首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Freeze-drying of bacteria associates with different stresses such as osmotic pressure, temperature and oxidation, and decreases bacterial viability, which seem to reduce by applying cryoprotectants. The present study evaluated the effect of four cryoprotectants on decreasing the stress caused by freeze-drying process among three Lactobacillus species. Additionally, it highlighted the use of whey and maltodextrin as a substitute for peptone and sucrose in cryoprotectants respectively. The viability of lactobacilli was measured after freeze-drying, 1 month of storage at 25 and 4°C. Based on the results, the viability rate of bacteria in protectants during freeze-drying stage was dependent on their strains. The best viability of Lacticaseibacillus rhamnosus GG and Ligilactobacillus salivarius 20687 was, respectively, observed in the protectants containing sucrose and whey, while Lactiplantibacillus plantarum NRRL B-14768 viability was equal in all protectants. The number of live bacteria reduced significantly by storing bacteria for 1 month at 25°C compared to the 4°C storage. During the storage period, the viability of L. salivarius improved by adding sucrose in protectant. Due to the positive effect of whey and sucrose in the drying and storage stage, on bacterial viability, the protectant consisting of whey and sucrose is suggested for all of the species under study.  相似文献   

2.
Response surface methodology (RSM) is a commonly used system to optimize cryoprotectants of biocontrol strains when they are subjected to preparations. Various kinds of cryoprotectants and centrifugal conditions were tested to improve the survival of biocontrol agents after freeze-drying. To determine the optimum levels of incorporation of three cryoprotectants (glucose, trehalose and xylitol) in the freeze-drying process of strain Bacillus amyloliquefaciens B1408, a range of experiments based on Box-Behnken Design (BBD) were conducted. The results indicated that the suitable centrifugation conditions were 5000 r/min,10 min and the optimum concentrations of cryoprotectants were glucose 1.00%, trehalose 4.74% and xylitol 1.45%. The proven survival rate of cells after freeze-drying was 91.24%. These results convincingly demonstrated that freeze-drying could be used to preparation of biocontrol strain B1408. This study provides a theoretical basis for commercial possibilities and formulation development.  相似文献   

3.
The viability and thermal stability of a freeze-dried yeast strain were studied in relation to some physical properties of the matrices in which the cells were freeze-dried. Samples of inoculum with solutions of the matrix components [polyvinylpyrrolidone (PVP), maltose, trehalose, maltodextrins, or mixtures of maltodextrin and trehalose] and controls without matrices were freeze-dried and then equilibrated at several relative humidities. Viability was determined before and after freeze-drying and after heat treatment (100 min at 70 °C). Freeze-drying with trehalose, PVP, maltose or 1.8-kDa maltodextrin, and mixtures of maltodextrin/trehalose increased viability in comparison with controls. The 3.6-kDa maltodextrin was ineffective at protecting the cells during freeze-drying. The glass transition temperature (T g), which depends on moisture content, was indicated as a possible factor to determine the stability of labile materials. Protective effects of the excipients during thermal treatment were analysed in relation to the physical changes (collapse or structural shrinkage) which were dependent on the T g of the systems. The presence of a certain amount of amorphous disaccharides during freeze-drying and heating was found to be a critical factor for ensuring cell viability, which was protected even in rubbery (above T g) matrices. Received: 4 December 1998 / Received last revision: 2 March 1999 / Accepted: 14 March 1999  相似文献   

4.
A recombinant bioluminescent bacteria, containing a fabA::luxCDABE fusion gene, has been used to characterize freeze-drying methods, which may be conveniently used as a tool for the development of a portable biosensor. Through residual water, viability, biosensing activity and scanning electron microscopy analyses, the characteristics that four cryoprotectants, trehalose, sucrose, sorbitol, and mannitol, conferred on freeze-dried samples were elucidated, including the morphology, water content and activity of the cells. It was found that trehalose showed the best freeze-drying efficiency among the tested cryoprotectants and it might have a specific capacity limitation in protection of the cells during the freeze step. Humidity might result in damage to the cells, according to the viability, when exposed to air during storage, while the water remaining post freeze-drying showed good correlation with damage to the freeze-dried cells when under air-tight storage conditions. The results with other recombinant bioluminescent bacteria indicated that these findings might be general features of the freeze-drying processes.  相似文献   

5.
Glycogen phosphorylase (GP), Hexokinase (HK), Phosphofructokinase (PFK), Pyruvate kinase (PK) and Lactate dehydrogenase (LDH) activities from skeletal muscle and liver were measured in Rana perezi for the four seasons of the year. Skeletal muscle showed a decrease in PFK, PK and LDH activity during winter and summer. Liver displayed an increase in GP activity in spring and in PK and LDH in autumn.  相似文献   

6.
The effects of vacuum-drying and freeze- drying on the cell viability of a commercial baker's yeast, Saccharomyces cerevisiae, strain with different endogenous contents of trehalose were analyzed. An osmotolerant Zygosaccharomyces rouxii strain was used for comparative purposes. Higher viability values were observed in cells after vacuum-drying than after freeze-drying. Internal concentrations of trehalose in the range 10–20% protected cells in both dehydration processes. Endogenous trehalose concentrations did not affect the water sorption isotherm nor the T g values. The effect of external matrices of trehalose and maltodextrin was also studied. The addition of external trehalose improved the survival of S. cerevisiae cells containing 5% internal trehalose during dehydration. Maltodextrin (1.8 kDa) failed to protect vacuum-dried samples at 40 °C. The major reduction in the viability during the freeze-drying process of the sensitive yeast cells studied was attributed to the freezing step. The suggested protective mechanisms for each particular system are vitrification and the specific interactions of trehalose with membranes and/or proteins. The failure of maltodextrins to protect cells was attributed to the fact that none of the suggested mechanisms of protection could operate in these systems. Received: 6 December 1999 / Received revision: 8 May 2000 / Accepted: 19 May 2000  相似文献   

7.
冷冻干燥保存是长期保存人体红细胞的理想方案之一。冻干保护剂海藻糖渗入细胞内后,对细胞膜和细胞内物质有保护作用,其中的一个作用是增加细胞质的浓度,使冻干过程容易形成稳定的玻璃态。应用高渗法处理红细胞,通过考察胞内海藻糖含量、红细胞冻干后的存活率、腺苷三磷酸酶(ATPase)、超氧化物歧化酶(SOD)活力以及细胞形态变化,研究胞内海藻糖含量对红细胞冻干后活性的影响。结果显示:海藻糖对红细胞冻干具有明显的保护作用,随胞内海藻糖浓度升高,其保护性能逐渐增强;43.8mmol/L的胞内海藻糖浓度对红细胞保护最好,细胞存活率达到53.6%,形态保持良好,ATP和SOD活力均在正常的范围内。  相似文献   

8.
This study developed a novel method of screening cryoprotectants used to improve the survivability of lyophilized Lactobacillus helveticus. To develop a liposome encapsulated β-galactosidase (β-gal) as a cell membrane model, the β-gal liposome was characterized in terms of mean size, poly dispersity index, zeta potential, along with transmission electron microscopy. 800 W of ultrasonic power and 10 min of sonication time were the optimal experimental conditions to obtain the desirable β-gal liposome. Subsequently, different cryoprotectants were mixed with the β-gal liposome during freeze-drying. After freeze-drying, liposomes were hydrolized, and the protective effect of cryoprotectants was assessed as the release rate of encapsulated β-gal. The lowest release rate of β-gal was obtained using 10 mg/100 ml trehalose and 0.2 mg/100 ml hyaluronic acid.  相似文献   

9.
Summary In the present paper, the effect of cryo-protective sugars on the survival rate of different strains of Lactic Acid Bacteria (LAB, Lactobacillus acidophilus, Lactobacillus delbrueckii subspbulgaricus, Streptococcus salivarius subsp.thermophilus), after freezing or freeze-drying procedures, was compared. The cells were incubated at 4 °C in 32% final concentration sugar solutions (trehalose, maltose, sucrose, glucose and lactose), and viability was evaluated by the enumeration of colony-forming units. All sugars tested showed a protective effect on cell viability as compared to isotonic solution, especially after freeze-drying procedures (log c.f.u./ml ranging between 1.16 and 2.08, P < 0.001). Furthermore, the resistance to different stress agents (lysozyme, pepsin, bile salts) was estimated. Trehalose was the most effective sugar in preserving bacterial viability [% (log c.f.u. trehalose/log c.f.u. isotonic solution) ranging between 124 and 175, P < 0.001] although each strain showed a different sensitivity. Finally, the protective effect of immobilization of LAB in Ca-alginate beads was compared to that exercised by trehalose. The immobilization induced a good survival rate but lower as compared to the trehalose effect, mainly after freeze-drying in the presence of the selective agents [% (log c.f.u. alginate/log c.f.u. trehalose ranging between 81.1 and 94.5, P < 0.0001]. The protective effect of trehalose was evident in particular for Lactobacillus delbrueckii subsp. bulgaricus in presence of lysozyme. Therefore, because of its chemical inertness and low cost, trehalose could be easily utilized as excellent bacterial preservative, both to improve the viability of starter cultures and to obtain probiotic formulations more resistant to a variety of stressful conditions.  相似文献   

10.
采用实验生态学方法,在室内水槽条件下研究了金乌贼(Sepia esculenta Hoyle,1885)繁殖过程中社群等级的形成对其行为表型和能量代谢的影响,分析测定了不同优势等级雌雄个体腕部肌肉和性腺组织中己糖激酶(Hexokinase, HK)、丙酮酸激酶(Pyruvate kinase, PK)、乳酸脱氢酶(Lactate dehydrogenase, LDH)、苹果酸脱氢酶(Malate dehydrogenase, MDH)、柠檬酸合酶(Citrate synthetase, CS)活性以及乳酸(Lactic acid, LD)含量。结果显示:(1)金乌贼繁殖期不同优势等级雌雄个体之间行为表型具有显著差异,优势雄性个体游动悬浮、争斗时间显著高于劣势个体,而优势雌性个体静止伏底时间高于劣势个体,游动悬浮时间低于劣势雌性;(2)优势雄性个体在争斗过程中主要通过无氧代谢提供能量,而处于游动悬浮状态时通过有氧代谢提供能量。主要表现在优势雄性个体肌肉中无氧代谢酶(PK、HK、LDH)活性显著高于劣势个体(P<0.05),有氧代谢酶(MDH、CS)活性也显著高于劣势个体,雌性个体之...  相似文献   

11.
Freeze-drying sperm is an alternative to cryopreservation. Although sperm from various species has been freeze-dried, there are few reports for bovine sperm. The primary objective of this study was to evaluate the protective effect of various freeze-drying media on the structural and functional components of bovine sperm. The media tested were composed of TCM 199 with Hanks salts supplemented with 10% fetal calf serum (FCS) and TCM 199 with Hanks salts supplemented with 10% FCS and 0.2 M trehalose and EGTA solution. The efficiency of each medium on the preservation of freeze-dried sperm structures was evaluated with conventional and electron microscopy, DNA integrity was analyzed by a TUNEL assay, and fertilizing ability of lyophilized sperm was determined with ICSI. Although the plasma membrane was damaged in all media tested, mitochondria were similarly preserved in all freeze-drying treatments. The acrosome was best preserved in the media that contained trehalose (other treatments also conserved this structure). In contrast, media containing EGTA or trehalose most effectively preserved the nuclei in freeze-dried sperm, with only 2 and 5%, respectively, of cells with fragmented DNA. Furthermore, sperm conserved with these media also had higher (P<0.05) rates of sperm head decondensation (32.5 and 27.5%), pronucleus formation (37.5 and 45.0%) and blastocyst formation (19.4 and 18.3%) than medium supplemented with FCS (15.0, 20.0 and 10.2%, respectively). In conclusion, media with EGTA and trehalose adequately protected bovine sperm during freeze-drying by preserving the viability of their nuclei.  相似文献   

12.
The objective of this study is to improve the viability after freeze-drying and during storage of delicate or recalcitrant strains safeguarded at biological resource centers. To achieve this objective, a joint experimental strategy was established among the different involved partner collections of the EMbaRC project (www.embarc.eu). Five bacterial strains considered as recalcitrant to freeze-drying were subjected to a standardized freeze-drying protocol and to seven agreed protocol variants. Viability of these strains was determined before and after freeze-drying (within 1 week, after 6 and 12 months, and after accelerated storage) for each of the protocols. Furthermore, strains were exchanged between partners to perform experiments with different freeze-dryer-dependent parameters. Of all tested variables, choice of the lyoprotectant had the biggest impact on viability after freeze-drying and during storage. For nearly all tested strains, skim milk as lyoprotectant resulted in lowest viability after freeze-drying and storage. On the other hand, best freeze-drying and storage conditions were strain and device dependent. For Aeromonas salmonicida CECT 894T, best survival was obtained when horse serum supplemented with trehalose was used as lyoprotectant, while Aliivibrio fischeri LMG 4414T should be freeze-dried in skim milk supplemented with marine broth in a 1:1 ratio. Freeze-drying Campylobacter fetus CIP 53.96T using skim milk supplemented with trehalose as lyoprotectant resulted in best recovery. Xanthomonas fragariae DSM 3587T expressed high viability after freeze-drying and storage for all tested lyoprotectants and could not be considered as recalcitrant. In contrary, Flavobacterium columnare LMG 10406T did not survive the freeze-drying process under all tested conditions.  相似文献   

13.
The effects of amphiphilic excipients on the inactivation of lactate dehydrogenase (LDH) during freeze-thawing and freeze-drying were studied. Some amphiphilic excipients such as hydroxypropyl-beta-cyclodextrin (HP-beta-CD), CHAPS, polyethylene glycol (PEG) 3350, and sucrose fatty acid monoester prevented LDH inactivation during freeze-thawing and freeze-drying at a lower concentration than sugars and amino acids. Polyoxyethylene 9 lauryl ether and PEG 400 protected LDH during freeze-thawing but not during freeze-drying. The buffer concentration of the solution to be freeze-dried (10, 50, and 200 mM) affected the stabilizing effect of trehalose, but not that of HP-beta-CD. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
During the industrial stabilization process, lactic acid bacteria are subjected to several stressful conditions. Tolerance to dehydration differs among lactic acid bacteria and the determining factors remain largely unknown. Lactobacillus coryniformis Si3 prevents spoilage by mold due to production of acids and specific antifungal compounds. This strain could be added as a biopreservative in feed systems, e.g. silage. We studied the survival of Lb. coryniformis Si3 after freeze-drying in a 10% skim milk and 5% sucrose formulation following different fermentation pH values and temperatures. Initially, a response surface methodology was employed to optimize final cell density and growth rate. At optimal pH and temperature (pH 5.5 and 34 °C), the freeze-drying survival of Lb. coryniformis Si3 was 67% (±6%). The influence of temperature or pH stress in late logarithmic phase was dependent upon the nature of the stress applied. Heat stress (42 °C) did not influence freeze-drying survival, whereas mild cold- (26 °C), base- (pH 6.5), and acid- (pH 4.5) stress significantly reduced survival. Freeze-drying survival rates varied fourfold, with the lowest survival following mild cold stress (26 °C) prior to freeze-drying and the highest survival after optimal growth or after mild heat (42 °C) stress. Levels of different membrane fatty acids were analyzed to determine the adaptive response in this strain. Fatty acids changed with altered fermentation conditions and the degree of membrane lipid saturation decreased when the cells were subjected to stress. This study shows the importance of selecting appropriate fermentation conditions to maximize freeze-drying viability of Lb. coryniformis as well as the effects of various unfavorable conditions during growth on freeze-drying survival.  相似文献   

15.
Glycine betaine as a cryoprotectant for prokaryotes   总被引:6,自引:0,他引:6  
Osmoprotectants are low molecular weight, hydrophilic, nontoxic molecules that assist a cell under osmotic stress to stabilize its concentration of internal solutes. These properties are similar to compounds used as cryoprotectants for the preservation of prokaryotic cells during freezing. This study tested the ability of a common compatible solute, glycine betaine (GB), to act as a cryoprotectant. In a series of freeze-drying studies using a variety of prokaryotes, GB performed as well, or better than, two commonly used cryoprotectants, sucrose/bovine serum albumin (S/BSA) and trehalose/dextran (T/D). GB did especially well maintaining cell viability after long-term storage (simulated equivalent of 20 years) for microorganisms like Neisseria gonorrhoeae and Streptococcus pneumoniae. GB was tested for its ability to preserve members of the genus Acidothiobacillus, a difficult genus to preserve. For two strains of Acidithiobacillus ferrooxidans that were preserved using liquid drying, GB performed as well as S/BSA. Results were more mixed for two strains of Acidithiobacillus thiooxidans; one strain could be preserved with S/BSA but not GB, the other strain gave low recoveries with both cryoprotectants. GB also proved to be a useful cryoprotectant for liquid nitrogen preservation yielding equivalent results to the cryopreservative, glycerol for halophilic archaea, and neutrophilic Fe-oxidizing bacteria. These results indicate that GB is a simple and useful cryoprotectant that works for a wide range of prokaryotic organisms under different cryopreservation regimens.  相似文献   

16.
The fluxes through HK/G6PDH and PK/LDH coupled-enzymatic reactions were quantified in the presence of physiological concentrations (1–15 μM) of polymerized or non-polymerized microtubular protein (MTP) from rat brain and in a permeabilized yeast cell system. In vitro enzymatic fluxes were increased by either polymerized or nonpolymerized brain MTP mainly in the lower range of MTP concentration. At fixed MTP concentrations in the flux stimulatory range of HK/G6PDH (1 mg/ml MTP) or PK/LDH (0.4 mg/ml MTP), a hyperbolic and sigmoidal response to NADP and PEP, respectively, was detected. That dependence varied according to the polymeric status of MTP. The specificity of the phenomenon observed in vitro, was tested for the PK/LDH and HK/G6PDH enzymatic couples in the presence of neutral polymers such as glycogen (? 10 mg/ml), poly(ethylene glycol) (up to 10% w/w) or G-actin (? 1 mg/ml). In permeabilized Saccharomyces cerevisiae cells, the PK-catalyzed flux was sensitive to microtubule disruption by nocodazole (15 μg/ml). The HK/G6PDH system was not affected by nocodazole showing values of kinetic parameters close to those obtained in vitro in the presence of polymerized brain MTP. Indirect immunofluorescence with specific antibodies against tubulin allowed to confirm the microtubules disruption in the presence of nocodazole in permeabilized yeast cells under the same conditions in which enzymes were assayed intracellularly. The experimental evidence is in agreement with the observed phenomenon of increase in fluxes in the enzymatic reactions assayed to be specifically induced by MTP either in vitro or in situ. The results presented are discussed in terms of the assembly of large supramolecular structures as a supraregulatory mechanism of synchronization of systemic cellular processes such as metabolic fluxes. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.  相似文献   

18.
The biocontrol yeast Pichia anomala J121 can effectively reduce mould growth on moist cereal grains during airtight storage. Practical use of microorganisms requires formulated products that meet a number of criteria. In this study we compared different formulations of P. anomala. The best way to formulate P. anomala was freeze-drying. The initial viability was as high as 80%, with trehalose previously added to the yeast. Freeze-dried products could be stored at temperatures as high as 30 °C for a year, with only a minor decrease in viability. Vacuum-drying also resulted in products with high storage potential, but the products were not as easily rehydrated as freeze-dried samples. Upon desiccating the cells using fluidised-bed drying or as liquid formulations, a storage temperature of 10 °C was required to maintain viability. Dependent on the type of formulation, harvesting of cells at different nutritional stresses affected the initial viabilities, e.g. the initial viability for fluidised-bed-dried cells was higher when the culture was fed with excess glucose, but for freeze-drying it was superior when cells were harvested after depletion of carbon. Using micro-silos we found that the biocontrol activity remained intact after drying, storage and rehydration for all formulations.  相似文献   

19.
The potential importance of carbohydrates and amino acids as fuels during periods of fasting and aestivation in the African lungfish, Protopterus dolloi, were examined. No significant decreases in tissue glycogen levels were observed following 60 days of fasting or aestivation, suggesting lungfish may undergo 'glycogen sparing'. Yet glycogenolysis may be important during aestivation based on the differing responses of two flux-generating enzymes of the glycolytic pathway, hexokinase (HK) and pyruvate kinase (PK). PK is required for glycogen breakdown whereas HK is not. HK activity is significantly down-regulated in the heart and gill tissues during aestivation, while PK activity is sustained. The significant negative correlation between the activity of HK and glucose levels in the heart of aestivating lungfish suggests HK may be regulated by glucose concentrations. There was no indication of anaerobic glycolytic flux during aestivation as lactate did not accumulate in any of the tissues examined, and no significant induction of lactate dehydrogenase (LDH)activity was observed. The increase in glutamate dehydrogenase (GDH) and aspartate aminotransferase (Asp-AT) activities in the liver of aestivating P. dolloi suggests some energy may be obtained via increased aminoacid catabolism, leading to the generation of tricarboxylic acid (TCA) cycle intermediates. These findings indicate the importance of both carbohydrate and amino acid fuel stores during aestivation in aphylogenetically ancient, air-breathing fish.  相似文献   

20.
No significant differences were observed in the viability of Lactobacillus plantarum and Lactobacillus rhamnosus cells during freeze-drying in the presence or absence of inositol, sorbitol, fructose, trehalose, monosodium glutamate and propyl gallate. However, survival was higher during storage when drying took place in the presence of these compounds. Sorbitol produced more significant effects than the other compounds toward maintaining viability of freeze-dried L. plantarum and L. rhamnosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号