首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.  相似文献   

2.
4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation-derived reactive aldehyde, is a potent inhibitor of sulfhydryl enzymes, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It has been suggested that HNE exerts an inhibitory effect on the enzyme due to the modification of the cysteine residue (Cys-149) at the catalytic site generating the HNE-cysteine Michael addition-type adduct [Uchida, K., and Stadtman, E. R. (1993) J. Biol. Chem. 268, 6388-6393]. In the study presented here, to elucidate the mechanism for the inactivation of GAPDH by HNE, we attempted to identify the modification sites of the enzyme by monitoring the formation of the HNE Michael adducts by mass spectrometric methods. Incubation of GAPDH (1 mg/mL) with 1 mM HNE in 50 mM sodium phosphate buffer (pH 7.4) at 37 degrees C resulted in a time-dependent loss of enzyme activity, which was associated with the covalent binding of HNE to the enzyme. To identify the site of modification of GAPDH by HNE, both the HNE-pretreated and untreated GAPDH were digested with trypsin and V8 protease, and the resulting peptides were subjected to electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-MS). This technique identified five peptides, which contained the HNE adducts at His-164, Cys-244, Cys-281, His-327, and Lys-331 and revealed that both His-164 and Cys-281 were very rapidly modified at 5 min, followed by Cys-244 at 15 min and His-327 and Lys-331 at 30 min. These observations and the observation that the HNE modification of the catalytic center, Cys-149, was not observed suggest that the HNE inactivation of GAPDH is not due to the modification of the catalytic center but to the selective modification of amino acids primarily located in the surface of the GAPDH molecule.  相似文献   

3.
Nitroalkene derivatives of linoleic acid (LNO2) and oleic acid (OA-NO2) are present; however, their biological functions remain to be fully defined. Herein, we report that LNO2 and OA-NO2 inhibit lipopolysaccharide-induced secretion of proinflammatory cytokines in macrophages independent of nitric oxide formation, peroxisome proliferator-activated receptor-gamma activation, or induction of heme oxygenase-1 expression. The electrophilic nature of fatty acid nitroalkene derivatives resulted in alkylation of recombinant NF-kappaB p65 protein in vitro and a similar reaction with p65 in intact macrophages. The nitroalkylation of p65 by fatty acid nitroalkene derivatives inhibited DNA binding activity and repressed NF-kappaB-dependent target gene expression. Moreover, nitroalkenes inhibited endothelial tumor necrosis factor-alpha-induced vascular cell adhesion molecule 1 expression and monocyte rolling and adhesion. These observations indicate that nitroalkenes such as LNO2 and OA-NO2, derived from reactions of unsaturated fatty acids and oxides of nitrogen, are a class of endogenous anti-inflammatory mediators.  相似文献   

4.
Inflammation, characterized by the activation of both resident and infiltrated immune cells, is accompanied by increased production of oxidizing and nitrating species. Nitrogen dioxide, the proximal nitrating species formed under these conditions, reacts with unsaturated fatty acids to yield nitroalkene derivatives. These electrophilic products modulate protein function via post-translational modification of susceptible nucleophilic amino acids. Nitroalkenes react with Keap1 to instigate Nrf2 signaling, activate heat shock response gene expression, and inhibit NF-κB-mediated signaling, inducing net anti-inflammatory and tissue-protective metabolic responses. We report the purification and characterization of a NADPH-dependent liver enzyme that reduces the nitroalkene moiety of nitro-oleic acid, yielding the inactive product nitro-stearic acid. Prostaglandin reductase-1 (PtGR-1) was identified as a nitroalkene reductase by protein purification and proteomic studies. Kinetic measurements, inhibition studies, immunological and molecular biology approaches as well as clinical analyses confirmed this identification. Overexpression of PtGR-1 in HEK293T cells promoted nitroalkene metabolism to inactive nitroalkanes, an effect that abrogated the Nrf2-dependent induction of heme oxygenase-1 expression by nitro-oleic acid. These results situate PtGR-1 as a critical modulator of both the steady state levels and signaling activities of fatty acid nitroalkenes in vivo.  相似文献   

5.
6.
The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl β-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a KD of 7.5 × 10−6 M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status.  相似文献   

7.
Nitrosylation is a reversible post-translational modification of protein cysteines playing a major role in cellular regulation and signaling in many organisms, including plants where it has been implicated in the regulation of immunity and cell death. The extent of nitrosylation of a given cysteine residue is governed by the equilibrium between nitrosylation and denitrosylation reactions. The mechanisms of these reactions remain poorly studied in plants. In this study, we have employed glycolytic GAPDH from Arabidopsis thaliana as a tool to investigate the molecular mechanisms of nitrosylation and denitrosylation using a combination of approaches, including activity assays, the biotin switch technique, site-directed mutagenesis, and mass spectrometry. Arabidopsis GAPDH activity was reversibly inhibited by nitrosylation of catalytic Cys-149 mediated either chemically with a strong NO donor or by trans-nitrosylation with GSNO. GSNO was found to trigger both GAPDH nitrosylation and glutathionylation, although nitrosylation was widely prominent. Arabidopsis GAPDH was found to be denitrosylated by GSH but not by plant cytoplasmic thioredoxins. GSH fully converted nitrosylated GAPDH to the reduced, active enzyme, without forming any glutathionylated GAPDH. Thus, we found that nitrosylation of GAPDH is not a step toward formation of the more stable glutathionylated enzyme. GSH-dependent denitrosylation of GAPC1 was found to be linked to the [GSH]/[GSNO] ratio and to be independent of the [GSH]/[GSSG] ratio. The possible importance of these biochemical properties for the regulation of Arabidopsis GAPDH functions in vivo is discussed.  相似文献   

8.
Nitro-fatty acids represent endogenously occurring products of oxidant-induced nitration reactions. We have previously synthesized a mixture of four isomers of nitroarachidonic acid, a novel anti-inflammatory signaling mediator. In this study, we synthesized and chemically and biologically characterized for the first time an esterified nitroalkene derived from the nitration of methylarachidonate (AAMet): 6-methylnitroarachidonate (6-AAMetNO(2)). Synthesis was performed by reacting AAMet with sodium nitrite under acidic conditions. Analysis by mass spectrometry (positive-ion ESI-MS) showed an [M+H](+) ion of m/z 364, characteristic of AAMetNO(2). Fragmentation of this ion yielded a daughter ion at m/z 317, corresponding to the neutral loss of the nitro group ([M+H-HNO(2)](+)). Furthermore, IR signal at 1378 cm(-1) and NMR data confirmed the structure of a 6-nitro-positional isomer. This novel esterified nitroalkene was capable of promoting vascular protective actions including: (a) the induction of vasorelaxation via endothelium-independent mechanisms, associated with an increase in smooth muscle cell cGMP levels, and (b) a potent dose-dependent inhibition of human platelet aggregation. We postulate that 6-AAMetNO(2) could be a potential drug for the prevention of vascular and inflammatory diseases, and the presence of the methyl group may increase its pharmacological potential.  相似文献   

9.
The hydrogen peroxide-induced 'non-phosphorylating' activity of D-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is shown to be a result of the successive action of two forms of the enzyme subunits: one catalyzing production of 1,3-bisphosphoglycerate, and the other performing its hydrolytic decomposition. The latter form is produced by mild oxidation of GAPDH in the presence of a low hydrogen peroxide concentration when essential Cys-149 is oxidized to the sulfenate derivative. The results obtained with a C153S mutant of Bacillus stearothermophilus GAPDH rule out the possibility that intrasubunit acyl transfer between Cys-149 and a sulfenic form of Cys-153 is required for the 'non-phosphorylating' activity of the enzyme.  相似文献   

10.
Rab2 requires atypical protein kinase C iota/lambda (aPKC iota/lambda) to promote vesicle formation from vesicular tubular clusters (VTCs). The Rab2-generated vesicles are enriched in recycling proteins suggesting that the carriers are retrograde-directed and retrieve transport machinery back to the endoplasmic reticulum. These vesicles also contained the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We have previously established that GAPDH is required for membrane transport between the endoplasmic reticulum and the Golgi complex. Moreover, GAPDH is phosphorylated by aPKC iota/lambda and binds to the aPKC iota/lambda regulatory domain. In this study, we employed a combination of in vivo and in vitro assays and determined that GAPDH also interacts with Rab2. The site of GAPDH interaction was mapped to Rab2 residues 20-50. In addition to its glycolytic function, GAPDH has multiple intracellular roles. However, the function of GAPDH in the early secretory pathway is unknown. One possibility is that GAPDH ultimately provides energy in the form of ATP. To determine whether GAPDH catalytic activity was critical for transport in the early secretory pathway, a conservative substitution was made at Cys-149 located at the active site, and the mutant was biochemically characterized in a battery of assays. Although GAPDH (C149G) has no catalytic activity, Rab2 recruited the mutant protein to membranes in a quantitative binding assay. GAPDH (C149G) is phosphorylated by aPKC iota/lambda and binds directly to Rab2 when evaluated in an overlay binding assay. Importantly, VSV-G transport between the ER and Golgi complex is restored when an in vitro trafficking assay is performed with GAPDH-depleted cytosol and GAPDH (C149G). These data suggest that GAPDH imparts a unique function necessary for membrane trafficking from VTCs that does not require GAPDH glycolytic activity.  相似文献   

11.
The dynamics of enzyme-catalyzed glutathione conjugation was studied by electrospray quadrupole/time-of-flight (Q-TOF) mass spectrometry with a nanospray interface. After incubation of human glutathione S-transferase A1-1 (GT) with glutathione (GSH) and an electrophilic substrate, electrospray indicated the presence of enzyme/product adducts such as [2GT + product], [2GT + GSH' + product], and [2GT + 2 products] as well as [2GT] and [2GT + GSH']. The relative abundance of GT/product adduct ions increased with incubation time. The wide m/z range of detection (m/z 300-5000) allowed the observation of product, suggested to be released from enzyme/product adducts, in the same mass spectrum. The noncovalent complexes of GT/product were completely replaced by GT/inhibitor complexes following the addition of GT inhibitor to the incubation mixture. Furthermore, a collision-activated decomposition analysis of these ion species provided us with useful information to interpret or identify ion species. The results suggest that electrospray Q-TOF mass spectrometry is a powerful approach for studying the dynamics of the enzyme reaction as well as the structure of enzyme complexes at high sensitivity.  相似文献   

12.
Vitamin K-dependent gamma-glutamyl carboxylase is a 758 amino acid integral membrane glycoprotein that catalyzes the post-translational conversion of certain protein glutamate residues to gamma-carboxyglutamate. Carboxylase has ten cysteine residues, but their form (sulfhydryl or disulfide) is largely unknown. Pudota et al. in Pudota, B. N., Miyagi, M., Hallgren, K. W., West, K. A., Crabb, J. W., Misono, K. S., and Berkner, K. L. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 13033-13038 reported that Cys-99 and Cys-450 are the carboxylase active site residues. We determined the form of all cysteines in carboxylase using in-gel protease digestion and matrix-assisted laser desorption/ionization mass spectrometry. The spectrum of non-reduced, trypsin-digested carboxylase revealed a peak at m/z 1991.9. Only this peak disappeared in the spectrum of the reduced sample. This peak's m/z is consistent with the mass of peptide 92-100 (Cys-99) disulfide-linked with peptide 446-453 (Cys-450). To confirm its identity, the m/z 1991.9 peak was isolated by a timed ion selector as the precursor ion for further MS analysis. The fragmentation pattern exhibited two groups of triplet ions characteristic of the symmetric and asymmetric cleavage of disulfide-linked tryptic peptides containing Cys-99 and Cys-450. Mutation of either Cys-99 or Cys-450 caused loss of enzymatic activity. We created a carboxylase variant with both C598A and C700A, leaving Cys-450 as the only remaining cysteine residue in the 60-kDa fragment created by limited trypsin digestion. Analysis of this fully active mutant enzyme showed a 30- and the 60-kDa fragment were joined under non-reducing conditions, thus confirming Cys-450 participates in a disulfide bond. Our results indicate that Cys-99 and Cys-450 form the only disulfide bond in carboxylase.  相似文献   

13.
The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.  相似文献   

14.
The Morita-Baylis-Hillman (MBH) type reaction of a variety of aromatic and heteroaromatic conjugated nitroalkenes with formaldehyde in the presence of stoichiometric amounts of imidazole and catalytic amounts (10 mol %) of anthranilic acid at room temperature provided the corresponding hydroxymethylated derivatives in moderate to good yield. The parent nitroalkenes and their MBH adducts were subsequently screened for their anticancer activity. Some of the MBH adducts were found to inhibit cervical cancer (HeLa) cell proliferation at low micromolar concentrations with half-maximal inhibitory concentrations in the range of 1-2 microM. The antiproliferative activity of 3-((E)-2-nitrovinyl)furan and three potent MBH adducts, namely, hydroxymethylated derivatives of 3-((E)-2-nitrovinyl)thiophene, 1-methoxy-4-((E)-2-nitrovinyl)benzene, and 1,2-dimethoxy-4-((E)-2-nitrovinyl)benzene was correlated well with their antimicrotubule activity. At their effective concentration range, the tested compounds perturbed the organization of mitotic spindle microtubules and chromosomes. In the presence of hydroxymethylated nitroalkenes, abnormal bipolar or multipolar mitotic spindles were apparent. Interphase microtubules were found to be significantly depolymerized at relatively higher concentrations of the tested compounds. These compounds inhibited tubulin assembly into microtubules in vitro by binding to tubulin at a site distinct from the vinblastine and colchicine binding sites. The compounds reduced the intrinsic tryptophan fluorescence of tubulin and the fluorescence of tubulin-1-anilinonaphthalene-8-sulfonic acid (ANS) complex indicating that they induced conformational changes in the tubulin. The results suggest that hydroxymethylated nitroalkenes exert their antiproliferative activity at least in part by depolymerizing cellular microtubules through tubulin binding and indicate that hydroxymethylated nitroalkenes are promising lead compounds for cancer therapy.  相似文献   

15.
16.
The use of mercapturic acids (N-acetyl-L-cysteine S-conjugates, MAs) in the biological monitoring of human exposure to environmental and industrial chemicals is receiving more and more attention. Mercapturic acids (MAs) are formed from glutathione (GSH) S-conjugates via the MA-pathway. Although this pathway can lead to different end-products, the formation of MAs is the predominant route in most species, including man. Two GSH S-transferases (GSTs) show genetic polymorphisms in humans and this can have major consequences for individual susceptibility to toxic effects and for MA formation. In occupational toxicology, adducts to biomacromolecules are also used as biomarkers. DNA adducts are a measure for the effective dose, while protein adducts are related to the dose at critical site. Both type of adducts are normally determined in blood, while MAs are determined in urine. Most MAs are excreted with relatively short half-lifes, allowing a direct evaluation of the occupational circumstances. For many compounds similar (linear) dose-dependency was found for MA excretion, formation of macromolecular adducts, and for various biomarkers of toxic effects. These relations together with fact that MAs relate to the electrophilic character of compounds, allows for the conclusion that MAs are biomarkers of toxicologically relevant internal doses of chemicals or their metabolites. An overview will be given here of the use of MAs in the assessment of internal human exposure to electrophilic environmental and industrial chemicals. Additionally, the formation of GSH S-conjugates, their catabolism to MAs and several of the frequently used analytical approaches are discussed. When appropriate, the influence of genetic polymorphisms on formation of MAs and on susceptibility to toxicity will be discussed for different chemicals as well.  相似文献   

17.
The use of mercapturic acids (N-acetyl-L-cysteine S-conjugates, MAs) in the biological monitoring of human exposure to environmental and industrial chemicals is receiving more and more attention. Mercapturic acids (MAs) are formed from glutathione (GSH) S-conjugates via the MA-pathway. Although this pathway can lead to different end-products, the formation of MAs is the predominant route in most species, including man. Two GSH S-transferases (GSTs) show genetic polymorphisms in humans and this can have major consequences for individual susceptibility to toxic effects and for MA formation. In occupational toxicology, adducts to biomacromolecules are also used as biomarkers. DNA adducts are a measure for the effective dose, while protein adducts are related to the dose at critical site. Both type of adducts are normally determined in blood, while MAs are determined in urine. Most MAs are excreted with relatively short half-lifes, allowing a direct evaluation of the occupational circumstances. For many compounds similar (linear) dose-dependency was found for MA excretion, formation of macromolecular adducts, and for various biomarkers of toxic effects. These relations together with fact that MAs relate to the electrophilic character of compounds, allows for the conclusion that MAs are biomarkers of toxicologically relevant internal doses of chemicals or their metabolites. An overview will be given here of the use of MAs in the assessment of internal human exposure to electrophilic environmental and industrial chemicals. Additionally, the formation of GSH S-conjugates, their catabolism to MAs and several of the frequently used analytical approaches are discussed. When appropriate, the influence of genetic polymorphisms on formation of MAs and on susceptibility to toxicity will be discussed for different chemicals as well.  相似文献   

18.
Plants contain both cytosolic and chloroplastic GAPDHs (glyceraldehyde-3-phosphate dehydrogenases). In Arabidopsis thaliana, cytosolic GAPDH is involved in the glycolytic pathway and is represented by two differentially expressed isoforms (GapC1 and GapC2) that are 98% identical in amino acid sequence. In the present study we show that GapC1 is a phosphorylating NAD-specific GAPDH with enzymatic activity strictly dependent on Cys(149). Catalytic Cys(149) is the only solvent-exposed cysteine of the protein and its thiol is relatively acidic (pK(a)=5.7). This property makes GapC1 sensitive to oxidation by H(2)O(2), which appears to inhibit enzyme activity by converting the thiolate of Cys(149) (-S-) into irreversible oxidized forms (-SO(2)(-) and -SO(3)(-)) via a labile sulfenate intermediate (-SO(-)). GSH (reduced glutathione) prevents this irreversible process by reacting with Cys(149) sulfenates to give rise to a mixed disulfide (Cys(149)-SSG), as demonstrated by both MS and biotinylated GSH. Glutathionylated GapC1 can be fully reactivated either by cytosolic glutaredoxin, via a GSH-dependent monothiol mechanism, or, less efficiently, by cytosolic thioredoxins physiologically reduced by NADPH:thioredoxin reductase. The potential relevance of these findings is discussed in the light of the multiple functions of GAPDH in eukaryotic cells (e.g. glycolysis, control of gene expression and apoptosis) that appear to be influenced by the redox state of the catalytic Cys(149).  相似文献   

19.
Electrophilic fatty acid nitroalkenes (NO2-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO2-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial β-oxidation, and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO2-FA-containing triacylglycerides (NO2-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO2-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO2-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO2-OA-supplemented adipocytes. These data revealed that NO2-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events.  相似文献   

20.
Pentafluorobenzyl (PFB) bromide (PFB-Br) is a versatile derivatization reagent for numerous classes of compounds. Under electron-capture negative-ion chemical ionization (ECNICI) conditions PFB derivatives of acidic compounds readily and abundantly ionize to produce intense anions due to [M-PFB](-). In the present article we investigated the PFB-Br derivatization of unlabelled acetaminophen (N-acetyl-p-aminophenol, NAPAP-d(0); paracetamol; MW 151) and tetradeuterated acetaminophen (NAPAP-d(4); MW 155) in anhydrous acetonitrile and their GC-ECNICI-MS behavior using methane as the buffer gas. In addition to the expected anions [M-PFB](-) at m/z 150 from NAPAP-d(0) and m/z 154 from NAPAP-d(4), we observed highly reproducibly almost equally intense anions at m/z 149 and m/z 153, respectively. Selected ion monitoring of these ions is suitable for specific and sensitive quantification of acetaminophen in human plasma and urine. Detailed investigations suggest in-source formation of N-acetyl-p-benzoquinone imine (NAPQI; MW 149), the putatively toxic acetaminophen metabolite, from the PFB ether derivative of NAPAP. GC-ECNICI-MS of non-derivatized NAPAP did not produce NAPQI. The peak area ratio of m/z 149 to m/z 150 and of m/z 153 to m/z 154 decreased with increasing ion-source temperature in the range 100-250°C. Most likely, NAPQI formed in the ion-source captures secondary electrons to become negatively charged (i.e., [NAPQI](-)) and thus detectable. Formation of NAPQI was not observed under electron ionization (EI) conditions, i.e., by GC-EI-MS, from derivatized and non-derivatized NAPAP. NAPQI was not detectable in flow injection analysis LC-MS of native NAPAP in positive electrospray ionization (ESI) mode, whereas in negative ESI mode low extent NAPQI formation was observed (<5%). Our results suggest that oxidation of drug derivatives in the ion-sources of mass spectrometers may form intermediates that are produced from activated drugs in enzyme-catalyzed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号