首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four 9,10-anthraquinones (AQ) mono- or bis-substituted with the -NH(CH2)2 NH(CH2)2OH group were studied. 1-AQ, 1,5-AQ and 1,8-AQ but not 1,4-AQ (100°M) generated pBR322 plasmid DNA single strand breaks in the presence of purified NADPH dependent cytochrome P450 reductase. 1-AQ, 1,5-AQ and 1,8-AQ (at 100 °M) stimulated hydroxyl radical formation in MCF-7 S9 cell fraction (as measured by dimethyl pyrolline N-oxide spin trapping) and MCF-7 DNA strand breaks as measured by alkaline filter elution. In contrast 1,4-AQ did not stimulate hydroxyl radical formation and produced considerably less strand breaks in MCF-7 cells compared to the other AQ's. It would appear that the position of the -NH(CH2)2 NH(CH2)2OH groups on the chromophore is an important determinant in the metabolic activation of cytotoxic anthraquinones. This may contribute to the cytotoxicity (ID50 values) of 1-AQ (0.06 °M), 1-8-AQ (0.5 °M) and 1,5-AQ (12.3 °M) but not the 1,4-AQ (1.2 °M).  相似文献   

2.
Indole-3-carbinol (I3C) is a dietary modulator of carcinogenesis that can reduce the level of carcinogen binding to DNA. I3C-derived products are potent inducers of certain cytochrome P-450(CYP)-dependent enzyme activities. To investigate whether the protective effects of I3C against carcinogen damage to DNA are associated with increased activities of CYP1A1 enzymes, we examined the relationship of I3C-mediated organ-specific CYP enzyme induction with total levels of benzo[a]pyrene (BP) binding to hepatic and pulmonary DNA of rats. Oral intubation (PO) of I3C (500 mumol/kg body wt.) in 10% DMSO in corn oil produced after 20 h, increases in ethoxyresorufin O-deethylase (EROD) activities (associated with CYP1A1 isozyme) of 700-fold, 245-fold and 36-fold in small intestine, lungs and liver, respectively, compared with activities in untreated controls. Hepatic aryl hydrocarbon hydroxylase (AHH) activity was increased 4-fold under these conditions. Pentoxyresorufin O-depentylase (PROD) activity (associated with CYP2B isoenzyme) was increased 6-fold in the liver but was unaffected in lung and small intestine. Intraperitoneal injection (IP) of I3C (500 mumol/kg body wt.) produced no significant change in EROD or PROD activities in lung, liver, or small intestine. PO administration of the acid reaction mixture (RXM) of I3C increased hepatic AHH activity (5-fold) and EROD activities in small intestine (650-fold), lung (100-fold) and liver (18-fold). IP administration of RXM (equivalent to 500 mumol I3C/kg body wt.) significantly increased only EROD activity in lung and liver, but did not affect EROD activity in small intestine, AHH activity in liver, or PROD activity in any of the organs examined. Twenty hours after inducer treatment, half of the rats were treated PO with 0.2 mumol [3H]BP in corn oil. Analysis of tissues 5 h after BP administration indicated that compared with untreated controls, administration of I3C and RXM by either route reduced by 30-50% the level of BP binding to hepatic DNA, an effect that was not correlated to CYP1A1 enzyme induction in any of the organs examined. However, PO administration of I3C and RXM produced a 50-70% decrease in carcinogen binding to pulmonary DNA, while IP administration of inducers had no effect on DNA binding in this organ. These results with the lung are consistent with an increased presystemic clearance of BP in the intestine and are discussed in terms of the role of induction of intestinal CYP1A1 activity in the decreased lymphatic and venous transport of unmetabolized BP to the lung.  相似文献   

3.
The identity and expression of hepatic P450 enzymes in marmosets was investigated using a panel of anti-peptide antibodies originally targeted against human P450 enzymes. In immunoblotting, of 12 antibodies examined, 10 bound specifically to bands in marmoset liver microsomal fraction corresponding to P450 enzymes. It is proposed that these represent marmoset CYP1A1, CYP1A2, CYP2A, CYP2B, CYP2C forms (CYP2C-1 and CYP2C-2), CYP2D19, CYP3A21 and another CYP3A form (CYP3A-m). The antibodies, together with an anti-marmoset CYP2E1 antibody, were used to investigate the expression of 10 P450 enzymes in marmosets treated with P450-inducing chemicals. Treatment with phenobarbitone caused CYP2B, CYP2C-2 and CYP3A21 levels to increase, rifampicin caused increases in CYP2B and CYP2C-1 and a decrease in CYP3A21 levels, whereas dioxin caused CYP1A1 and CYP1A2 levels to increase and CYP2E1 levels to decrease. Clofibric acid did not induce any P450. P450 enzyme activities were assessed using 8 different substrates and increases were found after treatment with phenobarbitone, rifampicin, and dioxin. However, due to species differences in substrate selectivity, it proved difficult to ascribe these changes to individual P450 enzymes. Thus, the use of anti-peptide antibodies provides a more informative way of assessing the levels of specific P450 enzymes than enzyme activity measurements.  相似文献   

4.
《Free radical research》2013,47(3-6):221-226
In a series of hydroxyethylaminoalkylaminoanthraquinones (AQ's) based on mitozantrone, 1-AQ (340%) and 1,8-AQ (137%) stimulated basal rate NADPH oxidation (72 + 18pmol min-lmg S9 protein-1) whilst 1,4-AQ, 1,5-AQ and mitozantrone had no effect. A similar trend was observed for O2? generation (measured as nmol acet. cyt c reduction min-1 mg protein-1) by these compounds in MCF-7 S9 fraction: 1-AQ (9.5) and 1,8-AQ (7.9), whilst 1,5-AQ, 1,4-AQ and mitozantrone showed no significant effect. All the AQs including mitozantrone were cytotoxic to MCF-7 cells in a dose dependent manner with EC50 values as follows: 1-AQ (0.01 μm) > doxorubicin (0.4μM) > mitozantrone (0.6μM) > 1,8-AQ (2.O μM) > 1,5-AQ (4.0μM) > 1,4-AQ (8,0 μM). Thus the redox active AQs were also the most cytotoxic. Mitozantrone however was not redox active but was more cytotoxic than all but 1-AQ hence it would appear that factors other than free radical generation contribute to the antitumor activity of this group of compounds.  相似文献   

5.
《Free radical research》2013,47(1-3):117-125
Four 9,10-anthraquinones (AQ) mono- or bis-substituted with the -NH(CH2)2 NH(CH2)2OH group were studied. 1-AQ, 1,5-AQ and 1,8-AQ but not 1,4-AQ (100°M) generated pBR322 plasmid DNA single strand breaks in the presence of purified NADPH dependent cytochrome P450 reductase. 1-AQ, 1,5-AQ and 1,8-AQ (at 100 °M) stimulated hydroxyl radical formation in MCF-7 S9 cell fraction (as measured by dimethyl pyrolline N-oxide spin trapping) and MCF-7 DNA strand breaks as measured by alkaline filter elution. In contrast 1,4-AQ did not stimulate hydroxyl radical formation and produced considerably less strand breaks in MCF-7 cells compared to the other AQ's. It would appear that the position of the -NH(CH2)2 NH(CH2)2OH groups on the chromophore is an important determinant in the metabolic activation of cytotoxic anthraquinones. This may contribute to the cytotoxicity (ID50 values) of 1-AQ (0.06 °M), 1-8-AQ (0.5 °M) and 1,5-AQ (12.3 °M) but not the 1,4-AQ (1.2 °M).  相似文献   

6.
Reduction of toxic metabolite formation of acetaminophen   总被引:5,自引:0,他引:5  
Acetaminophen is a widely used over-the-counter drug that causes severe hepatic damage upon overdose. Cytochrome P450-dependent oxidation of acetaminophen results in the formation of the toxic N-acetyl-p-benzoquinone-imine (NAPQI). Inhibition of cytochrome P450 enzymes responsible for NAPQI formation might be useful--besides N-acetylcysteine treatment--in managing acetaminophen overdose. Investigations were carried out using human liver microsomes to test whether selective inhibition of cytochrome P450s reduces NAPQI formation. Selective inhibition of CYP3A4 and CYP1A2 did not reduce, whereas the inhibition of CYP2A6 and CYP2E1 significantly decreased NAPQI formation. Furthermore, selective CYP2E1 inhibitors that are used in human therapy were tested for their inhibitory effect on NAPQI formation. 4-Methylpyrazole, disulfiram, and diethyl-dithiocarbamate were the most potent inhibitors with IC(50) values of 50 microM, 8 microM, and 33 microM, respectively. Although cimetidin is used in the therapy of acetaminophen overdose as an inhibitor of cytochrome P450, it is not able to reduce NAPQI formation.  相似文献   

7.
The aim of this study was to investigate the expression and organ distribution of cytochrome P450 (CYP450) enzymes, microsomal epoxide hydrolase (MEH), and microsomal glutathione-S-transferase (MGST 1, 2, 3) in human liver, lung, intestinal, and kidney microsomes by targeted peptide-based quantification using nano liquid chromatography–tandem multiple reaction monitoring (nano LC-MRM). Applying this method, we analyzed 16 human liver microsomes and pooled lung, kidney, and intestine microsomes. Nine of the CYP450s (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5) could be quantified in liver. Except for CYP3A4 and 3A5 existing in intestine, other CYP450s had little content (<0.1 pmol/mg protein) in extrahepatic tissues. MEH and MGSTs could be quantified both in hepatic and in extrahepatic tissues. The highest concentrations of MEH and MGST 1, 2 were found in liver; conversely MGST 3 was abundant in human kidney and intestine compared to liver. The targeted proteomics assay described here can be broadly and efficiently utilized as a tool for investigating the targeted proteins. The method also provides novel CYP450s, MEH, and MGSTs expression data in human hepatic and extrahepatic tissues that will benefit rational approaches to evaluate metabolism in drug development.  相似文献   

8.
A mouse model with liver-specific deletion of the NADPH-cytochrome P450 reductase (Cpr) gene (designated Alb-Cre/Cprlox mice) was generated and characterized in this study. Hepatic microsomal CPR expression was significantly reduced at 3 weeks and was barely detectable at 2 months of age in the Alb-Cre+/-/Cprlox+/+ (homozygous) mice, with corresponding decreases in liver microsomal cytochrome P450 (CYP) and heme oxygenase (HO) activities, in pentobarbital clearance, and in total plasma cholesterol level. Nevertheless, the homozygous mice are fertile and are normal in gross appearance and growth rate. However, at 2 months, although not at 3 weeks, the homozygotes had significant increases in liver weight, accompanied by hepatic lipidosis and other pathologic changes. Intriguingly, total microsomal CYP content was increased in the homozygotes about 2-fold at 3 weeks and about 3-fold at 2 months of age; at 2 months, there were varying degrees of induction in protein (1-5-fold) and mRNA expression (0-67-fold) for all CYPs examined. There was also an induction of HO-1 protein (nearly 9-fold) but no induction of HO-2. These data indicate the absence of significant alternative redox partners for liver microsomal CYP and HO, provide in vivo evidence for the significance of hepatic CPR-dependent enzymes in cholesterol homeostasis and systemic drug clearance, and reveal novel regulatory pathways of CYP expression associated with altered cellular homeostasis. The Alb-Cre/Cprlox mouse represents a unique model for studying the in vivo function of hepatic HO and microsomal CYP-dependent pathways in the biotransformation of endogenous and xenobiotic compounds.  相似文献   

9.
10.
Human microsomes and hepatocytes obtained from non-transplantable livers of brain-dead donors are very useful in predicting the in vivo metabolism of xenobiotics in humans. Fresh liver specimens obtained from therapeutic liver resection are also useful for research in cases where non-transplantable livers are not readily available. In the present study, the effect of warm ischemic duration, in the course of hepatic surgery, on the activities of liver cytochrome P450 (CYP) CYP1A, CYP2C, CYP2D, CYP2E1 and CYP3A were evaluated in a porcine model. Partial occlusion (portal vein and hepatic artery occlusion) decreased the activities of CYP2C, CYP2E and CYP3A, but not those of CYP1A and CYP2D. CYP3A, known to account for an average 30% of total P450 content in the human liver was the most susceptible to the warm ischemia. These results demonstrate that the activities of CYP isoforms, particularly those of CYP3A, are markedly affected by warm ischemia; it is, therefore, essential that care should be exercised when using microsomes prepared from surgically removed livers.  相似文献   

11.
We have previously described a method to capture, identify and quantify volatile components in expired breath. The purpose of this research is to provide a non-invasive means to measure biomarkers of metabolism in vivo. In the present studies, the effect of 1-aminobenzotriazole (ABT), an inhibitor of diverse cytochrome P450 (P450) enzymes, on the composition of volatile organic chemicals (VOCs) expired in the breath of male F-344 rats was determined in parallel with the catalytic activities and total content of hepatic P450. lntraperitoneal administration of ABT (100 mg kg-1) to rats resulted in markedly diminished hepatic microsomal P450 content and activities. The extent of inhibition was near maximal at 4 h, at which time approximately 50% of the total P450 content, about 65% of the CYPlA2 activity, 55% of the CYP2E1 activity, and about 80% of CYP2B activity were lost. Inhibition was maintained to 48 h post-dosing, but P450 content and activities had largely been restored by day 7. Concomitant with the inhibition of P450 were corresponding increases (up to several hundred-fold) in the molar amount of volatiles appearing in the breath of ABT-treated animals, and the rebound of P450 levels was attended by corresponding decreases in the appearance of breath volatiles. These studies indicate that P450 plays a major role in the metabolism of VOCs appearing in breath, and that these chemicals can serve as markers on P450 activity in vivo.  相似文献   

12.
At least six cytochrome P450 (P450) isoenzymes, including CYP1A1/2, CYP2A1, CYP2B1/2, CYP2C6, CYP2C11 and CYP2E1, are involved in the metabolism of toluene in rat liver. Toluene exposure induces CYP1A1/2, CYP2B1/2, CYP2E1 and CYP3A1, but decreases CYP2C11/6 and CYP2A1 in adult males. Both sex and age influence the induction of P450s by toluene: in general, the inductive effect is more prominent in younger than in older animals; in males than in females. Neonatal exposure to toluene causes significant changes in liver microsomal P450 dependent monooxygenase activities during the early stage of life, whereas the enects on the rats of more than 3 weeks of age are small. Although structurally related chemicals of toluene also influence similar hepatic P450 isoenzymes, the degree of CYP2B1/2 induction increases, whilst that of CYP2E1 decreases with increasing molecular weight and aliphatic moieties. Unlike liver, exposure to toluene does not influence the distribution of pulmonary or renal microsomal P450-related enzyme activity in rats. In humans, occupational exposure to toluene is so low that it could not lead to the induction of P450. However, the induction may be seen in toluene sniffers who are exposed to high concentrations.  相似文献   

13.
Rupasinghe SG  Duan H  Schuler MA 《Proteins》2007,68(1):279-293
Towards defining the function of Arabidopsis thaliana fatty acid hydroxylases, five members of the CYP86A subfamily have been heterologously expressed in baculovirus-infected Sf9 cells and tested for their ability to bind a range of fatty acids including unsubstituted (lauric acid (C12:0) and oleic acid (C18:1)) and oxygenated (9,10-epoxystearic acid and 9,10-dihydroxystearic acid). Comparison between these five P450s at constant P450 content over a range of concentrations for individual fatty acids indicates that binding of different fatty acids to CYP86A2 always results in a higher proportion of high spin state heme than binding titrations conducted with CYP86A1 or CYP86A4. In comparison to these three, CYP86A7 and CYP86A8 produce extremely low proportions of high spin state heme even with the most effectively bound fatty acids. In addition to their previously demonstrated lauric acid hydroxylase activities, all CYP86A proteins are capable of hydroxylating oleic acid but not oxygenated 9,10-epoxystearic acid. Homology models have been built for these five enzymes that metabolize unsubstituted fatty acids and sometimes bind oxygenated fatty acids. Comparison of the substrate binding modes and predicted substrate access channels indicate that all use channel pw2a consistent with the crystal structures and models of other fatty acid-metabolizing P450s in bacteria and mammals. Among these P450s, those that bind internally oxygenated fatty acids contain polar residues in their substrate binding cavity that help stabilize these charged/polar groups within their largely hydrophobic catalytic site.  相似文献   

14.
Chronic treatment of rats with N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension mediated partly by enhanced angiotensin-I-converting enzyme (ACE) activity. We examined the influence of L-NAME on rat liver morphology, on hepatic glycogen, cholesterol, and triglyceride content, and on the activities of the cytochrome P450 isoforms CYP1A1/2, CYP2B1/2, CYP2C11, and CYP2E1. Male Wistar rats were treated with L-NAME (20 mg/rat per day via drinking water) for 2, 4, and 8 weeks, and their livers were then removed for analysis. Enzymatic induction was produced by treating rats with phenobarbital (to induce CYP2B1/2), beta-naphthoflavone (to induce CYP1A1/2), or pyrazole (to induce CYP2E1). L-NAME significantly elevated blood pressure; this was reversed by concomitant treatment with enalapril (ACE inhibitor) or losartan (angiotensin II AT(1) receptor antagonist). L-NAME caused vascular hypertrophy in hepatic arteries, with perivascular and interstitial fibrosis involving collagen deposition. Hepatic glycogen content also significantly increased. L-NAME did not affect fasting glucose levels but significantly reduced insulin levels and increased the insulin sensitivity of rats, based on an intraperitoneal glucose tolerance test. Immunoblotting experiments indicated enhanced phosphorylation of protein kinase B and of glycogen synthase kinase 3. All these changes were reversed by concomitant treatment with enalapril or losartan. L-NAME had no effect on hepatic cholesterol or triglyceride content or on the basal or drug-induced activities and protein expression of the cytochrome P450 isoforms. Thus, the chronic inhibition of NO biosynthesis produced hepatic morphological alterations and changes in glycogen metabolism mediated by the renin-angiotensin system. The increase in hepatic glycogen content probably resulted from enhanced glycogen synthase activity following the inhibition of glycogen synthase kinase 3 by phosphorylation.  相似文献   

15.
The effects of the subchronic administration of Panax ginseng extracts were examined on the hepatic cytochrome P450-dependent monooxygenase system of guinea pigs pre-exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Panax ginseng extracts were intraperitoneally administered to guinea pigs at 100 mg/kg/day for 14 days from 1 week after a single intraperitoneal injection of 1 microg of TCDD/kg of body weight. TCDD treatment increased the total cytochrome P450 content 2.86-fold, and this was remarkably inhibited by the administration of Panax ginseng extracts. Treatment with ginseng extract alone also decreased the contents of cytochrome P450 by 33%, but both TCDD and ginseng extracts had no effect on cytochrome b(5) content. The administration of TCDD resulted in a 1.73-fold increase in microsomal NADPH-cytochrome P450 reductase activity in the guinea pig liver, and this was significantly inhibited by ginseng extracts, but treatment with ginseng extracts alone had no effect on its activity, and no statistical changes in the activity of NADPH-cytochrome b(5) reductase were observed in guinea pig liver due to TCDD and/or ginseng extract administration. Compared to the control, ECOD activity remarkably (1.76-fold) increased after TCDD administration, but this increase was completely inhibited by treatment with ginseng extract. Treatment with ginseng extract alone resulted in a 50% reduction of ECOD activity. TCDD administration remarkably induced benzphetamine demethylation (BPDM) activity, while ginseng extract also slightly increased the enzyme's activity, but the induction attributed to ginseng extracts was not statistically significant. Even though administration of ginseng extracts slightly inhibited TCDD-induced BPDM activity, the inhibition was not statistically significant. These results indicate that ginseng extract exerts different effect on the induction of P450 isozymes. From these results, we suggest that Panax ginseng extracts may act as an inhibitor of CYP1A rather than that of CYP2B.  相似文献   

16.
Two in vitro studies assessed the potential of daptomycin (Cubicin), a newly marketed antibiotic, to affect the cytochrome P450 (CYP450) isoforms in primary cultured human hepatocytes. Both induction and inhibition of isoforms 1A2, 2A6, 2C9, 2C19, 2D6, 2E1, and 3A4 were evaluated. The highest concentrations of daptomycin used in both the induction and inhibition assays were approximately eight-fold higher than the peak total drug concentration (50-60 microg/mL), or the peak free drug concentration (estimated 5-6 microg/mL), in plasma at the clinical dose regimen of 4 mg/kg qd. Results in primary human hepatocytes indicate that daptomycin, at concentrations up to 400 microg total drug/mL, demonstrated no biologically significant induction of any of the CYP450 isoform activities in comparison with the negative control or known inducers. At daptomycin concentrations up to 40 microg free drug/mL, no biologically significant inhibition of the activities of these CYP450 isoforms was observed as compared with known inhibitors. The human hepatocyte results demonstrate that daptomycin has no effects on hepatic CYP450-mediated drug metabolism and, therefore, suggest that daptomycin is unlikely to show potential for pharmacokinetic interactions with concomitantly administered drugs that are metabolized by CYP450 isoforms.  相似文献   

17.
18.
Artemether is an efficacious antimalarial drug that also displays antischistosomal properties. Grapefruit juice increases the oral availability of a variety of the CYP3A4 substrates. This study was designed to evaluate the effect of repeated administration of grapefruit juice with artemether on the hepatic activities of cytochrome P-450 (CYP450) and cytochrome b5 (cyt b5), on the serum levels of some biochemical enzymes and antischistosome efficacy. Results showed that administration of grapefruit juice alone induced more inhibition in the hepatic activities of CYP450 and cyt b5 than that produced by Schistosoma mansoni infection. Moreover, it enhanced degeneration of eggs and accelerated healing of the pathological granulomatous lesions. Treatment of S. mansoni-infected mice with artemether at a total dose of 300 mg/kg resulted in total and female worm burden reductions of 66.7 and 90.1%, respectively, hence protecting the host from damage induced by schistosome eggs. Treatment of S. mansoni-infected mice with artemether at 150 mg/kg reduced the total and female worm numbers by 43.3 and 54.4%, respectively, thus somewhat ameliorating hepatic granulomatous lesions compared with the infected untreated group. This was associated with no change in the hepatic activities of CYP450 and cyt b5 and in the serum levels of total protein, albumin, globulin and alanine aminotransferase compared with the uninfected control group. Coadministration of grapefruit juice with the lower dose (150 mg/kg) of artemether eliminated eggs and granulomatous reactions. In this group, the inhibitory effects of grapefruit juice on CYP450 and cyt b5 were apparent but serum liver enzymes were unchanged compared with the uninfected control group. Coadministration of grapefruit juice with artemether achieved complete protection of the host from damage induced by schistosomal infection.  相似文献   

19.
《Biomarkers》2013,18(3):196-201
Abstract

We have previously described a method to capture, identify and quantify volatile components in expired breath. The purpose of this research is to provide a non-invasive means to measure biomarkers of metabolism in vivo. In the present studies, the effect of 1-aminobenzotriazole (ABT), an inhibitor of diverse cytochrome P450 (P450) enzymes, on the composition of volatile organic chemicals (VOCs) expired in the breath of male F-344 rats was determined in parallel with the catalytic activities and total content of hepatic P450. lntraperitoneal administration of ABT (100 mg kg-1) to rats resulted in markedly diminished hepatic microsomal P450 content and activities. The extent of inhibition was near maximal at 4 h, at which time approximately 50% of the total P450 content, about 65% of the CYPlA2 activity, 55% of the CYP2E1 activity, and about 80% of CYP2B activity were lost. Inhibition was maintained to 48 h post-dosing, but P450 content and activities had largely been restored by day 7. Concomitant with the inhibition of P450 were corresponding increases (up to several hundred-fold) in the molar amount of volatiles appearing in the breath of ABT-treated animals, and the rebound of P450 levels was attended by corresponding decreases in the appearance of breath volatiles. These studies indicate that P450 plays a major role in the metabolism of VOCs appearing in breath, and that these chemicals can serve as markers on P450 activity in vivo.  相似文献   

20.
Ivermectin is an antiparasitic drug widely used in veterinary and human medicine. We have found earlier that repeated treatments of rats with high doses of this drug led to significant increase of cytochrome P450-dependent 7-methoxyresorufin O-demethylase (MROD) and 7-ethoxyresorufin O-deethylase (EROD) activities in hepatic microsomes. In the present study, the effects of ivermectin on cytochrome P450 (CYP) activities were investigated in mouflon (Ovis musimon) and fallow deer (Dama dama). This study was conducted also to point out general lack of information on both basal levels of CYP enzymes and their inducibilities by veterinary drugs in wild ruminants. Liver microsomes were prepared from control animals, mouflons, after single or repeated (six doses in six consecutive days) treatments with therapeutic doses of ivermectin (0.5 mg kg(-1) of body weight), and fallow deer exposed to repeated doses of ivermectin under the same conditions. Alkyloxyresorufins, testosterone and chlorzoxazone were used as the specific substrate probes of activities of the CYP isoenzymes. A single therapeutic dose of ivermectin significantly induced (300-400% of the control group) the activities of all alkyloxyresorufin dealkylases tested in mouflon liver microsomes. Repeated doses of ivermectin also caused an increase of these activities, but due to fair inter-individual differences, this increase was not significant. The administration of ivermectin led to an induction (170-210% of the control) of the testosterone 6beta- and 16alpha-hydroxylase activities in mouflon liver but no significant modulation of chlorzoxazone hydroxylase (CZXOH) activity was found in mouflon liver. CYP-dependent activities in hepatic microsomes were generally higher in fallow deer than in mouflons. However, with the exception of slight increase in the 7-benzyloxyresorufin O-dealkylase (BROD) activities, no significant modulation of the other activities was observed. The induction of CYP3A-like isoenzyme was confirmed by immunoblotting only in the microsomes from mouflons administered with repeated doses of ivermectin; however, no significant increase of CYP1A isoenzymes was observed due to a weak cross-reactivity of anti-rat CYP1A1/2 polyclonal antibodies used in the study. The results indicate that ivermectin should be considered as an inducer of several cytochrome P450 isoenzymes, including CYP1A, 2B and 3A subfamilies, in mouflons. The comparison of induction effect of ivermectin in rat, mouflon and fallow deer also demonstrates the inter-species differences in inducibility of CYP enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号