首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Borrelia burgdorferi, the aetiological agent of Lyme disease, employs sophisticated means to survive in diverse mammalian hosts. Recent studies demonstrated that acquisition of complement regulators factor H and factor H-like protein-1 (FHL-1) allows spirochetes to resist complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASPs) that bind factor H and/or FHL-1. In this study we have identified and characterized one of those B. burgdorferi proteins, named BbCRASP-2. BbCRASP-2 is distinct from the four previously identified factor H/FHL-1-binding CRASPs of B. burgdorferi strains. The single copy of the gene encoding BbCRASP-2, cspZ, is located on the linear plasmid lp28-3. BbCRASP-2 is highly divergent from the factor H/FHL-1-binding protein BbCRASP-1 and from members of the factor H-binding Erp (OspE/F-related) protein family. Peptide mapping analysis revealed that the factor H/FHL-1 binding site is discontinuous and it was found that C-terminal truncations abrogate factor H and FHL-1 binding. The predominant BbCRASP-2 binding site of both host complement regulators was mapped to the short consensus repeat 7 (SCR 7). Factor H and FHL-1 bound to BbCRASP-2 maintain cofactor activity for factor I-mediated C3b inactivation and accelerate the decay of the C3 convertase. Expression of BbCRASP-2 in serum-sensitive B. burgdorferi mutant B313 increased resistance to complement-mediated lysis. The characterization of BbCRASP-2 now provides a complete picture of the three diverse complement regulator-binding protein families of B. burgdorferi yielding new insights into the pathogenesis of Lyme disease.  相似文献   

2.
The etiologic agent of Lyme disease, Borrelia burgdorferi, is capable of circumventing the immune defense of a variety of potential vertebrate hosts. Previous work has shown that interaction of host-derived complement regulators, factor H and factor H-like protein 1 (FHL-1), with up to five complement regulator-acquiring surface proteins (CRASPs) expressed by resistant B. burgdorferi sensu lato isolates conferred complement resistance. In addition expression of CRASP-1 is directly correlated with complement resistance of Borrelia species. This work describes the functional characterization of BbCRASP-1 as the dominant factor H and FHL-1-binding protein of B. burgdorferi. The corresponding gene, zs7.a68, is located on the linear plasmid lp54 and is different from factor H-binding Erp proteins that are encoded by genes localized on circular plasmids (cp32). Deletion mutants of BbCRASP-1 were generated, and a high affinity binding site for factor H and FHL-1 was mapped to the C terminus of BbCRASP-1. Similarly, the predominant binding site of factor H and FHL-1 was localized to the short consensus repeat 7. Factor H and FHL-1 maintain their cofactor activity for factor I-mediated C3b inactivation when bound to BbCRASP-1, and factor H is up to 6-fold more efficient in mediating C3b conversion than FHL-1. In conclusion, BbCRASP-1 (i). binds the host complement regulators factor H and FHL-1 with high affinity, (ii). is the key molecule of the complement resistance of spirochetes, and (iii). is distinct from the Erp protein family. Thus, BbCRASP-1 most likely contributes to persistence of B. burgdorferi and to pathogenesis of Lyme disease.  相似文献   

3.
Factor H and factor H-like protein 1 (FH/FHL-1) are soluble serum proteins that negatively regulate the alternative pathway of complement. It is now well recognized that many pathogenic bacteria, including Borrelia burgdorferi, bind FH/FHL-1 on their cell surface to evade complement-mediated destruction during infection. Recently, it was suggested that B. burgdorferi open reading frame bbA68, known as complement regulator-acquiring surface protein 1 (CRASP-1), encodes the major FH/FHL-1-binding protein of B. burgdorferi. However, because several other proteins have been identified on the surface of B. burgdorferi that also can bind FH/FHL-1, it is presently unclear what role CRASP-1 plays in serum resistance. To examine the contribution of CRASP-1 in serum resistance, we generated a B. burgdorferi mutant that does not express CRASP-1. The B. burgdorferi CRASP-1 mutant, designated B31cF-CRASP-1, was found to be as susceptible to human serum as a wild-type strain of Borrelia garinii 50 known to be sensitive to human serum. To further examine the role of CRASP-1 in serum resistance, we also created a shuttle vector that expresses CRASP-1 from the native B. burgdorferi gene, which was designated pKFSS-1::CRASP-1. When the pKFSS-1::CRASP-1 construct was transformed into the B. burgdorferi B31cF-CRASP-1 mutant, wild-type levels of serum resistance were restored. Additionally, when pKFSS-1::CRASP-1 was transformed into the serum-sensitive B. garinii 50 isolate, human serum resistance was imparted on this strain to a level indistinguishable from wild-type B. burgdorferi. The combined data led us to conclude that CRASP-1 expression is necessary for B. burgdorferi to resist killing by human serum.  相似文献   

4.
Tick-borne relapsing fever in North America is primarily caused by the spirochete Borrelia hermsii. The pathogen employs multiple strategies, including the acquisition of complement regulators and antigenic variation, to escape innate and humoral immunity. In this study we identified in B. hermsii a novel member of the complement regulator-acquiring surface protein (CRASP) family, designated BhCRASP-1, that binds the complement regulators factor H (FH) and FH-related protein 1 (FHR-1) but not FH-like protein 1 (FHL-1). BhCRASP-1 specifically interacts with the short consensus repeat 20 of FH, thereby maintaining FH-associated cofactor activity for factor I-mediated C3b inactivation. Furthermore, ectopic expression of BhCRASP- 1 converted the serum-sensitive Borrelia burgdorferi B313 strain into an intermediate complement-resistant strain. Finally, we report for the first time that BhCRASP-1 binds plasminogen/plasmin in addition to FH via, however, distinct nonoverlapping domains. The fact that surface-bound plasmin retains its proteolytic activity suggest that the dual binding specificity of BhCRASP-1 for FH and plasminogen/plasmin contributes to both the dissemination/invasion of B. hermsii and its resistance to innate immunity.  相似文献   

5.
The spirochete Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted to the host by a feeding Ixodid tick. The spirochete subsequently disseminates through the skin, enters the bloodstream, and becomes systemic. A potential mechanism for this invasiveness was identified with the discovery that B. burgdorferi can bind components of the plasminogen activation system (PAS). The methodology for analyzing the generation of enzymatically active plasmin on the surface of this organism is given, and applied to measure spirochete viability, strain differences, and breakdown of extracellular matrix (ECM) macromolecules. Plasmin acquisition by B. burgdorferi was measured photometrically by a specific chromogenic substrate. The growth of B. burgdorferi in culture was not affected by the presence of active plasmin on the spirochete surface. Plasmin-coated B. burgdorferi degraded the purified (ECM) components fibronectin, laminin, and vitronectin, but not collagen. The addition of B. burgdorferi with surface plasmin to a radiolabeled, native ECM resulted in degradation of noncollagenous protein, as measured by release of solubilized radioactivity. Breakdown of purified ECM components or native ECM did not occur after exposure to untreated spirochetes or spirochetes treated with uPA or PLG alone. These results provide in vitro evidence that enzymatically active plasmin on the surface of B. burgdorferi may be partially responsible for its invasiveness.  相似文献   

6.
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted to humans by bite of Ixodes scapularis ticks. The mechanisms by which the bacterium is transmitted from vector to host are poorly understood. In this study, we show that the F(ab)(2) fragments of BBE31, a B.burgdorferi outer-surface lipoprotein, interfere with the migration of the spirochete from tick gut into the hemolymph during tick feeding. The decreased hemolymph infection results in lower salivary glands infection, and consequently attenuates mouse infection by tick-transmitted B. burgdorferi. Using a yeast surface display approach, a tick gut protein named TRE31 was identified to interact with BBE31. Silencing tre31 also decreased the B. burgdorferi burden in the tick hemolymph. Delineating the specific spirochete and arthropod ligands required for B. burgdorferi movement in the tick may lead to new strategies to interrupt the life cycle of the Lyme disease agent.  相似文献   

7.
Factor H and factor H like-protein 1 (FHL-1) are complement regulatory proteins that serve as cofactors for the factor I-mediated cleavage of C3b. Some Lyme disease and relapsing fever spirochete species bind factor H to their surface to facilitate immune evasion. The Lyme disease spirochetes produce several factor H binding proteins (FHBPs) that form two distinct classes. Class I FHBPs (OspE orthologs and paralogs) bind only factor H, while class II FHBPs (BBA68) bind both factor H and FHL-1. BBA68 belongs to a large paralogous protein family, and of these paralogs, BBA69 is the member most closely related to BBA68. To determine if BBA69 can also bind factor H, recombinant protein was generated and tested for factor H binding. BBA69 did not exhibit factor H binding ability, suggesting that among family 54 paralogs, factor H binding is unique to BBA68. To identify the determinants of BBA68 that are involved in factor H binding, truncation and site-directed mutational analyses were performed. These analyses revealed that the factor H binding site is discontinuous and provide strong evidence that coiled-coil structural elements are involved in the formation of the binding site.  相似文献   

8.
Borrelia burgdorferi isolates obtained from numerous locations and from different hosts in North Carolina, were compared to previously characterized strains of the Lyme disease spirochete and other Borrelia spp. The spirochete isolates were confirmed to be B. burgdorferi sensu stricto based on immunofluorescence (IFA) using a monoclonal antibody to outer surface protein A (Osp A [H5332]) and polymerase chain reaction (PCR) using a species-specific nested primer for a conserved region of the gene that encodes for flagellin. In addition, the isolates tested positive in Western blots with species-specific monoclonal antibodies for outer surface protein A and OspB (84c), and the genus-specific, monoclonal antibody to flagellin (H9724). Infectivity studies with several of these isolates were conducted using Mus musculus and Oryzomys palustris and the isolates exhibited markedly different levels of infectivity. This study demonstrates that B. burgdorferi sensu stricto is present and naturally transmitted on the Outer Banks and in the Coastal Plain and Piedmont regions of North Carolina.  相似文献   

9.
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries. A large number of human genetic studies have associated a common variant (Y402H) of complement factor H (CFH) with a highly significant increase in AMD risk. CFH is a modular protein with 20 homologous short consensus repeats (SCRs). The Y402H variant is located in SCR7 of both CFH and factor H-like protein 1 (FHL-1), a splice variant of CFH (containing SCR1-7) with unique biochemical properties. Because SCR7 is known to bind to heparin, C-reactive protein (CRP), and M protein from Streptococcus pyogenes, it has been hypothesized that the AMD-associated polymorphism may affect interactions with these CFH ligands. In this study, we tested this hypothesis in the context of full-length CFH (SCR1-20) and FHL-1. We systematically analyzed the interactions of the Y402 and H402 variants of CFH and FHL-1 with heparin, CRP, and several bacterial ligands: M6 protein of Streptococcus pyogenes, PspC of Streptococcus pneumoniea, and BbCRASP-1 of Borrelia burgdorferi. In comparing the Y and H variants of CFH and FHL-1, we found no significant difference in their protein secretion, cofactor activity, or interactions with heparin, BbCRASP-1, or PspC, but a significant difference in binding to CRP and M6 protein. This study reveals the fundamental properties of a common polymorphism of CFH and lays the groundwork for elucidating the role of CFH in AMD pathogenesis.  相似文献   

10.
All examined isolates of the Lyme disease spirochete, Borrelia burgdorferi, naturally maintain numerous variants of a prophage family as circular cp32 episomes. Each cp32 carries a locus encoding one or two different Erp outer membrane, surface-exposed lipoproteins. Many of the Erp proteins bind a host complement regulator, factor H, which is hypothesized to protect the spirochete from complement-mediated killing. We now describe the isolation and characterization of a novel, chromosomally encoded protein, EbfC, that binds specific DNA sequences located immediately 5' of all erp loci. This is one of the first site-specific DNA-binding proteins to be identified in any spirochete. The location of the ebfC gene on the B. burgdorferi chromosome suggests that the cp32 prophages have evolved to use this bacterial host protein for their own benefit and that EbfC probably plays additional roles in the bacterium. A wide range of other bacteria encode homologs of EbfC, none of which have been well characterized, so demonstration that B. burgdorferi EbfC is a site-specific DNA-binding protein has broad implications across the eubacterial kingdom.  相似文献   

11.
Abstract A murine monoclonal antibody, designated MA-2G9, directed against outer surface protein A (OspA) of the Lyme disease spirochete, Borrelia burgdorferi , has been produced. Antibody MA-2G9, IgG1 subclass, was purified by affinity chromatography on protein G Sepharose column and used for purification of OspA antigen from Borrelia burgdorferi cell lysate. Epitope specificity was studied by Western immunoblotting, using several strains of B. burgdorferi and non-Lyme disease bacteria such as Treponema pallidum and B. hermsii . The MA-2G9 monoclonal antibody reacted specifically with recombinant OspA aas well as with native OspA in sonicated B. burgdorferi strains. No reaction was observed with T. pallidum, Escherichia coli, Staphylococcus aureus and B. hermsii lysates. The MA-2G9 antibody also recognized the denatured form of OspA indicating that it is directed against sequential epitope and not conformational epitope.  相似文献   

12.
Binding of glycosaminoglycans (GAGs) by Borrelia burgdorferi, the Lyme disease spirochete, has the potential to promote the colonization of diverse tissues. GAG binding by B. burgdorferi is associated with haemagglutination and we have identified a 26 kDa protein, which we have termed Bgp (Borrelia GAG-binding protein), on the basis of its ability to bind to heparin and erythrocytes. Bgp was found in outer membrane fractions of B. burgdorferi and on the surface of intact bacteria, as assayed by labelling with a membrane-impermeable biotinylating agent or anti-Bgp antibodies. Purified recombinant Bgp agglutinated erythrocytes, binds to the same spectrum of GAGs as the B. burgdorferi strain from which the cloned bgp sequence was obtained, and inhibited B. burgdorferi binding to purified GAGs and to cultured mammalian cells. Thus, Bgp is a strong candidate for a GAG-binding adhesin of B. burgdorferi.  相似文献   

13.
Xu H  Raddi G  Liu J  Charon NW  Li C 《Journal of bacteriology》2011,193(10):2652-2656
Green fluorescent protein (GFP) fusions, immunofluorescence microscopy, and cryo-electron tomography revealed that the chemoreceptors of the Lyme disease spirochete Borrelia burgdorferi form long, thin arrays near both cell poles. These arrays are in close proximity to the flagellar motors. This information provides a basis for further understanding motility, chemotaxis, and protein localization in spirochetes.  相似文献   

14.
The Lyme disease spirochete, Borrelia burgdorferi, causes a persistent infection in the vertebrate host even though infected animals mount an active immune response against the spirochete. One strategy used by the spirochete to evade vertebrate host immunity is to vary the structure and expression of outer membrane antigens. The vlsE locus represents the best-studied example of antigenic variation in B. burgdorferi. During vertebrate host infection, recombination between the active vlsE locus and silent, partial vlsE copies leads to gene conversion events and the generation of novel alleles at the expression site. In the present study, we followed a population of B. burgdorferi organisms moving through vertebrate host and tick stages to complete one transmission cycle. The major goal of the study was to determine if the vlsE locus was subject to different selective pressure and/or recombination frequency at different stages of the spirochete's life cycle. We report here that the vlsE genetic diversity generated within the rodent host was maintained through the larval and nymphal tick stages. Therefore, naturally infected ticks are likely to transmit spirochete populations with multiple vlsE alleles into naive vertebrate hosts. Although vlsE genetic diversity in mice was maintained through tick stages, the dominant vlsE alleles were different between tick stages as well as between individual ticks. We propose that population-level bottlenecks experienced by spirochetes, especially during the larval-to-nymphal molt, are responsible for individual infected ticks harboring different dominant vlsE alleles. Although vlsE genetic diversity is maintained through tick stages, the VlsE protein is unlikely to be of functional importance in the vector, because the protein was expressed by very few (<1%) bacteria in the vector.  相似文献   

15.
16.
Borrelia burgdorferi possesses a collagenolytic activity   总被引:2,自引:0,他引:2  
Abstract Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi , an invasive spirochete. B. burgdorferi has a predilection for collagenous tissue and one major clinical manifestation of the disease is arthritis. We have identified a collagenolytic activity in B. burgdorferi detergent lysates using iodinated gelatin as well as iodinated pepsinized human collagen types II and IV as protein substrates. In addition, we describe several proteolytic activities in B. burgdorferi with molecular masses greater than 200 kDa on sodium dodecyl sulfate polyacrylamide gels containing copolymerized gelatin. We propose that the collagenolytic activity of B. burgdorferi has a role in invasion, in the pathogenesis of Lyme arthritis, and perhaps also in other manifestations of Lyme borreliosis.  相似文献   

17.
Survival of Borrelia burgdorferi in ticks and mammals is facilitated, at least in part, by the selective expression of lipoproteins. Outer surface protein (Osp) A participates in spirochete adherence to the tick gut. As ospB is expressed on a bicistronic operon with ospA, we have now investigated the role of OspB by generating an OspB-deficient B. burgdorferi and examining its phenotype throughout the spirochete life cycle. Similar to wild-type isolates, the OspB-deficient B. burgdorferi were able to readily infect and persist in mice. OspB-deficient B. burgdorferi were capable of migrating to the feeding ticks but had an impaired ability to adhere to the tick gut and survive within the vector. Furthermore, the OspB-deficient B. burgdorferi bound poorly to tick gut extracts. The complementation of the OspB-deficient spirochete in trans, with a wild-type copy of ospB gene, restored its ability to bind tick gut. Taken together, these data suggest that OspB has an important role within Ixodes scapularis and that B. burgdorferi relies upon multiple genes to efficiently persist in ticks.  相似文献   

18.
The outer surface protein C (OspC) of Borrelia burgdorferi, the spirochete that causes Lyme disease, is a promising candidate for a vaccine against borreliosis. BALB/c and C3H/HeJ mice were immunized either with recombinant OspC protein or with plasmid DNA encoding OspC fused to the human tissue plasminogen activator leader sequence (pCMV-TPA/ZS7). The influence of the route of administering the DNA and the use of oligodeoxynucleotides containing CpG-motifs on the development of the immune response was investigated. In both mouse strains, protein as well as gene-gun immunization induced Th2 type responses, whereas needle injection of plasmid DNA resulted in Th1 type antibody production. Co-injection of CpG-motifs did not significantly modify the response type in any immunization group, as indicated by only marginal changes of antibody subclass distribution. The protection rate after challenge with 10(4) B. burgdorferi organisms per mouse was between 80% and 100% for all groups. These results demonstrate, for the first time, that a DNA vaccine encoding OspC of B. burgdorferi is suitable for inducing protection against Lyme borreliosis.  相似文献   

19.
Lyme disease, a tick-borne disease caused by Borrelia burgdorferi, has been described recently in dogs. In a serologic survey of specimens obtained from March to September 1984, 53% of 380 dogs from two USDA licensed vendors in Wisconsin were positive for indirect immunofluorescent antibodies to B. burgdorferi at a serum dilution of 1:64 or greater. B. burgdorferi was cultured from the blood of 8/111 dogs. These findings suggest that exposure to this spirochete is common in endemic areas and that this zoonotic disease is of importance to veterinarians and researchers.  相似文献   

20.
The spirochete Borrelia burgdorferi is the causative agent of Lyme disease, the leading vector-borne illness in the United States. Many of the genetic factors affecting spirochete morphology and physiology are unknown due to the limited genetic tools available and the large number of open reading frames with unknown functions. By adapting a mariner transposon to function in B. burgdorferi, we have developed a random mutagenesis system that tags the mutated locus for rapid identification. Transposition occurs at saturating levels in B. burgdorferi and appears to be random, targeting both linear and circular replicons. By combining the transposon system with a screen for factors affecting growth rate, mutations were readily identified in genes putatively involved in cell division and chemotaxis and a hypothetical open reading frame involved in outer membrane integrity. The successful adaptation of a mariner transposon to function in B. burgdorferi should aid in identifying virulence factors and novel gene products related to spirochete physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号