首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADPH:cytochrome c (cytochrome P-450) reductase (Fp) from hamster liver microsomes has been purified to near homogeneity using a simple and rapid method. Microsomes were treated with the detergent Chaps (3-[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid) in combination with 0.07% protamine sulfate and then centrifuged to pellet insoluble material. While over 60% of the total microsomal protein was solubilized, all Fp activity remained in the pellet. Fp was extracted from the Chaps-insoluble material using a combination of the detergents sodium cholate and Lubrol PX. This treatment resulted in a fivefold increase in Fp specific activity and allowed direct processing of the enriched Fp fraction by 2',5'-ADP agarose affinity chromatography. The purified Fp had a total flavin content of 23 nmol/mg protein (flavin adenine dinucleotide:flavin mononucleotide ratio = 1:1), a specific activity of 26,000 units/mg protein at 22 degrees C using cytochrome c as electron acceptor, and migrated as a single band on sodium-dodecyl sulfate-polyacrylamide gel electrophoresis with a relative molecular weight of 76,000. The purity, specific activity, and yield were nearly identical to results obtained when the flavoprotein was purified by conventional methods. This procedure eliminates the need for anion-exchange chromatography and allows for the rapid purification of large amounts of Fp suitable for use in studies concerning cytochrome P-450-mediated drug metabolism. Importantly, this method is equally effective when used to purify Fp from rat liver microsomes.  相似文献   

2.
The presence of a very active cytochrome P-450-dependent drug-metabolizing system in the olfactory epithelium has been confirmed by using 7-ethoxycoumarin, 7-ethoxyresorufin, hexobarbitone and aniline as substrates, and the reasons for the marked activity of the cytochrome P-450 in this tissue have been investigated. The spectral interaction of hexobarbitone and aniline with hepatic and olfactory microsomes has been examined. By this criterion there was no evidence for marked differences in the spin state of the cytochromes of the two tissues, or for the olfactory epithelium containing a greater amount of cytochrome capable of binding hexobarbitone, a very actively metabolized substrate. Rates of NADPH and NADH: cytochrome c reductase activity were found to be higher in the olfactory epithelium than in the liver, and direct evidence was obtained for a greater amount of the NADPH-dependent flavoprotein in the olfactory microsomes. Investigation of male rats and male and female mice, as well as male hamsters, demonstrated that, in all cases, the cytochrome P-450 levels of the olfactory epithelium were lower than those of the liver, while the 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities were higher. A correlation was found between 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities for both tissues in all species examined. The ratio of reductase to cytochrome P-450 was found to be considerably higher in the olfactory epithelium (1:2-1:3) than in the liver (1:11-1:15), regardless of the species examined, suggesting that facilitated electron flow may contribute significantly to the cytochrome P-450 catalytic turnover in the olfactory tissue.  相似文献   

3.
NADPH cytochrome c (P-450) reductase was purified from human placental microsomes using a combination of affinity and gel filtration chromatography. Affinity chromatography using agarose-hexane-adenosine 2'5 diphosphate resulted in two protein bands being detected by SDS-PAGE of approximate MwS 68 and 75 kDa. Fractions containing the two proteins were pooled, and then resolved using Sephacryl S-200. Both of the purified proteins displayed enzyme activity, measured by their ability to reduce cytochrome c. The 75 kDa protein obtained was used to immunize three female New Zealand white rabbits. The IgG fraction was partly purified from rabbit sera which suppressed placental microsomal NADPH cytochrome c reductase activity by > 80% using 33% ammonium sulphate. The procured antibody suppressed androstenedione aromatase activity in microsomal preparations of human placental and breast adipose tissue, and NADPH cytochrome c reductase activity in prostate (benign and malignant), MDA-MB-231 breast cancer cells, breast adipose, Hep G2 hepatoma cells and placental microsomal preparations. The extent of NADPH cytochrome c reductase inhibition varied in the order of malignant prostate < benign prostate < MDA < breast adipose < Hep G2 < placenta. The results suggest that human placental NADPH cytochrome c (P-450) reductase shares common antigenic epitopes pertinent to its capability of reducing cytochrome c in all of the above-mentioned tissues. In attempting to associate possible changes in NADPH cytochrome c reductase activity imposed by neoplasia to the obtained immunochemical cross reactivity and enzyme activity results, it was noted that microsomes obtained from MDA cells exhibited enzyme activity significantly less than that of breast adipose microsomes (1.6 and 8.1 nmol/min/mg protein, respectively) and by comparison showed 6% less homology towards the placental antibody. The results obtained for benign and malignant prostate showed no significant difference between the neoplastic states as adjudged by enzyme activity and immunochemical assays.  相似文献   

4.
A comparison of difference spectra formed with microsomal cytochrome P-450 from a susceptible and a resistant strain of house flies shows both quantitative and qualitative differences. The differences are similar to those observed for the same spectra between normal and phenobarbital- or 3-methylcholanthrene-treated mammals. The relationship of these findings to resistance, synergism, and cytochrome P-450 in the house fly is discussed.  相似文献   

5.
The lack of aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) (EC 1.14.14.1) induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a clone of rat hepatoma (HTC cl-1) cells is not caused by the lack of nuclear Ah receptor or by a deficiency in the activity of NADPH-cytochrome c (P-450) reductase. Treatment of HTC cl-1 cell line with TCDD for 18 h in culture resulted in a reproducible 500-600% increase in reductase activity without concomitant expression in AHH activity. These data suggests that TCDD induces cytochrome c reductase activity and that the lack of inducible AHH activity in rat hepatoma cells could reflect a defect in the structural gene (s) encoding for cytochrome P1-450, or an Ah receptor with a faulty DNA binding domain.  相似文献   

6.
Acetylation and succinylation of cytochrome c decrease its rate of reaction with superoxide. The effect of succinylation is greater than that of acetylation. As predicted by the Brönsted-Debye-Hückel relationship, the effect of modification of cytochrome c is more pronounced at low ionic strength. Modification of cytochrome c causes a much greater decrease in its reaction with NADPH-cytochrome P-450 reductase, compared to its reaction with superoxide. This data forms the quantitative basis for the enhanced specificity of modified cytochrome c for superoxide detection previously described by other investigators. Additionally, a greatly simplified version of the trinitrobenzenesulfonic acid method for estimation of free amino groups is presented.  相似文献   

7.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

8.
NADPH-cytochrome P-450 (cytochrome c) reductase (EC 1.6.2.4) was solubilized by detergent from microsomal fraction of wounded Jerusalem-artichoke (Helianthus tuberosus L.) tubers and purified to electrophoretic homogeneity. The purification was achieved by two anion-exchange columns and by affinity chromatography on 2',5'-bisphosphoadenosine-Sepharose 4B. An Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. The purified enzyme exhibited typical flavoprotein redox spectra and contained equimolar quantities of FAD and FMN. The purified enzyme followed Michaelis-Menten kinetics with Km values of 20 microM for NADPH and 6.3 microM for cytochrome c. In contrast, with NADH as substrate this enzyme exhibited biphasic kinetics with Km values ranging from 46 microM to 54 mM. Substrate saturation curves as a function of NADPH at fixed concentration of cytochrome c are compatible with a sequential type of substrate-addition mechanism. The enzyme was able to reconstitute cinnamate 4-hydroxylase activity when associated with partially purified tuber cytochrome P-450 and dilauroyl phosphatidylcholine in the presence of NADPH. Rabbit antibodies directed against plant NADPH-cytochrome c reductase affected only weakly NADH-sustained reduction of cytochrome c, but inhibited strongly NADPH-cytochrome c reductase and NADPH- or NADH-dependent cinnamate hydroxylase activities from Jerusalem-artichoke microsomal fraction.  相似文献   

9.
The change in fluorescence emission at 520 nm after excitation at 365 nm was used to investigate the effect of pH and ionic strength on the dissociation of flavin cofactors from microsomal NADPH/cytochrome c (P-450) reductase. In the unmodified enzyme both the FAD and FMN moieties appeared to dissociate at a similar rate and followed first-order kinetics. The rate constant for the dissociation was increased by low pH and high ionic strength, particularly in the range pH 4.4-3.8 (0.02 M acetate buffer) where the rate constants increased 80-fold. Modification of the enzyme by treatment with p-chloromercuribenzoate enhanced the rate of flavin dissociation and, in the region of pH 4, resulted in a biphasic increase in fluorescence consistent with two simultaneous parallel first-order dissociations. It was concluded that p-chloromercuribenzoate treatment modified the protein so that the two flavin cofactors dissociated at different rates. Using the measured rate constants for the dissociations, and the known variation in fluorescence of flavin nucleotides with pH, an analogue computer simulation of the dissociation as well as a manual curve-fitting procedure showed that the biphasic response could be explained as a simultaneous rapid dissociation of FAD and a slower loss of FMN from the protein.  相似文献   

10.
11.
We have studied the role of NADPH cytochrome P-450 reductase in the metabolism of arachidonic acid and in two other monooxygenase systems: aryl hydrocarbon hydroxylase and 7-ethoxyresorufin-o-deethylase. Human liver NADPH cytochrome P-450 reductase was purified to homogeneity as evidenced by its migration as a single band on SDS gel electrophoresis, having a molecular weight of 71,000 Da. Rabbits were immunized with the purified enzyme and the resulting antibodies were used to evaluate the involvement of the reductase in cytochrome P-450-dependent arachidonic acid metabolism by bovine corneal epithelial and rabbit renal cortical microsomes. A highly sensitive immunoblotting method was used to identify the presence of NADPH cytochrome P-450 reductase in both tissues. We used these antibodies to demonstrate for the first time the presence of cytochrome c reductase in the cornea. Anti-NADPH cytochrome P-450 reductase IgG, but not anti-heme oxygenase IgG, inhibited the NADPH-dependent arachidonic acid metabolism in both renal and corneal microsomes. The inhibition was dependent on the ratio of IgG to microsomal protein where 50% inhibition of arachidonic acid conversion by cortical microsomes was achieved with a ratio of 1:1. A higher concentration of IgG was needed to achieve the same degree of inhibition in the corneal microsomes. The antibody also inhibited rabbit renal cortical 7-ethoxyresorufin-o-deethylase activity, a cytochrome P-450-dependent enzyme. However, the anti-NADPH cytochrome P-450 reductase IgG was much less effective in inhibiting rabbit cortical aryl hydrocarbon hydroxylase. Thus, the degree of inhibition of monooxygenases by anti-NADPH cytochrome P-450 reductase IgG is variable. However, with respect to arachidonic acid, NADPH cytochrome P-450 reductase appears to be an integral component for the electron transfer to cytochrome P-450 in the oxidation of arachidonic acid.  相似文献   

12.
J D Dignam  H W Strobel 《Biochemistry》1977,16(6):1116-1123
(NADPH)-cytochrome P-450 reductase was purified to apparent homogeneity by a procedure utilizing nicotinamide adenine dinucleotide phosphate (NADP)-Sepharose affinity column chromatography. The purified flavoprotein has a molecular weight of 79 700 and catalyzes cytochrome P-450 dependent drug metabolism, as well as reduction of exogenous electron acceptors. Aerobic titration of cytochrome P-450 reductase with NADPH indicates that an air-stable reduced form of the enzyme is generated by the addition of 0.5 mol of NADPH per mole of flavin, as judged by spectral characteristics. Further addition of NADPH causes no other changes in the absorbance spectrum. A Km value for NADPH of 5 micron was observed when either cytochrome P-450 or cytochrome c was employed as electron acceptor. A Km value of 8 +/- 2 micron was determined for cytochrome c and a Km of 0.09 +/- 0.01 micron was estimated for cytochrome P-450.  相似文献   

13.
Microsomes isolated from whole rat brain were found to contain cytochreme P-450 (0.025 to 0.051 nmoles/mg) and NADPH cytochrome c reductase activity (26.0 to 55.0 nmoles/mg/min). The oxidation of estradiol to a reactive metabolite that became covalently bound to rat brain microsomal protein was inhibited 63% by an atmosphere of CO:O2 (9:1), indicating the involvement of a cytochrome P-450 oxygenase. In contrast, this atmosphere had no effect on the binding of either the catechol estrogen, 2-hydroxyestradiol, or several catecholamines to rat brain microsomes. An antibody prepared against NADPH cytochrome c reductase was found to decrease significantly both the formation of 2-hydroxyestradiol from estradiol by rat brain microsomes and the covalent binding of the catechol estrogen and catecholamines to rat brain microsomal protein.  相似文献   

14.
The interaction between P-450C21 and NADPH-cytochrome P-450 reductase, both purified from bovine adrenocortical microsomes, has been investigated in a reconstituted system with a nonionic detergent, Emulgen 913, by kinetic analysis and gel filtrations. Steady state kinetic data in progesterone 21-hydroxylation showed formation of an equimolar complex between the two enzyme proteins at low Emulgen concentration. Steady state kinetic studies on the electron transfer from NADPH to P-450C21 via the reductase showed that a stable complex formation between the two enzyme proteins was not involved in the steady state electron transfer at high Emulgen concentration. In stopped flow experiments, a time course of the P-450C21 reduction showed biphasic kinetics composed of fast and slow phases. The dependence of kinetic parameters on Emulgen concentration indicates that the fast phase corresponds to the electron transfer within the complex and the slow phase to the electron transfer through a random collision between P-450C21 and the reductase. The stable complex formation between P-450C21 and the reductase has been clearly demonstrated by gel filtration. The stable complex was composed of several molecules of the two enzyme proteins at an equimolar ratio, which was active for progesterone 21-hydroxylation and had a tendency to dissociate at high Emulgen concentration.  相似文献   

15.
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes.  相似文献   

16.
The preparation, testing and use of a variety of cholesterol-, deoxycorticosterone (DOC)- and pregnenolone-binding 1,6-diaminohexyl (EAH)-Sepharose 4B supports for affinity column chromatography of cytochromes P-450(scc) and P-450(17 alpha) from bovine adrenal and pig testis are described. EAH-Sepharose 4B has free amino groups at the end of a 10-atom spacer arm. Hydroxyl groups of cholesterol (3 beta), deoxycorticosterone (21 beta) and pregnenolone (3 beta) are linked to succinic anhydride in pyridine through an ester linkage. These coupling ligands of hemisuccinate were synthesized by a general procedure. Free amino groups of EAH-Sepharose 4B were used to couple ligands, containing carboxyl groups, by the carbodiimide coupling method. Both the purified cytochromes P-450(scc) and P-450(17 alpha) were found to be homogeneous and estimated to have a molecular weight of 52,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The carbon monoxide difference spectra with peaks at 450 and 448 nm exhibit the absorption spectra of typical cytochromes P-450(scc) and P-450(17 alpha), respectively. Cytochromes P-450(scc) and P-450(17 alpha) were determined to have isoelectric points of 8.0 and 6.5 in isoelectric focusing on a pH gradient gel. Cytochrome P-450s can be purified between 425- and 1000-fold from the crude extracts.  相似文献   

17.
Upon incubation of detergent-solubilized NADPH-cytochrome P-450 reductase and either cytochrome b5 or cytochrome c in the presence of a water-soluble carbodiimide, a 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), covalently cross-linked complex was formed. The cross-linked derivative was a heterodimer consisting of one molecule each of flavoprotein and cytochrome, and it was purified to 90% or more homogeneity. The binary covalent complex between the flavoprotein and cytochrome b5 was exclusively observed following incubation of all three proteins including NADPH-cytochrome P-450 reductase, cytochrome b5, and cytochrome c in L-alpha-dimyristoylphosphatidylcholine vesicles, and no heterotrimer could be identified. The isolated reductase-cytochrome b5 complex was incapable of covalent binding with cytochrome c in the presence of EDC. No clear band for covalent complex formation between PB-1 and reductase was seen with the present EDC cross-linking technique. More than 90% of the cross-linked cytochrome c in the purified derivative was rapidly reduced upon addition of an NADPH-generating system, whereas approximately 80% of the cross-linked cytochrome b5 was rapidly reduced. These results showed that in the greater part of the complexes, the flavin-mediated pathway for reduction of cytochrome c or cytochrome b5 by pyridine nucleotide was intact. When reconstituted into phospholipid vesicles, the purified amphipathic derivative could hardly reduce exogenously added cytochrome c, cytochrome b5, or PB-1, indicating that the cross-linked cytochrome shields the single-electron-transferring interface of the flavoprotein. These results suggest that the covalent cross-linked derivative is a valid model of the noncovalent functional electron-transfer complex.  相似文献   

18.
NADPH:cytochrome P-450 (c) reductase is a microsomal enzyme which is involved in the cytochrome P-450-dependent biotransformation of many exogenous agents as well as of some endogenous molecules. Using cytochromec as a substrate, the kinetic parameters of this enzyme were determined in brain microsomes. The comparison of the NADPH:cytochrome P-450 reductase's Vmax values and cytochrome P-450 contents in both fractions, suggests a role of cerebral NADPH:cytochrome P-450 reductase in cytochrome P-450 independent pathways. This is also supported by the different developmental pattern of brain enzyme as compared to the liver enzyme, and by the presence of a relatively high NADPH:cytochrome P-450 reductase activity in immature rat brain and neuronal cultures, while cytochrome P-450 was hardly detectable in these preparations. The enzyme activity was not induced by a phenobarbital chronic treatment neither in the adult brain nor in cultured neurons, suggesting a different regulation of the brain enzyme expression.  相似文献   

19.
The reduction kinetics of NADPH:cytochrome P-450 reductase have been investigated by the laser flash photolysis technique, using the semiquinone of 5-deazariboflavin (5-dRfH.) as the reductant. Transients observed at 470 nm at neutral pH indicated that the oxidized reductase was reduced via second-order kinetics with a rate constant of 6.8 X 10(7) M-1 s-1. The second-order rate constant corresponding to the formation of the protein-bound semiquinone (measured at 585 nm) was essentially the same as that obtained at 470 nm (7.1 X 10(7) M-1 s-1). Subsequent to this rapid formation of protein-bound semiquinone, a partial exponential decay was observed at 585 nm. The rate of this decay remained invariant with protein concentration between pH 5.0 and 7.0, and a first-order rate constant of 70 s-1 was obtained for this process. This is assigned to intramolecular electron transfer from FADH. to FMN. Prior reduction of the enzyme to the one-electron level led to a decrease in both the second-order rate constant for reduction (2 X 10(7) M-1 s-1) and the first-order intraflavin electron transfer rate constant (15 s-1). The protein-bound FAD moiety of FMN-depleted reductase was reduced by 5-dRfH. with a second-order rate constant that was identical with that observed with the native enzyme (6.9 X 10(7) M-1 s-1). However, with this species no significant decay of the FAD semiquinone was observed at 585 nm following its rapid formation, consistent with the above assignment of this kinetic process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have developed a specific radioimmunoassay to quantify NADPH: cytochrome P-450 reductase. The assay is based on the use of 125I-labelled NADPH: cytochrome P-450 reductase as the radiolabelled antigen and can detect quantities of this protein in amounts as low as 30 pg. The results of the radioimmunoassay demonstrates that the 2.7-fold increase in enzyme activity in rat liver microsomal membranes after phenobarbital treatment is due to increased amounts of the protein. beta-Naphthoflavone treatment, however, did not alter the activity or the quantity of this enzyme in microsomes. The quantification of NADPH: cytochrome P-450 reductase in the microsomes isolated from control and phenobarbital- and beta-naphthoflavone-treated animals permits the calculation of the ratio of this protein to that of total cytochromes P-450. A molar ratio of 15:1 (cytochromes P-450/NADPH: cytochrome P-450 reductase) was calculated for control and phenobarbital-treated animals. This ratio increased to 21:1 after beta-naphthoflavone treatment. Thus the molar ratio of these proteins in liver microsomes can vary with exposure of the animals to particular xenobiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号