首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is widely held that when predator avoidance conflicts with other activities, such as feeding, avoidance of predators often takes precedence. In this study, we examine how predation risk and food distribution interact to influence the schooling behavior and swimming speed of foraging juvenile walleye pollock, Theragra chalcogramma. Fish were acclimated to either spatially and temporally clumped, or spatially and temporally dispersed food for 3 weeks. Fish were then monitored while feeding in the absence and presence of predatory sablefish, Anoplopoma fimbria. Fish foraging for clumped food swam rapidly in a loose school when predators were absent, but swam more slowly and adopted more cohesive schooling in the presence of predators, trading-off foraging opportunity for decreased vulnerability to predators. Fish foraging for dispersed food swam about slowly and did not engage in cohesive schooling in either the absence or presence of predators. These fish accepted greater predation risk in order to continue foraging, suggesting that the cost of schooling, in terms of decreased foraging opportunity, was greater when food was dispersed than when it was clumped. This lower responsiveness to predators among fish receiving dispersed food demonstrates that predator avoidance does not always take precedence over other activities, but rather, that a balance is maintained between predator avoidance and feeding, which shifts as food distribution changes.  相似文献   

2.
根据鄂霍茨克公海区狭鳕资源声学评估调查资料,研究了狭鳕分布状况及渔场环境特征,并分析了狭鳕行动分布与环境的关系.结果表明,8月公海区狭鳕密集群位于55°N以北、水深小于500m的海域,其主要分布水层在150~300m之间;调查期间狭鳕只为索饵群体,主要摄食太平洋磷虾,狭鳕密集区一般也为太平洋磷虾高密度分布区;8月公海区水温跃层大致在0~50m之间,强度为0.25℃  相似文献   

3.
Geographic and interannual variability of the number of annuli and the radius of the first scale annulus, as well as the retrospective length of year-old walleye pollock from the western, northern, and eastern parts of the Bering Sea, was examined using data for the years 1995, 1996, 1998, and 1999. The characteristics of the first scale annulus were varying. By these parameters, walleye pollock from the western Bering Sea significantly differs statistically from walleye pollock of the eastern Bering Sea. With respect to number of annuli, the radius of the first ring, and the retrospective length of year-old specimens, the walleye pollock from the Navarinskii region occupies an intermediate position between fish from the western and eastern parts of the Bering Sea. Interannual variability of the three parameters was found for walleye pollock from the Navarinskii region.  相似文献   

4.
Synopsis The social and reproductive behavior of a group of four male and seven female walleye pollock,Theragra chalcogramma, were observed in a large tank. Pollock spent most of their time swimming in a loose aggregation near the surface. Males descended from the aggregation more often than females to follow and make physical contact with other males as well as with females. The difference between males and females in the frequency of diving in our tank is consistent with the reported pattern of depth segregation of the sexes in natural pollock spawning aggregations. The frequency of social interactions increased when pollock became reproductively active and was higher at night and during twilight when most of the spawning occurred. Male interactions with females most frequently involved physical contact, while male interactions with other males were more often limited to following. There was no indication that male-male interactions result in the formation of stable social dominance relationships that determine priority of access to mates, as has been suggested previously for walleye pollock. Rather, following and contact interactions appear to promote male identification of potential mates and encounters with ripe females. The possible functional significance of male social interactions is discussed in relation to reports on natural walleye pollock spawning aggregations.  相似文献   

5.
Does group foraging promote efficient exploitation of resources?   总被引:1,自引:0,他引:1  
Guy Beauchamp 《Oikos》2005,111(2):403-407
Increased avoidance of food patches previously exploited by other companions has been proposed as one adaptive benefit of group foraging. However, does group foraging really represent the most efficient way to exploit non- or slowly-renewing resources? Here, I used simulations to explore the costs and benefits of exploiting non-renewing resources by foragers searching for food patches independently or in groups in habitats with different types of resource distribution. Group foragers exploited resources in a patch more quickly and therefore spent proportionately more time locating new patches. Reduced avoidance of areas already exploited by others failed to overcome the increased time cost of searching for new food patches and group foragers thus obtained food at a lower rate than solitary foragers. Group foraging provided one advantage in terms of a reduction in the variance of food intake rate. On its own, reduced avoidance of exploitation competition through group foraging appears unlikely to increase mean food intake rate when exploiting non-renewing patches but may provide a way to reduce the risk of an energy shortfall.  相似文献   

6.
In the northern Sea of Okhotsk, nekton and jellyfish consumed as many as 831 × 109 walleye pollock eggs per day in 2011. The nekton exerted the highest pressure, viz., 98.3% of the overall predation on pollock egg by aquatic animals. Of the entire quantity of consumed eggs, 55.9% were eaten by herring, 35.9% by walleye pollock, 6.5% by Sakhalin sole, and 1.7% by jellyfish. Among jellyfish, scyphomedusae Cyanea capillata and Chrysaora melonaster, as well as the hydromedusa Tima sachalinensis consumed the largest quantities of eggs. The total consumption of pollock egg by aquatic animals in 2011 was estimated at 42.4 × 1012, or 11.4% of the entire quantity of eggs that were spawned by walleye pollock in the waters of the northern part of the sea. The total amount of pollock eggs that were eaten by herring and pollock together for 51 days in 2011 amounted to 38.9 × 1012, which was 5.7 times as much as that in 2002. Thus, a significant growth of predation on pollock eggs by their main consumers, viz., herring and walleye pollock, was observed in 2011. This was caused by an increase in the populations of both species during the recent years and also by a higher concentration of pollock eggs.  相似文献   

7.
Several mechanisms can explain individual differences in foraging behaviour, such as variation in predation risk between patches, variation in the ability of individuals to detect or escape from predators, variation between individuals in their requirement for food, the quality and abundance of food in different patches, phenotypic variation giving rise to differences in resource use (exploitation hypothesis) and interference competition such as the exclusion of subordinate individuals by dominants. Subordinates can develop compensation mechanisms. One of these mechanisms is morphological differentiation. However not every change in morphology can account for the same variation in behaviour, since some morphologies can be ecologically more plastic than others (i.e. some morphs can exploit a broader niche than other morphs). Under controlled conditions in the Coal Tit Parus ater, we tested whether (1) differences in resource use were explained by either the exploitation hypothesis or by the interference hypothesis, and (2) the presumed costs of subordination can be reduced through different ecological plasticities associated with different morphologies. Our results support the interference hypothesis as there are no differences in hanging behaviour between dominants and subordinates when foraging solitarily; while in the presence of other individuals, we observed differences in foraging behaviour that varied with social status. Our results also show that body mass influenced foraging behaviour; lighter birds can exploit patches where hanging postures are needed more easily than heavier birds. Moreover, this relationship varied among individuals, as predicted by the ecological plasticity hypothesis. Lighter subordinate individuals used hanging postures more frequently than heavier ones, differentially reducing the costs of subordination. We propose that differences in the breadth of ecological niche due to differences in morphology can reduce the costs of subordination.  相似文献   

8.
Synopsis Behavioral preference for a structured habitat (artificial seagrass) by juvenile walleye pollock,Theragra chalcogramma, was tested in controlled laboratory experiments. We monitored position of fish in 2000 1 tanks with and without artificial seagrass present in one half of the tank. In addition, we exposed walleye pollock to a predator model, assessing their response when a grass plot was available or unavailable as a potential refuge. In the absence of predators, the fish avoided the artificial seagrass, displaying a preference for the open water side of the experimental tanks. In the presence of a predator model, however, juvenile walleye pollock readily entered the artificial seagrass plots. In addition, they often remained in the grass canopy in proximity to the predator instead of moving out of the grass to avoid the predator (when no grass was present they consistently moved to the opposite side of the tank from the predator). The behavioral choices exhibited in this study suggest that juvenile walleye pollock modify habitat selection in response to perceived predation risk, and recognize the structure provided by artificial seagrass as a potential refuge.  相似文献   

9.
Survival of age-0 walleye pollock Theragra chalcogramma in the absence of food followed simple bioenergetic models, with large body size, high initial condition, and cold temperatures all increasing survival rates. High survival after >200 days at cold temperatures (<3·0° C) indicated extended tolerance of extreme cold, as long as sufficient body size and condition are attained during the summer growth period. Analysis of body constituents demonstrated a substantial increase in tissue water and depletion of lipid during starvation. Survivors had significantly higher lipid stores than mortalities, and larger fish had higher levels of lipid than smaller fish among experimental survivors, laboratory fish that were never starved, and wild fish. Fish returned to warm temperatures and high rations following 205 days of food deprivation displayed nearly complete recovery, with rapid increases in length, weight, and condition and minimal mortality (6·8%) during the subsequent 3 months. Age-0 walleye pollock collected in September in the Bering Sea were substantially smaller and generally had lower lipid levels than fish used in laboratory starvation experiments, suggesting they are susceptible to size- and condition-dependent mortality during the winter. The results are interpreted with respect to field distributions of age-0 walleye pollock, overwinter survival, and synergistic effects of food and temperature under varying models of climate change.  相似文献   

10.
Variation in the intensity of schooling behavior in fishes suggests that the benefits of aggregation are balanced by certain costs. We examined the proximity of group members to each other in juvenile walleye pollock, Theragra chalcogramma, under different environmental conditions. Food availability, simulated by a gradient of six ration treatments, had a major influence on group cohesion, with increasing dispersion as food level decreased. Group cohesion also decreased at night relative to daytime levels. Small juveniles (x=53 mm TL) maintained on high rations were highly responsive to the potential threat of a predator, with groups becoming more cohesive and remaining so for up to an hour after the initial threat. A chronic threat (continual presence of predators) resulted in tighter group cohesion than an acute threat (single simulated attack). Small juveniles maintained on low rations were less responsive to predation threats and recovered quickly, supporting the hypothesis that hunger induces risk-taking behavior. Large juveniles (x=149 mm TL) did not change their degree of aggregation in response to either type of predation threat. An overall plasticity in the degree of cohesiveness among group members indicates that walleye pollock are capable of gradually modifying their schooling behavior according to the environmental context.  相似文献   

11.
This study tested the hypothesis that acuity of behavioral responses to food odor in three commercially important species of marine fish would increase as juvenile length increased. Swimming activity among two size groups of fish was measured in the presence of a series of squid extract dilutions. Increased swimming activity in juvenile Pacific halibut Hippoglossus stenolepis Schmidt, walleye pollock Theragra chalcogramma Pallas, and sablefish Anoplopoma fimbria Pallas was stimulated above threshold concentrations of squid extract, expressed as dilution from full strength. Maximum chemosensory acuity was observed in smaller (8-14 cm total length, TL) Pacific halibut and walleye pollock, while larger sablefish (15-23 cm TL) continued to develop acuity. Response thresholds were highest (10 3 dilution) in Pacific halibut, at intermediate levels (10 4-10 6 dilution) in walleye pollock and smaller sablefish and reached the lowest levels (10 13 dilution) in larger sablefish. The widely held view that dissolved free amino acids (DFAA) are the primary chemosensory stimulants for fish food searching may not be valid for sablefish, as they detected squid extract at dilutions containing DFAA that appeared to be far below ambient sea water DFAA concentrations.  相似文献   

12.
BACKGROUND: Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion). Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. RESULTS: Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches). CONCLUSION: Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights the necessity of investigating the role of inter-kingdom competition as a potential driving force in the evolution of spatial behaviour in insects.  相似文献   

13.
The decision rules governing forage area copying behaviour were investigated in shoaling fish. Shoaling goldfish were offered two equal food patches, one of which was adjacent to an equal-sized shoal feeding behind a transparent barrier. When food was low, goldfish foraged according to an area copying rule, but under high and zero food area copying disappeared. Only under high food density did equal numbers of fish feed at both sites as predicted by foraging theory. Under zero food the fish were less certain about where to forage. Precise visual cues from feeding fish were required: non-feeders did not attract area copiers. Furthermore, area copying was task-dependent since it reappeared strongly if fish were not able to forage on patches like their fellows. Control experiments eliminated an increase in group size for anti-predator advantage as an explanation. Two sequential decisions: to stay or move, and to join or leave may explain the results, which are not accommodated by simple optimality models. These decisions may be based on a comparison of current food intake with the anticipation of a higher reward by foraging socially.  相似文献   

14.
Internal state, in this case hunger, is known to influence both the organisation of animal groups and the social foraging interactions that occur within them. In this study, we investigated the effects of hunger upon the time taken to locate and converge upon hidden simulated prey patches in a socially foraging fish, the threespine stickleback (Gasterosteus aculeatus). We predicted that groups of food‐deprived fish would find and recruit to prey patches faster than recently fed groups, reasoning that they might search more rapidly and be more attentive to inadvertent social information produced by other foragers. Instead we saw no difference between the two groups in the time taken to find the patches and found that in fact, once prey patches had been discovered, it was the recently fed fish that converged on them most rapidly. This finding is likely due to the fact that recently fed fish tend to organise themselves into fewer but larger subgroups, which arrived at the food patch together. Hunger has a significant impact upon the social organisation of the fish shoals, and it appears that this has a stronger effect upon the rate at which they converged upon the food patches than does internal state itself.  相似文献   

15.
The selective advantages to primates of trichromatic color vision, allowing discrimination among the colors green, yellow, orange, and red, remain poorly understood. We test the hypothesis that, for primates, an advantage of trichromacy over dichromacy, in which such colors are apt to be confused, lies in the detection of yellow, orange, or red (YOR) food patches at a distance, while controlling for the potentially confounding influences of reproductive status and memory of food patch locations. We employ socially monogamous titi monkeys (Callicebus brunneus) which, like most platyrrhine primates, have polymorphic color vision resulting in populations containing both dichromatic and trichromatic individuals. Wild Callicebus brunneus spent most foraging time in YOR food patches, the locations of most of which were likely to have been memorable for the subjects. Overall, both dichromatic and trichromatic females had significantly higher encounter rates than their dichromatic male pair mates for low-yield ephemeral YOR food patches whose locations were less likely to have been remembered. We detected no difference in the encounter rates of dichromatic and trichromatic females for such patches. However, the data suggest that such a difference may be detectable with a larger sample of groups of Callicebus brunneus, a larger sample of foraging observations per group, or both. We propose that a trichromatic advantage for foraging primates may be realized only when individuals’ energy requirements warrant searching for nonmemorable YOR food patches, a context for selection considerably more limited than is often assumed in explanations of the evolution of primate color vision.  相似文献   

16.
Do shark declines create fear‐released systems?   总被引:1,自引:0,他引:1  
We illustrate the theoretical plausibility that fishery removal of sharks can indirectly alter predation pressure on different fish species via the behavioural responses of mesoconsumers released from predator intimidation. Our dynamic state variable model of foraging decisions by harbour seals, a mesopredator, predicted indirect effects of the removal of Pacific sleeper sharks on two species consumed by seals, Pacific herring and walleye pollock, as mediated by seal behaviour. Herring, a fatty fish, form near‐surface aggregations that often are ephemeral and widely dispersed. Pollock are found in the deeper strata preferred by sharks and have lower energy density than herring, but also are larger and their more continuous distribution potentially makes them the more predictable resource for seals. During simulations, predation risk from sharks produced an asymmetric trophic cascade mediated by the seal's underutilisation of deeper, riskier strata. Risk management by seals reduced mortality on pollock, which required riskier access in deep strata, while increasing mortality on herring, which could be accessed with less risk in shallow strata. This effect, however, attenuated if herring were scarcer and seal energy state was poor. During shark removal scenarios, seals shifted to deeper strata, increasing pollock consumption and substantially decreasing use of herring; the proportional change was greatest if seals were in good energy state. Prior studies have addressed how shark declines might affect community structure through density responses by species consumed by sharks; earlier models incorporating antipredator behaviour of the mesopredator (i.e. Ecosim/Ecospace) allow for activity reduction but not for the spatial shifts that altered the asymmetric trophic cascade in our simulations. Our results suggest that shark declines might have stronger ecological consequences than previously recognised if we account for spatial and diet shifts by mesoconsumers released from shark intimidation.  相似文献   

17.
Summary Selection might favor group foraging and social feeding when prey are distributed in patches that do not last long enough for a solitary individual to consume more than a small fraction of them (Pulliam and Millikan 1982; Pulliam and Caraco 1984). Here we considered the foraging behavior of a social spider, Anelosimus eximius, in light of this ephemeral resource hypothesis. This species builds large webs in which members cooperate to capture a wide variety of different sizes and types of prey, many of which are very large. The capture success of this species was very high across all prey sizes, presumably due to the fact that they foraged in groups. Group consumption times in natural colonies for all prey larger than five mm were less than the time that dead insects remained on the plastic sheets that we used as artificial webs. Solitary consumption estimates, calculated from the rate at which laboratory individuals extracted insect biomass while feeding, were the same as the residence times of insects on artificial webs in the field for insects between 6 and 15 mm in length and were significantly longer than the persistence of insects on plastic sheets for all larger insects. Large prey, that contribute substantially to colony energy supplies, appeared to be ephemeral resources for these spiders that could not be consumed by a single spider in the time they were available. These factors made the food intake of one spider in a group less sensitive to scavenging by others and could act to reinforce the social system of this species.  相似文献   

18.
Many bat species live in groups, some of them in highly complex social systems, but the reasons for sociality in bats remain largely unresolved. Increased foraging efficiency through passive information transfer in species foraging for ephemeral insects has been postulated as a reason for group formation of male bats in the temperate zones. We hypothesized that benefits from group hunting might also entice tropical bats of both sexes to live in groups. Here we investigate whether Molossus molossus, a small insectivorous bat in Panama, hunts in groups. We use a phased antenna array setup to reduce error in telemetry bearings. Our results confirmed that simultaneously radiotracked individuals from the same colony foraged together significantly more than expected by chance. Our data are consistent with the hypothesis that many bats are social because of information transfer between foraging group members. We suggest this reason for sociality to be more widespread than currently assumed. Furthermore, benefits from group hunting may also have contributed to the evolution of group living in other animals specialized on ephemeral food sources.  相似文献   

19.
The behaviour of animals foraging along closed traplines of regenerating patches of food has been simulated using a learning rule that determines when an animal should leave the patch at which it is currently feeding to search for another one. The rule causes the animal to stay at the patch as long as it is feeding faster than it remembers doing. The foraging behaviour of one animal, and of two or more animals together, feeding in traplines containing patches of the same and of differing types has been simulated, and in all cases the foraging behaviour generated by the rule allowed the animals to exploit the food very efficiently. The learning model is also responsible for indirect social interactions among animals sharing the same trapline because the feeding of each animal reduces the availability of food for the others. This causes a population of animals to disperse themselves, on average, among patches of food according to the ideal free distribution. The relationship between the learning model and conventional optimal foraging models is examined and it is shown that it is pointless to try to account for learned behaviour in the context of optimal foraging theory.  相似文献   

20.
Gut evacuation of walleye pollock larvae in response to feeding conditions   总被引:3,自引:0,他引:3  
Gut residence times of first-feeding walleye pollock larvae were measured at 6°C in continuous and discontinuous feeding regimes. Larvae fed tagged copepod prey evacuated their guts more quickly in continuous feeding as compared to the discontinuous feeding treatment. The mean gut residence time was estimated to be 5.0 h for larvae feeding continuously. Gut evacuation by larvae fed tagged prey and then isolated without food (discontinuous treatment) was slower and more variable, with an estimated gut residence time exceeding 8.0 h. Field and laboratory observations suggest that the larval fish gut may be modeled as an intermittent plug-flow reactor (PFR) in response to diel feeding patterns. The cyclical nature of gut dynamics has implications for gut content analyses and the estimation of daily food rations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号