首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 μM is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption.  相似文献   

2.
C Nicot  M Vacher  M Vincent  J Gallay  M Waks 《Biochemistry》1985,24(24):7024-7032
The solubility, reactivity, and conformational dynamics of myelin basic protein (MBP) from bovine brain were studied in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-isooctane and water. Such a membrane-mimetic system resembles the aqueous spaces of native myelin sheath in terms of physicochemical properties as reflected in the high affinity of MBP for interfacial bound water. This is marked by the unusual profile of the solubility curve of the protein in reverse micelles, which shows optimal solubility at a much lower molar ratio of water to surfactant ([ H2O]/[AOT] = w0) than that reported for other water-soluble proteins. The role of counterions and/or charged polar head groups in the solubilization process is revealed by comparison of the solubility of MBP in nonionic surfactant micellar solutions. Whereas MBP is unfolded in aqueous solutions, insertion into reverse micelles generates a more folded structure, characterized by the presence of 20% alpha-helix. This conformation is unaffected by variations in the water content of the system (in the 2.0-22.4 w0 range). The reactivity of epsilon-amino groups of lysine residues with aqueous solutions of o-phthalaldehyde demonstrates that segments of the peptide chain are accessible to water. Similar results were obtained with the sequence involved in heme binding. In contrast, the sole tryptophan residue, Trp-117, is shielded from the aqueous solvent, as indicated by lack of reaction with N-bromosuccinimide. The invariance of the wavelength maximum emission in the fluorescence spectra as a function of w0 is consistent with this result.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied the interaction of the peptide AAMQMLKETINEEAAEWDRVHPVHAGPIA from the HIV-1 p24 protein in the presence of SDS (anionic) and CTABr (cationic) micelles at pH 7.0 by circular dichroism, fluorescence, and electron spin resonance (ESR). The micelles induced secondary structure as well as a blue shift in the tryptophan fluorescence emission, indicating an interaction between the peptide and the micelles. However, different contents of secondary structure elements were found when the peptide interacts with SDS or CTABr micelles. Steady-state anisotropy indicates a constraint on the rotational mobility of the tryptophan residue of the peptide upon interaction with micelles. ESR studies pointed to different locations for the peptide in either micelle. Our results suggested that at least part of the peptide might be located at the hydrophobic core of the CTABr micelles, probably at the C-terminal region, while it is more inserted into the SDS micelles.  相似文献   

4.
The newly discovered endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are potent opioid peptides with the highest affinity and selectivity for the mu receptor among all known endogenous ligands. To investigate a possible correlation between these biological properties and the conformational preferences of the small peptides, a comparative structural analysis was performed of endomorphin-1 in aqueous buffer and in membrane-mimicking SDS and AOT normal and reverse micelles by the use of CD, FT-IR, fluorescence and(1)H-NMR spectroscopy. It is well established for opioid peptides that, independently of the receptor selectivity, the Tyr1 residue plays the role of the primary pharmacophore and that the orientation of the second aromatic pharmacophore relative to the tyrosine side-chain dictates the mu or delta-receptor selectivity. By varying the environment of endomorphin-1 from water to the amphipathic SDS micelles and even more efficiently to the AOT reverse micelles, the display of the aromatic side-chains changes from an interaction of the Tyr1 and Phe4 residues to a switch of the Trp3 indole group into close contact with the phenolic moiety to prevent this type of interaction and to force an orientation of the Phe4 side-chain into the opposite direction. This conformational switch is accompanied by a stabilization of the cis -Pro2 isomer and the resulting spatial array of the pharmacophoric groups correlate well with the structural model of mu receptor-bound opioid peptides. The results indicate that AOT reverse micelles with a woof 10, where almost exclusively ordered water is secluded in the cavity, constitute with their electrostatic and hydrophobic potential an excellent mimetic of amphipathic surfaces as present on lipid bilayers and on ligand-recognition and ligand-binding sites of proteins.  相似文献   

5.
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.  相似文献   

6.
The interaction of B18 peptide with surfactants has been studied by circular dichroism spectroscopy and fluorescence measurements. B18 is the fusogenic motif of the fertilization sea urchin protein. The peptide forms an alpha-helix structure when interacting with positively or negatively charged surfactants below and above the critical micellar concentration (CMC). The alpha-helix formation is due to binding of surfactant monomers rather than the formation of surfactant micelles on the peptide. Fluorescence measurements show that the CMC of the negatively charged surfactant increases in the presence of B18, supporting the fact that there is a strong interaction between the peptide and monomers. Nonionic surfactant monomers have no effect on the peptide structure, whereas the micelles induce an alpha-helical conformation. In this case the helix stabilization results from the formation of surfactant micelles on the peptide.  相似文献   

7.
FTIR study of horseradish peroxidase in reverse micelles   总被引:2,自引:0,他引:2  
Fourier transform infrared (FTIR) method was used to study the secondary structures of horseradish peroxidase (HRP) in aqueous solution and in reverse micelles for the first time. Results indicated that the structure of HRP in sodium bis(2-ethylhexy)sulfosuccinate (AOT) reverse micelles was close to that in aqueous solution. In cetyltrimethylammonium bromide (CTAB) and sodium dodecylfate (SDS) reverse micelles the position of some bands changed. Results indicated that the secondary structure had a close relationship with the surfactant species of the reverse micelles. Among the three types of reverse micelles, the system of AOT reverse micelles was probably the most beneficial reaction media to HRP.  相似文献   

8.
The fluorescence of myoglobin, cytochromes b5 and c in the reversed aerosol OT (AOT) micelles in octane has been investigated. The fluorescence intensity of all the three hemoproteins is higher than that in aqueous solutions. The maxima and intensities of fluorescence in the AOT micelles depend on the [H2O]/[AOT] ratio and reflect the protein structure. Aliphatic alcohols and secondary amines (piperidine and morpholine) quench the cytochrome c fluorescence in the AOT micelles, whereas dipolar aprotic solvents (dimethylsulfoxide, dimethylformamide) significantly increase the intensity of cytochrome c fluorescence in the same micelles. The transformations of the proteins solubilized by the reversed micelles of a surfactant are discussed.  相似文献   

9.
J Gallay  M Vincent  C Nicot  M Waks 《Biochemistry》1987,26(18):5738-5747
The tryptophan (Trp) rotational dynamics and the secondary structure of the peptide hormones adrenocorticotropin-(1-24) [ACTH(1-24)]--the fully active N-terminal fragment of adrenocorticotropin-(1-39)--and glucagon were studied in aqueous solutions and in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water/isooctane, a system selected to mimic the membrane-water interface. In aqueous solutions, the total fluorescence intensity decays of their single Trp residue [Trp-9 and Trp-25 for ACTH(1-24) and glucagon, respectively] are multiexponential. This is also the case for ACTH(5-10), a fragment of the adrenocorticotropin "message" region. Time-resolved fluorescence anisotropy data evidence a high degree of rotational freedom of the single Trp residue. Transfer of these peptides from water to the aqueous core of reverse micelles induces severe restrictions of the Trp internal motion and of its local environment. The results indicate that the Trp-9 residue in ACTH(1-24 is maintained in the close neighborhood of the water-AOT molecular interface where the water molecules are strongly immobilized. By contrast, the Trp residues in ACTH(5-10) and glucagon are likely to be located closer to the center of the micellar aqueous core where the water molecules are in a more mobile state. Furthermore, the above location of Trp can be extended to the peptide chains themselves as evidenced by the overall correlation time values of the peptide-containing micelles. Nevertheless, in all peptides, the indole ring remains susceptible to oxidation by N-bromosuccinimide. Circular dichroism measurements evidence the induction in glucagon of alpha-helices remaining unaffected by the micellar water content. Conversely, beta-sheet structures are favored in ACTH(1-24) at low water-to-surfactant molar ratios (w0) but are disrupted by subsequent additions of water. These results are discussed in terms of the possible role of the micellar interfaces in selecting the preferred peptide dynamical conformation(s)  相似文献   

10.
The dynamical fluorescence properties of the sole tryptophan residue (Trp-140) in Staphylococcus aureus nuclease (EC 3.1.31.1) have been investigated in aqueous solution and reversed micelles composed of either sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane or cetyltrimethylammonium chloride (CTAC) in isooctane/hexanol (12:1 by volume). The fluorescence decay of nuclease in the different environments can be described by a trimodal distribution of fluorescence lifetimes at approx. 0.5, 1.5 and 5.0 ns. The relative amplitudes depend on the environment. For pH 9.0 solutions the contribution of the two shortest lifetime components in the distribution is largest for AOT and smallest for CTAC reversed micelles. There is reasonable agreement between the average fluorescence lifetime and the fluorescence quantum efficiency confirming a significant fluorescence quenching in AOT reversed micelles. Fluorescence anisotropy decay revealed that the tryptophan environment in aqueous nuclease solutions is rigid on a nanosecond timescale. When nuclease was entrapped into reversed micelles the tryptophan gained some internal flexibility as judged from the distinct presence of a shorter correlation time. The longer correlation time reflected the rotational properties of the protein-micellar system. Modulation of the overall charge of nuclease (isoelectric point pH 9.6) by using buffer of pH 9.0 and pH 10.4, respectively, and of the size of empty micelles by selecting two values of the water to surfactant molar ratio, had only a minor effect on the rotational properties of nuclease in the positively charged reversed micelles. Encapsulation of nuclease in anionic reversed micelles resulted in the development of protein bound to aggregated structures which are immobilised on a nanosecond timescale. According to far UV vircular dichroism results the secondary structure of nuclease only followed the already published pH-dependent changes. Encapsulation had no major effect on the overall secondary structure.  相似文献   

11.
The extraction of flexibly-structured protein in Aerosol-OT (AOT)/isooctane reverse micelles was investigated. A flexibly-structured lysozyme was prepared by reduction and carboxymethylation of the disulfide bonds in the lysozyme molecule. For a comparison, lysozymes whose surface hydrophobicity was modified by monoacylation of the amino groups were also used. The extraction rate of the flexibly-structured lysozyme into the micellar phase was greater than that of the native and monoacylated lysozymes, although the free energy change of the lysozyme prepared by breaking the disulfide bonds was smaller than that of the lysozymes whose surfaces were monoacylated. Viscosity measurement of the micellar organic phase containing the modified lysozymes indicated that extraction of the flexibly-structured lysozyme changed the micelle–micelle interaction, while measurement of the interfacial tension between the AOT/isooctane and protein aqueous systems showed the flexibly-structured lysozyme to be the most amphiphilic in character. These results indicated that the flexible structure of a protein was more dominant than its surface hydrophobicity for its incorporation into reverse micelles, and that it leads to greater micelle–micelle interaction.  相似文献   

12.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

13.
Interactions between fluorescent horse heart cytochrome c derivatives (e. g. porphyrin cytochrome c and Zn-porphyrin cytochrome c) with surfactant interfaces in reversed micellar solutions have been studied, using different spectroscopic techniques. Anionic [sodium bis(2-ethylhexyl)sulfosuccinate, AOT] and cationic (cetyltrime-thylammonium bromide, CTAB) surfactant solutions have been used in order to investigate the effects of charge interactions between proteins and interfaces. Circular dichroism reveals that much of the protein secondary structure is lost in AOT-reversed micelles, especially when the molar water/surfactant ratio, wo, is high (wo = 40), whereas in CTAB-reversed micelles secondary structure seems to be preserved. Time-resolved fluorescence measurements of the porphyrin in the cytochrome c molecule yields information about the changes in structure and the dynamics of the protein upon interaction with surfactant assemblies both in aqueous and in hydrocarbon solutions. With AOT as surfactant a strong interaction between protein and interface can be observed. The effects found in aqueous AOT solution are of the same kind as in hydrocarbon solution. In the CTAB systems the interactions between protein and surfactant are much less pronounced. The measured effects on the fluorescence properties of the proteins are different in aqueous and hydrocarbon solutions. In general, the observations can be explained by an electrostatic attraction between the overall positively charged protein molecules and the anionic AOT interface. Electrostatic attraction can also occur between the cytochrome c derivatives and CTAB because there is a negatively charged zone on the surface of the proteins. From the fluorescence anisotropy decays it can be concluded that in the CTAB-reversed micellar system these interactions are not important, whereas in an aqueous CTAB solution the proteins interact with surfactant molecules.  相似文献   

14.
The influence of ethylene glycol (EG) on the kinetics of hydrolysis of N-alpha-benzoyl-L-arginine ethyl ether catalyzed by trypsin encapsulated in sodium bis-(2-ethylhexyl)sulfosuccinate (AOT)-based reverse micelles was studied at different temperatures. Ethylene glycol was shown to shift the range of the trypsin activity in the reverse micelles towards higher temperatures. Infrared spectroscopy showed a stabilizing effect of EG on the secondary structure of the protein in the system of reverse micelles. Electron spin resonance spectroscopy showed that the solubilized protein affected the interactions of EG with the polar head groups of AOT and altered the rigidity of the micellar matrix. The results indicate that EG increases the thermostability of the solubilized enzyme in microemulsion media by two mechanisms.  相似文献   

15.
Summary Conformational preferences of secretin as a model peptide have been analyzed by CD and IR spectroscopy in reverse micelles of AOT/isooctane/water and compared to those in aqueous TFE, in SDS micelles and in DMPG vesicles. Among the systems examined, reverse micelles and phospholipid vesicles displayed almost identical conformational equilibria. Very high lipid-to-peptide ratios can be obtained in reverse micelles with full retention of optical transparency, even at millimolar peptide concentrations, thus indicating this system to be an interesting mimic of cell membrane environments for spectroscopic analysis of bioactive peptide conformations.Abbreviations TFE trifluoroethanol - SDS sodium dodecyl sulfate - DMPG dimyristoylphosphatidylglycerol - AOT bis(2-ethylhexyl)sulfosuccinate - CMC critical micellar concentration - VIP vasoactive intestinal peptide  相似文献   

16.
The relationship between alpha-helical secondary structure and the fluorescence properties of an intrinsic tryptophan residue were investigated. A monomeric alpha-helix forming peptide and a dimeric coiled-coil forming peptide containing a central tryptophan residue were synthesized. The fluorescence parameters of the tryptophan residue were determined for these model systems at a range of fractional alpha-helical contents. The steady-state emission maximum was independent of the fractional alpha-helical content. A minimum of three exponential decay times was required to fully describe the time-resolved fluorescence data. Changes were observed in the decay times and more significantly, in their relative contributions that could be correlated with alpha-helix content. The results were also shown to be consistent with a model in which the decay times were independent of both alpha-helix content and emission wavelength. In this model the relative contributions of the decay time components were directly proportional to the alpha-helix content. Data were also analyzed according to a continuous distribution of exponential decay time model, employing global analysis techniques. The recovered distributions had "widths" that were both poorly defined and independent of peptide conformation. We propose that the three decay times are associated with the three ground-state chi 1 rotamers of the tryptophan residue and that the changes in the relative contributions of the decay times are the result of conformational constraints, imposed by the alpha-helical main-chain, on the chi 1 rotamer populations.  相似文献   

17.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30-40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

18.
The influence of molecular characteristics on the mutual interaction between peptides and nonionic surfactants has been investigated by studying the effects of surfactants on amphiphilic, random copolymers of alpha-L-amino acids containing lysine residues as the hydrophilic parts. The hydrophobic residues were either phenylalanine or tyrosine. The peptide-surfactant interactions were studied by means of circular dichroism spectroscopy and binding isotherms, as well as by 1D and 2D NMR. The binding of surfactant to the peptides was found to be a cooperative process, appearing at surfactant concentrations just below the critical micellar concentration. However, a certain degree of peptide hydrophobicity is necessary to obtain an interaction with nonionic surfactant. When this prerequisite is fulfilled, the peptide mainly interacts with self-assembled, micelle-like surfactant aggregates formed onto the peptide chain. Therefore, the peptide-surfactant complex is best described in terms of a necklace model, with the peptide interacting primarily with the palisade region of the micelles via its hydrophobic side chains. The interaction yields an increased amount of alpha-helix conformation in the peptide. Surfactants that combine small headgroups with a propensity to form small, nearly spherical micelles were shown to give the largest increase in alpha-helix content.  相似文献   

19.
The secondary and tertiary structure of recombinant human acidic fibroblast growth factor (aFGF) has been characterized by a variety of spectroscopic methods. Native aFGF consists of ca. 55% beta-sheet, 20% turn, 10% alpha-helix, and 15% disordered polypeptide as determined by laser Raman, circular dichroism, and Fourier transform infrared spectroscopy; the experimentally determined secondary structure content is in agreement with that calculated by the semi-empirical methods of Chou and Fasman (Chou, P. Y., and Fasman, G. C., 1974, Biochemistry 13, 222-244) and Garnier et al. (Garnier, J. O., et al., 1978, J. Mol. Biol. 120, 97-120). Using the Garnier et al. algorithm, the major secondary structure components of aFGF have been assigned to specific regions of the polypeptide chain. The fluorescence spectrum of native aFGF is unusual in that it is dominated by tyrosine fluorescence despite the presence of a tryptophan residue in the protein. However, tryptophan fluorescence is resolved upon excitation above 295 nm. The degree of tyrosine and tryptophan solvent exposure has been assessed by a combination of ultraviolet absorption, laser Raman, and fluorescence spectroscopy; the results suggest that seven of the eight tyrosine residues are solvent exposed while the single tryptophan is partially inaccessible to solvent in native aFGF, consistent with recent crystallographic data. Denaturation of aFGF by extremes of temperature or pH leads to spectroscopically distinct conformational states in which contributions of tyrosine and tryptophan to the fluorescence spectrum of the protein vary. The protein is unstable at physiological temperatures. Addition of heparin or other sulfated polysaccharides does not affect the spectroscopic characteristics of native aFGF. These polymers do, however, dramatically stabilize the native protein against thermal and acid denaturation as determined by differential scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The interaction of aFGF with such polyanions may play a role in controlling the activity of this growth factor in vivo.  相似文献   

20.
The human multidrug resistance protein MRP1 (or ABCC1) is one of the most important members of the large ABC transporter family, in terms of both its biological (tissue defense) and pharmacological functions. Many studies have investigated the function of MRP1, but structural data remain scarce for this protein. We investigated the structure and dynamics of predicted transmembrane fragment 17 (TM17, from Ala(1227) to Ser(1251)), which contains a single Trp residue (W(1246)) involved in MRP1 substrate specificity and transport function. We synthesized TM17 and a modified peptide in which Ala(1227) was replaced by a charged Lys residue. Both peptides were readily solubilized in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. The interaction of these peptides with DM or DPC micelles was studied by steady-state and time-resolved Trp fluorescence spectroscopy, including experiments in which Trp was quenched by acrylamide or by two brominated analogs of DM. The secondary structure of these peptides was determined by circular dichroism. Overall, the results obtained indicated significant structuring ( approximately 50% alpha-helix) of TM17 in the presence of either DM or DPC micelles as compared to buffer. A main interfacial location of TM17 is proposed, based on significant accessibility of Trp(1246) to brominated alkyl chains of DM and/or acrylamide. The comparison of various fluorescence parameters including lambda(max), lifetime distributions and Trp rotational mobility with those determined for model fluorescent transmembrane helices in the same detergents is also consistent with the interfacial location of TM17. We therefore suggest that TM17 intrinsic properties may be insufficient for its transmembrane insertion as proposed by the MRP1 consensus topological model. This insertion may also be controlled by additional constraints such as interactions with other TM domains and its position in the protein sequence. The particular pattern of behavior of this predicted transmembrane peptide may be the hallmark of a fragment involved in substrate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号