首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Xue Y  Kuok C  Xiao A  Zhu Z  Lin S  Zhang B 《遗传学报》2010,37(10):685-693
Mical(molecule interacting with CasL)represent a conserved family of cytosolic multidomain proteins that has been shown to be associated with a variety of cellular processes,including axon guidance,cell movement,cell-cell junction formation,vesicle trafficking and cancer cell metastasis.However,the expression and function of these genes during embryonic development have not been comprehensively characterized,especially in vertebrate species,although some limited in vivo studies have been carried out in neural and musculature systems of Drosophila and in neural systems of vertebrates.So far,no mica/family homologs have been reported in zebrafish,an ideal vertebrate model for the study of developmental processes.Here we report eight homologs of m/ca/family genes in zebrafish and their expression profiles during embryonic development.Consistent with the findings in Drosophila and mammals,most zebrafish mical family genes display expression in neural and musculature systems.In addition,five mica/homologs are detected in heart,and one,micall2a,in blood vessels.Our data established an important basis for further functional studies of mica/family genes in zebrafish,and suggest a possible role for mica/genes in cardiovascular development.  相似文献   

3.
4.
5.
6.
Long QT syndrome is a disorder that is characterised by a prolonged QT-interval and can lead to fatal cardiac arrhythmias. Many animal models have been created to study congenital long QT syndrome. Of these, zebrafish models have involved targeting two different KCNH2 gene (long QT syndrome 2) orthologues, termed zerg-2 and zerg-3, with differing cardiac phenotypes. In order to clarify this situation, this study uses a bioinformatic approach to search the current zebrafish genome sequence (Zv7 and Zv8 builds) to investigate and locate all likely zebrafish orthologues of the human KCNH2 gene. Quantitative real-time RT-PCR was also used to determine the temporal and spatial gene expression profile of the zebrafish orthologues. The data support the conclusion that zerg-2 and zerg-3 are apparent orthologues of different human genes encoding potassium ion channels, but that their functions have switched compared to the respective human proteins.  相似文献   

7.
Iroquois homeoproteins are prepatterning factors that positively regulate proneural genes and control neurogenesis. We have identified a zebrafish Iroquois gene, irx1, which is highly homologous to Xenopus Xiro1, Gallus c-Irx1 and mouse Irx1. Expression of irx1 was initially detected at the bud stage. By 16 h post-fertilization (hpf), irx1 expression was exclusively limited to the prospective midbrain and hindbrain. By 24 hpf, irx1 expression was clearly detected in the acousticovestibual ganglia, tectum, tegmentum, cerebellum and rhombomere 1 but not in rhombomere 2 or mid-hindbrain boundary.  相似文献   

8.
9.
10.
11.
Gene expression analysis of zebrafish heart regeneration   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
15.
With more than 50 genes in human, keratins make up a large gene family, but the evolutionary pressure leading to their diversity remains largely unclear. Nevertheless, this diversity offers a means to examine the evolutionary relationships among organisms that express keratins. Here, we report the analysis of keratins expressed in two cyprinid fishes, goldfish and carp, by two-dimensional polyacrylamide gel electrophoresis, complementary keratin blot binding assay, and immunoblotting. We further explore the expression of keratins by immunofluorescence microscopy. Comparison is made with the keratin expression and catalogs of zebrafish and rainbow trout. The keratins among these fishes exhibit a similar range of molecular weights and isoelectric points, with a similar overall pattern on two-dimensional gels. In addition, immunofluorescence microscopy studies of goldfish and carp tissues have revealed the expression of keratins in both epithelial and mesenchymally derived tissues, as reported previously for zebrafish and trout. We conclude that keratin expression is qualitatively similar among these fishes, with goldfish and carp patterns being more similar to each other than to zebrafish, and the cyprinid fishes being more similar to each other than to the salmonid trout. Because of the detected similarity of keratin expression among the cyprinid fishes, we propose that, for certain experiments, they are interchangeable. Although the zebrafish distinguishes itself as being a developmental and genetic/genomic model organism, we have found that the goldfish, in particular, is a more suitable model for both biochemical and histological studies of the cytoskeleton, especially since goldfish cytoskeletal preparations seem to be more resistant to degradation than those from carp or zebrafish. This work was supported by grants to J.M. from the Stiftung Rheinland Pfalz für Innovation (836-386261/138) and the Deutsche Forschungsgemeinschaft (Ma 843/5-1) and a grant to D.G. from the National Science Foundation (INT-0078261).  相似文献   

16.
The SOUL/p22HBP family is an evolutionarily ancient group of heme binding proteins with a main function as cytosolic buffer against tetrapyrrole accumulation. Structural and biochemical evidence suggest specialized roles in blood formation, necrotic cell death and chemotaxis. To date, nothing is known about the precise activity and expression patterns of this class of heme binding proteins during development. The zebrafish genome possesses five soul genes belonging to two subgroups, and no p22HBP orthologous gene. Here, spatial and temporal expression patterns are reported for zebrafish soul1, soul2 and soul4 genes. All three soul genes are maternally transcribed, and their zygotic expression takes place in unique (heart, pharynx, yolk syncytial layer, brain, eyes, lateral line) and overlapping (pronephros, pituitary gland, olfactory and otic vesicle) regions of the zebrafish embryo. Our study constitutes the first detailed analysis of soul gene expression in metazoan development, and provides the basis to understand the genetics of tetrapyrrole metabolism in a wide range of embryonic processes.  相似文献   

17.
The A2A adenosine receptor (AdR) subtype has emerged as an attractive target in the pursuit of improved therapy for Parkinson’s disease (PD). This report focuses on characterization of zebrafish a2 AdRs. By mining the zebrafish EST and genomic sequence databases, we identified two zebrafish a2a (adora2a.1 and adora2a.2) genes and one a2b (adora2b) AdR gene. Sequence comparisons indicate that the predicted zebrafish A2 AdR polypeptides share 62–74% amino acid identity to mammalian A2 AdRs. We mapped the adora2a.1 gene to chromosome 8, the adora2a.2 gene to chromosome 21, and the adora2b gene to chromosome 5. Whole mount in situ hybridization analysis indicates zebrafish a2 AdR genes are expressed primarily within the central nervous system (CNS). Zebrafish are known to be sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that causes selective loss of dopaminergic neurons and PD-like symptoms in humans as well as in animal models. Here we show that caffeine, an A2A AdR antagonist, is neuroprotective against the adverse effects of MPTP in zebrafish embryos. These results suggest that zebrafish AdRs may serve as useful targets for testing novel therapeutic strategies for the treatment of PD.  相似文献   

18.
Pex14p is a central component of the peroxisomal protein import machinery, which has been suggested to provide the point of convergence for PTS1- and PTS2-dependent protein import in yeast cells. Here we describe the identification of a human peroxisome-associated protein (HsPex14p) which shows significant similarity to the yeast Pex14p. HsPex14p is a carbonate-resistant peroxisomal membrane protein with its C terminus exposed to the cytosol. The N terminus of the protein is not accessible to exogenously added antibodies or protease and thus might protrude into the peroxisomal lumen. HsPex14p overexpression leads to the decoration of tubular structures and mislocalization of peroxisomal catalase to the cytosol. HsPex14p binds the cytosolic receptor for the peroxisomal targeting signal 1 (PTS1), a result consistent with a function as a membrane receptor in peroxisomal protein import. Homo-oligomerization of HsPex14p or interaction of the protein with the PTS2-receptor or HsPex13p was not observed. This distinguishes the human Pex14p from its counterpart in yeast cells and thus supports recent data suggesting that not all aspects of peroxisomal protein import are conserved between yeasts and humans. The role of HsPex14p in mammalian peroxisome biogenesis makes HsPEX14 a candidate PBD gene for being responsible for an unrecognized complementation group of human peroxisome biogenesis disorders.  相似文献   

19.
Chemical discovery and global gene expression analysis in zebrafish   总被引:4,自引:0,他引:4  
The zebrafish (Danio rerio) provides an excellent model for studying vertebrate development and human disease because of its ex utero, optically transparent embryogenesis and amenability to in vivo manipulation. The rapid embryonic developmental cycle, large clutch sizes and ease of maintenance at large numbers also add to the appeal of this species. Considerable genomic data has recently become publicly available that is aiding the construction of zebrafish microarrays, thus permitting global gene expression analysis. The zebrafish is also suitable for chemical genomics, in part as a result of the permeability of its embryos to small molecules and consequent avoidance of external confounding maternal effects. Finally, there is increasing characterization and analysis of zebrafish models of human disease. Thus, the zebrafish offers a high-quality, high-throughput bioassay tool for determining the biological effect of small molecules as well as for dissecting biological pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号