAGE蛋白质组数据库对双向电泳图谱进行分析,识别了近600个蛋白点,比较分析了与苯丙氨酸合成途径相关的关键蛋白的差异,初步探讨了AspC基因的导入后大肠杆菌蛋白质水平的精细调控。  相似文献   

17.
18.
Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post‐translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.  相似文献   

19.
To improve the potential of two-dimensional gel electrophoresis for proteomic investigations in yeast we have undertaken the systematic identification of Saccharomyces cerevisiae proteins separated on 2-D gels. We report here the identification of 187 novel protein spots. They were identified by two methods, mass spectrometry and gene inactivation. These identifications extend the number of protein spots identified on our yeast 2-D proteome map to 602, i.e. nearly half the detectable spots of the proteome map. These spots correspond to 417 different proteins. The reference map and the list of identified proteins can be accessed on the Yeast Protein Map server (www.ibgc.u-bordeaux2.fr/YPM).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号