首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
Interleukin (IL)-6-type cytokines stimulate osteoclastogenesis by activating gp130 in stromal/osteoblastic cells and may mediate some of the osteoclastogenic effects of other cytokines and hormones. To determine whether STAT3 is a downstream effector of gp130 in the osteoclast support function of stromal/osteoblastic cells and whether the gp130/STAT3 pathway is utilized by other osteoclastogenic agents, we conditionally expressed dominant negative (dn)-STAT3 or dn-gp130 in a stromal/osteoblastic cell line (UAMS-32) that supports osteoclast formation. Expression of either dominant negative protein abolished osteoclast formation stimulated by IL-6 + soluble IL-6 receptor, oncostatin M, or IL-1 but not by parathyroid hormone or 1,25-dihydroxyvitamin D3. Because previous studies suggested that IL-6-type cytokines may stimulate osteoclastogenesis by inducing expression of the tumor necrosis factor-related protein, receptor activator of NF-kappaB ligand (RANKL), we conditionally expressed RANKL in UAMS-32 cells and found that this was sufficient to stimulate osteoclastogenesis. Moreover, dn-STAT3 blocked the ability of either IL-6 + soluble IL-6 receptor or oncostatin M to induce RANKL. These results establish that STAT3 is essential for gp130-mediated osteoclast formation and that the target of STAT3 during this process is induction of RANKL. In addition, this study demonstrates that activation of the gp130-STAT3 pathway in stromal/osteoblastic cells mediates the osteoclastogenic effects of IL-1, but not parathyroid hormone or 1, 25-dihydroxyvitamin D3.  相似文献   

4.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

5.
6.
Fusion proteins of the extracellular parts of cytokine receptors, also known as cytokine traps, turned out to be promising cytokine inhibitors useful in anti-cytokine therapies. Here we present newly designed cytokine traps for murine and human leukemia inhibitory factor (LIF) as prototypes for inhibitors targeting cytokines that signal through a heterodimer of two signaling receptors of the glycoprotein 130 (gp130) family. LIF signals through a receptor heterodimer of LIF receptor (LIFR) and gp130 and induces the tyrosine phosphorylation of STAT3 leading to target gene expression. The analysis of various receptor fusion and deletion constructs revealed that a truncated form of the murine LIF receptor consisting of the first five extracellular domains was a potent inhibitor for human LIF. For the efficient inhibition of murine LIF, the cytokine-binding module of murine gp130 had to be fused to the first five domains of murine LIFR generating mLIF-RFP (murine LIFR fusion protein). The tyrosine phosphorylation of STAT3 and subsequent gene induction induced by human or murine LIF are completely blocked by the respective inhibitor. Furthermore, both inhibitors are specific and do not alter the bioactivities of the closely related cytokines interleukin (IL)-6 and oncostatin M. The gained knowledge on the construction of LIF inhibitors can be transferred to the design of inhibitors for related cytokines such as IL-31, IL-27, and oncostatin M for the treatment of inflammatory and malignant diseases.  相似文献   

7.
8.
9.
Lung epithelial cells are primary targets of oncostatin M (OSM) and, to a lower degree, of interleukin (IL)-6 and IL-31, all members of the IL-6 cytokine family. The OSM receptor (OSMR) signals through activation of STAT and mitogen-activated protein kinase pathways to induce genes encoding differentiated cell functions, reduce cell-cell interaction, and suppress cell proliferation. IL-31 functions through the heteromeric IL-31 receptor, which shares with OSMR the OSMRbeta subunit, but does not engage gp130, the common subunit of all other IL-6 cytokine receptors. Because the response of epithelial cells to IL-31 is unknown, the action of IL-31 was characterized in the human alveolar epithelial cell line A549 in which the expression of the ligand-binding IL-31Ralpha subunit was increased. IL-31 initiated signaling that differed from other IL-6 cytokines by the particularly strong recruitment of the STAT3, ERK, JNK, and Akt pathways. IL-31 was highly effective in suppressing proliferation by altering expression of cell cycle proteins, including up-regulation of p27(Kip1) and down-regulation of cyclin B1, CDC2, CDK6, MCM4, and retinoblastoma. A single STAT3 recruitment site (Tyr-721) in the cytoplasmic domain of IL-31Ralpha exerts a dominant function in the entire receptor complex and is critical for gene induction, morphological changes, and growth inhibition. The data suggest that inflammatory and immune reactions involving activated T-cells regulate functions of epithelial cells by IL-6 cytokines through receptor-defined signaling reactions.  相似文献   

10.
Down-regulation of interleukin (IL)-6-type cytokine signaling has been shown to occur, among other mechanisms, via induction of the feedback inhibitor SOCS3 (suppressor of cytokine signaling 3). Binding of SOCS3 to the phosphorylated Tyr(759) in the cytoplasmic region of gp130, the common signal transducing receptor chain of all IL-6-type cytokines, is necessary for inhibition of Janus kinase-mediated signaling. In the present study, we analyzed the effect of SOCS3 on signal transduction by the proinflammatory cytokine oncostatin M (OSM), which signals through a receptor complex of gp130 and the OSM receptor (OSMR). OSM leads to a much stronger and prolonged induction of SOCS3 in HepG2 hepatoma cells and murine embryonal fibroblasts (MEF) compared with IL-6. A negative effect of SOCS3 on OSM signaling was confirmed using MEF cells lacking SOCS3. We can show that the OSMR-mediated signaling is inhibited by SOCS3 to a similar extent as previously described for gp130. However, the inhibition occurs independent of tyrosine motifs within the OSMR. Instead, SOCS3 interacts directly with JAK1 in a stimulation-dependent manner, a mechanism so far only known for SOCS1.  相似文献   

11.
12.
13.
gp130 is the common signal transducing receptor subunit of interleukin (IL)-6-type cytokines. gp130 either homodimerizes in response to IL-6 and IL-11 or forms heterodimers with the leukemia inhibitory factor (LIF) receptor (LIFR) in response to LIF, oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) or cardiotrophin-like cytokine resulting in the onset of cytoplasmic tyrosine phosphorylation cascades. The extracellular parts of both gp130 and LIFR consist of several Ig-like and fibronectin type III-like domains. The role of the membrane-distal domains of gp130 (D1, D2, D3) and LIFR in ligand binding is well established. In this study we investigated the functional significance of the membrane-proximal domains of gp130 (D4, D5, D6) in respect to heterodimerization with LIFR. Deletion of each of the membrane-proximal domains of gp130 (Delta 4, Delta 5 and Delta 6) leads to LIF unresponsiveness. Replacement of the gp130 domains by the corresponding domains of the related GCSF receptor either restores weak LIF responsiveness (D4-GCSFR), leads to constitutive activation of gp130 (D5-GCSFR) or results in an inactive receptor (D6-GCSFR). Mutation of a specific cysteine in D5 of gp130 (C458A) leads to constitutive heterodimerization with the LIFR and increased sensitivity towards LIF stimulation. Based on these findings, a functional model of the gp130-LIFR heterodimer is proposed that includes contacts between D5 of gp130 and the corresponding domain D7 of the LIFR and highlights the requirement for both receptor dimerization and adequate receptor orientation as a prerequisite for signal transduction.  相似文献   

14.
The common use of the cytokine receptor gp130 has served as an explanation for the extremely redundant biological activities exerted by interleukin (IL)-6-type cytokines. Indeed, hardly any differences in signal transduction initiated by these cytokines are known. In the present study, we demonstrate that oncostatin M (OSM), but not IL-6 or leukemia inhibitory factor, induces tyrosine phosphorylation of the Shc isoforms p52 and p66 and their association with Grb2. Concomitantly, OSM turns out to be a stronger activator of ERK1/2 MAPKs. Shc is recruited to the OSM receptor (OSMR), but not to gp130. Binding involves Tyr(861) of the OSMR, located within a consensus binding sequence for the Shc PTB domain. Moreover, Tyr(861) is essential for activation of ERK1/2 and for full activation of the alpha(2)-macroglobulin promoter, but not for an exclusively STAT-responsive promoter. This study therefore provides evidence for qualitative differential signaling mechanisms exerted by IL-6-type cytokines.  相似文献   

15.
The function of the signal-transducing receptor subunit glycoprotein 130 (gp130) in the IL-6-receptor complex has previously been studied using carboxyl-terminal deletion mutants or a truncated molecule of approximately 60 membrane-proximal amino acids (containing box 1 and box 2) linked to the individual gp130 tyrosine motifs. However, the redundancy of the tyrosine motifs within the cytoplasmic part of gp130 has been neglected. Here we describe the analysis of the function of the individual cytoplasmic tyrosine residues of gp130 in the context of the full-length receptor protein in IL-6 signaling as measured by STAT activation, acute phase protein induction, and stimulation of proliferation. Add-back receptor mutants containing only one cytoplasmic tyrosine have been generated and tested for their efficiency in IL-6 signal transduction. Our studies revealed that tyrosine motifs which have been described to recruit STAT proteins are not equivalent with respect to their potential to activate STAT factors and acute phase protein gene promoters: the two distal tyrosines, Tyr905 and Tyr915, of gp130 were more potent than Tyr767 and Tyr814. Surprisingly, Tyr905 and Tyr915 mediate acute phase protein gene promoter activation stronger than the wild-type receptor containing all six cytoplasmic tyrosine residues. In contrast, Ba/F3 cells stably transfected with add-back receptors containing Tyr767 or Tyr905 were more sensitive to IL-6-induced proliferation than cells expressing the other add-back receptor mutants. Thus, the tyrosine residues in the cytoplasmic part of gp130 were found to contribute differentially to IL-6 signal transduction in the full- length gp130 protein.  相似文献   

16.
17.
Interleukin (IL)-31 is a recently described cytokine, preferentially produced by T helper 2 lymphocytes and associated with skin diseases, such as atopic dermatitis. IL-31 is a member of the four α-helix bundle cytokine family and is related to the IL-6 subgroup. Its heterodimeric membrane receptor is composed of the gp130-like receptor (GPL) subunit associated to the oncostatin M receptor subunit. We identified critical amino acids implicated in the ligand receptor interaction by computational analysis combined with site-directed mutagenesis. Six IL-31 residues selected for their putative involvement in cytokine receptor contact sites were alanine-substituted, and the corresponding proteins were expressed in mammalian and bacterial systems. Biochemical, membrane binding, cell signaling, and cell proliferation analyses showed that mutation E44A, E106A, or H110A abolished IL-31 binding to GPL and the subsequent signaling events. A second ligand receptor-binding site involved Lys134, with alanine substitution leading to a protein that still binds GPL, but is unable to recruit the second receptor subunit and the subsequent signaling pathways. The results indicate that IL-31 recognizes its receptor complex through two different binding sites, and we propose a three-dimensional model for IL-31.  相似文献   

18.
Interleukin-31, produced mainly by activated CD4+ T cells, is a newly discovered member of the gp130/IL-6 cytokine family. Unlike all the other family members, IL-31 does not engage gp130. Its receptor heterodimer consists of a unique gp130-like receptor chain IL-31RA, and the receptor subunit OSMRβ that is shared with another family member oncostatin M (OSM). Binding of IL-31 to its receptor activates Jak/STAT, PI3K/AKT and MAPK pathways. IL-31 acts on a broad range of immune- and non-immune cells and therefore possesses potential pleiotropic physiological functions, including regulating hematopoiesis and immune response, causing inflammatory bowel disease, airway hypersensitivity and dermatitis. This review summarizes the recent findings on the biological characterization and physiological roles of IL-31 and its receptors.  相似文献   

19.
Interleukin-11 (IL-11) belongs to the interleukin-6 (IL-6)-type subfamily of long-chain helical cytokines including IL-6, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M, and cardiotrophin-1, which all share the glycoprotein gp130 as a signal transducing receptor component. IL-11 acts on cells expressing gp130 and the IL-11 receptor (IL-11R) alpha-subunit (IL-11Ralpha). The structural epitopes of IL-11 required for the recruitment of the individual receptor subunits have not yet been defined. Based on the structure of CNTF, a three-dimensional model of human IL-11 was built. Using this model, 10 surface exposed amino acid residues of IL-11 were selected for mutagenesis using analogies to the well-characterized receptor recruitment sites of IL-6, CNTF, and LIF. The respective mutants of human IL-11 were expressed as soluble fusion proteins in bacteria. Their biological activities were determined on HepG2 and Ba/F3-130-11alpha cells. Several mutants with substantially decreased bioactivity and one hyperagonistic mutant were identified and further analyzed with regard to recruitment of IL-11Ralpha and gp130. The low-activity mutant I171D still binds IL-11Ralpha but fails to recruit gp130, whereas the hyperagonistic variant R135E more efficiently engages the IL-11R subunits. The low-activity mutants R190E and L194D failed to bind to IL-11Ralpha. These findings reveal a common mechanism of receptor recruitment in the family of IL-6-type cytokines and offer considerable perspectives for the rational design of IL-11 antagonists and hyperagonists.  相似文献   

20.
Oncostatin M: signal transduction and biological activity   总被引:12,自引:0,他引:12  
Gómez-Lechón MJ 《Life sciences》1999,65(20):2019-2030
Oncostatin M (OSM) is a multifunctional cytokine produced by activated T lymphocytes and monocytes that is structurally and functionally related to the subfamily of cytokines known as the IL-6-type cytokine family. OSM shares properties with all members of this family of cytokines, but is most closely related structurally and functionally to LIE OSM acts on a wide variety of cells and elicits diversified biological responses in vivo and in vitro which suggest potential roles in the regulation of gene activation, cell survival, proliferation and differentiation. OSM and LIF can bind to the same functional receptor complex (LIF-receptor beta and gp130 heteromultidimers) and thus mediate overlapping spectra of biological activities. There is a second specific beta receptor that binds OSM with high affinity and also involves the subunit gp130. The two receptors for OSM can be functionally different and be coupled to different signal transduction pathways. OSM-specific receptors are expressed in a wide variety of cell types and do not possess an intrinsic tyrosine kinase domain, but the JAK/STAT tyrosine kinase pathway mediates signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号