首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Europe, Bt-corn resistant against the European Corn Borer has until now been the only genetically modified plant to be grown commercially. With the advent of the Western Corn Rootworm Bt-corn varieties with resistance against Coleoptera will become important. The cultivation of Bt-plants may have negative impacts on non-target organisms, i.e. all species not explicitly targeted by a given Bt-crop. One prominent non-target group in corn are the herbivorous plant bugs (Heteroptera: Miridae). They are common, abundant and exposed to the Cry-protein. We therefore assessed the potential impact of the cultivation of the Cry3Bb1-expressing Bt-corn variety MON88017 and three conventional varieties on this group. Trigonotylus caelestialium (Kirkaldy) was the most abundant plant bug at the experimental field. There was no evidence for a negative impact of MON88017 on this species, despite its considerable exposure to Cry3Bb1 demonstrated with ELISA. The conventional corn varieties, however, had a consistent and significant influence on the field densities of this species over all three growing seasons.  相似文献   

2.
This review paper explores whether the cultivation of the genetically modified Bt-maize transformation event MON?88017, expressing the insecticidal Cry3Bb1 protein against corn rootworms (Coleoptera: Chrysomelidae), causes adverse effects to non-target organisms (NTOs) and the ecological and anthropocentric functions they provide. Available data do not reveal adverse effects of Cry3Bb1 on various NTOs that are representative of potentially exposed taxonomic and functional groups, confirming that the insecticidal activity of the Cry3Bb1 protein is limited to species belonging to the coleopteran family of Chrysomelidae. The potential risk to non-target chrysomelid larvae ingesting maize MON?88017 pollen deposited on host plants is minimal, as their abundance in maize fields and the likelihood of encountering harmful amounts of pollen in and around maize MON?88017 fields are low. Non-target adult chrysomelids, which may occasionally feed on maize MON?88017 plants, are not expected to be affected due to the low activity of the Cry3Bb1 protein on adults. Impacts on NTOs caused by potential unintended changes in maize MON?88017 are not expected to occur, as no differences in composition, phenotypic characteristics and plant-NTO interactions were observed between maize MON?88017 and its near-isogenic line.  相似文献   

3.
Via expression of Cry-proteins, toxic for specific insect groups, genetically modified Bacillus thuringiensis (Bt) maize offers an effective protection against insect pests. In a laboratory experiment with two transgenic and two non-transgenic maize varieties, a potential impact of Bt-maize was examined for the non-target slug Arion vulgaris. Lifetime after field collection, weight change and oviposition was examined for slugs fed with Bt-maize, non Bt-maize or dandelion (Taraxacum officinale). Test parameters were neither significantly different between transgenic and non-transgenic varieties nor among the maize varieties overall. Slugs fed with dandelion showed a significantly longer lifetime after field collection, gained significantly more weight and laid eggs. The results did not show a Bt-effect but indicated the general poor quality of maize as food resource for slugs.  相似文献   

4.
Ribosomal 16S rRNA gene pyrosequencing was used to explore whether the genetically modified (GM) Bt-maize hybrid MON 89034 × MON 88017, expressing three insecticidal recombinant Cry proteins of Bacillus thuringiensis, would alter the rhizosphere bacterial community. Fine roots of field cultivated Bt-maize and three conventional maize varieties were analyzed together with coarse roots of the Bt-maize. A total of 547 000 sequences were obtained. Library coverage was 100% at the phylum and 99.8% at the genus rank. Although cluster analyses based on relative abundances indicated no differences at higher taxonomic ranks, genera abundances pointed to variety specific differences. Genera-based clustering depended solely on the 49 most dominant genera while the remaining 461 rare genera followed a different selection. A total of 91 genera responded significantly to the different root environments. As a benefit of pyrosequencing, 79 responsive genera were identified that might have been overlooked with conventional cloning sequencing approaches owing to their rareness. There was no indication of bacterial alterations in the rhizosphere of the Bt-maize beyond differences found between conventional varieties. B. thuringiensis-like phylotypes were present at low abundance (0.1% of Bacteria) suggesting possible occurrence of natural Cry proteins in the rhizospheres. Although some genera indicated potential phytopathogenic bacteria in the rhizosphere, their abundances were not significantly different between conventional varieties and Bt-maize. With an unprecedented sensitivity this study indicates that the rhizosphere bacterial community of a GM maize did not respond abnormally to the presence of three insecticidal proteins in the root tissue.  相似文献   

5.
The sensitivity of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae), to maize-expressed Bacillus thuringiensis (Bt) proteins was investigated in the present study. Neonate larvae of O. melanopus were caged on leaves of Cry3Bb1-expressing (MON88017) or Cry1Ab-expressing (MON810) Bt maize, the corresponding near-isolines, or two non-related, conventional maize varieties. Larval survival was reduced on Cry3Bb1-expressing, but not on Cry1Ab-expressing maize compared with conventional varieties. Differences among conventional varieties were also present. The amount of eaten leaf material, developmental time to prepupal stage, and prepupal weight did not differ between Bt maize varieties and their corresponding near-isolines. In an additional feeding study with newly emerged adults, survival and beetle weight did not differ when leaves of Cry3Bb1-expressing maize or the near-isoline were offered as food over 3 weeks. ELISA measurements revealed that larvae feeding on Bt maize contained rather high Cry3Bb1 or Cry1Ab levels, which were in the same order of magnitude as the leaves. In contrast, concentrations in feces were one order, and concentrations in prepupae and adults two orders of magnitude lower.  相似文献   

6.
Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize.  相似文献   

7.
A transgenic corn event (MON 863) has been recently developed by Monsanto Company for control of corn rootworms, Diabrotica spp. (Coleoptera: Chrysomelidae). This transgenic corn event expresses the cry3Bb1 gene derived from Bacillus thuringiensis (Berliner), which encodes the insecticidal Cry3Bb1 protein for corn rootworm control. A continuous feeding study was conducted in the laboratory to evaluate the dietary effect of MON 863 pollen expressing the Cry3Bb1 protein on the survival, larval development, and reproductive capacity of the non-target species, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). First instar C. maculata (less than 24 h old) and newly emerging adults (less than 72 h old) were fed individually on a diet mixture containing 50% of MON 863 pollen, non-transgenic (control) corn pollen, bee pollen (a component of normal rearing diet), or potassium arsenate-treated control corn pollen. In the larval tests, 96.7%, 90.0%, and 93.3% of C. maculata larvae successfully pupated and then emerged as adults when fed on MON 863 pollen, non-transgenic corn pollen, and bee pollen (normal rearing) diets, respectively. Among the larvae completing their development, there were no significant differences in the developmental time to pupation and adult emergence among the transgenic corn pollen, non-transgenic corn pollen, and bee pollen diet treatments. All larvae fed on arsenate treated corn pollen diet died as larvae. For tests with adults, 83.3%, 80.0%, and 100% of adult C. maculata survived for the 30 days of the test period when reared on diets containing 50% of MON 863 pollen, non-transgenic corn pollen, and bee pollen respectively. While the adult survival rate on MON 863 pollen diet was significantly less than that on the bee pollen diet, there was no significant difference between the MON 863 and non-transgenic corn pollen treatments. During the period of adult testing, an average of 77, 80, and 89 eggs per female were laid by females fed on the MON 863 pollen, control corn pollen, and bee pollen, respectively; no significant differences were detected in the number of eggs laid among these treatments. These results demonstrate that when offered at 50% by weight of the dietary component, transgenic corn (MON 863) pollen expressing Cry3Bb1 protein had no measurable negative effect on the survival and development of C. maculata larvae to pupation and adulthood nor any adverse effect on adult survival and reproductive capacity. Relevance of these findings to ecological impacts of transgenic Bt crops on non-target beneficial insects is discussed.  相似文献   

8.
Insect-resistant transgenic plants have been suggested to have unpredictable effects on the biodiversity of the agro-ecosystem, including potential effects on insect natural enemies, beneficial in control of crop pests. Whilst carnivorous as adults, many of these predators may also consume plant tissues, in particular plant pollen and nectar. Coleoptera are important in terms of agro-ecological research not only because of the large number of species in this order, but also because of their role as biological control agents. Thus any detrimental impact on this group of insects would be highly undesirable. The effects of potato expressing the coleopteran-specific Bacillus thuringiensis δ-endotoxin Cry3A (Bt Cry3A) on the ladybird beetle Harmonia axyridis and the carabid beetle Nebria brevicollis were investigated via the bitrophic interaction of the adult ladybird with potato flowers and the tritrophic interaction of the carabid consuming a non-target potato pest. Immunoassays confirmed accumulation of the transgene product in potato leaves and floral tissues (at levels of up to 0.01% (pollen) and 0.0285% (anthers) of total soluble protein). Despite H. axyridis and N. brevicollis belonging to the targeted insect order, no significant effects upon survival or overall body mass change of either beetle were observed. Furthermore, Bt Cry3A had no detrimental effects on reproductive fitness of either beetle species, either in terms of fecundity or subsequent egg viability. Behavioural analysis revealed no significant impact of Bt Cry3A on beetle activity or locomoter behaviour. Ligand blots indicate that this is due to either the absence of Bt-binding sites in brush border membrane vesicles (BBMV) isolated from Nebria brevicollis, or in the case of Harmonia axyridis, the binding did not functionally lead to behavioural or physical effects.  相似文献   

9.
The cereal leaf beetle (CLB), Oulema melanopus (L.) (Coleoptera: Chrysomelidae), is an invasive pest in North America recently reported in the Canadian Prairies. We performed a series of laboratory assays to identify potential predators and a field study to quantify predation of CLB eggs. In no-choice Petri dish assays, ground beetles (Carabidae), rove beetles (Staphylinidae), and several common lady beetle species (Coccinellidae) were the most consistent predators of eggs and larvae. Nabis spp. (Hemiptera: Nabidae) and wolf spiders (Araneae: Lycosidae) consumed many larvae, but did not consume eggs. Hippodamia spp., Coccinella septempunctata (L.) (Coleoptera: Coccinellidae), and Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) also fed on CLB eggs on potted plants when an alternative food source was available, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). In our field study, we found an average of 24.5% of sentinel eggs disappeared over a 24?h period, likely due to predation. Our results suggest that generalist predators can play an important role in the biological control of CLB, and warrant further study.  相似文献   

10.
The leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) is a specialist herbivore, all of whose mobile stages feed on the leaves of salicaceous plants. Both the larval and adult stages of the ladybird Aiolocaria hexaspilota (Coleoptera: Coccinellidae) are dominant natural enemies of the larvae of the leaf beetle. To clarify the role of plant volatiles in prey‐finding behaviour of A. hexaspilota, the olfactory responses of the ladybird in a Y‐tube olfactometer are studied. The ladybird adults show no preference for willow plants Salix eriocarpa that are infested by leaf beetle adults (nonprey) over that for intact plants but move more to the willow plants infested by leaf beetle larvae (prey) than to intact plants. Moreover, ladybird larvae show no preference for willow plants infested by leaf beetle larvae or adults over intact plants. Using gas chromatography‐mass spectrometry, six volatile compounds are released in larger amounts in the headspace of willow plants infested by leaf beetle larvae than in the headspace of willow plants infested by leaf beetle adults. In addition, the total amount of volatiles emitted from willow plants that are either intact or infested by leaf beetle adults is much smaller than that from willow plants infested by leaf beetle larvae. These results indicate that volatiles from S. eriocarpa infested by P. versicolora inform A. hexaspilota adults about the presence of the most suitable stage of their prey, whereas A. hexaspilota larvae do not use such information.  相似文献   

11.
We examined the justifications invoked by the German government in April 2009 to suspend the cultivation of the genetically modified maize varieties containing the Bt insect-resistance trait MON810. We have carried out a critical examination of the alleged new data on a potential environmental impact of these varieties, namely two scientific papers describing laboratory force-feeding trials on ladybirds and daphnia, and previous data on Lepidoptera, aquatic and soil organisms. We demonstrate that the suspension is based on an incomplete list of references, ignores the widely admitted case-by-case approach, and confuses potential hazard and proven risk in the scientific procedure of risk assessment. Furthermore, we did not find any justification for this suspension in our extensive survey of the scientific literature regarding possible effects under natural field conditions on non-target animals. The vast majority of the 41 articles published in 2008 and 2009 indicate no impact on these organisms and only two articles indicate a minor effect, which is either inconsistent during the planting season or represents an indirect effect. Publications from 1996 to 2008 (376 publications) and recent meta-analyses do not allow to conclude on consistent effects either. The lower abundance of some insects concerns mainly specialized enemies of the target pest (an expected consequence of its control by Bt maize). On the contrary, Bt maize have generally a lower impact than insecticide treatment. The present review demonstrates that the available meta-knowledge on Cry1Ab expressing maize was ignored by the German government which instead used selected individual studies.  相似文献   

12.
1 Auchenorrhyncha (Planthoppers and Leafhoppers) are not only pests of many crops, but they are also nontarget organisms with respect to Bt‐protein expressing genetically modified plants. As herbivorous arthropods, planthoppers and leafhoppers ingest Cry proteins depending on their feeding behaviour. Consequently, they are directly exposed to these entomotoxic proteins and can also serve as a source of Cry protein exposure to predatory arthropods. Therefore, it is reasonable to use Auchenorrhyncha in the risk assessment of genetically modified crops. 2 During a 2‐year field study, we evaluated four different methods in terms of their feasibility to assess the impacts of plant‐incorporated protectants from Bt‐maize and of insecticide use on this group of arthropods. Visual assessment of plants, sweep netting, yellow traps and custom made sticky traps were utilized in field plots of Bt‐maize MON810, untreated near‐isogenic maize and insecticide‐treated near‐isogenic maize and were compared with respect to their capability to reflect the diversity and abundance of Auchenorrhyncha species. 3 Zyginidia scutellaris (Herrich‐Schäffer) (Cicadomorpha: Cicadellidae) represented more than 94% of all captured individuals in both years. The analysis of Z. scutellaris data showed no consistent differences between Bt‐maize MON810 and the untreated near isogenic hybrid, demonstrating no negative impact of MON810 on this species. Insecticide treatment, on the other hand, was not equivalent to the isogenic maize in terms of Z. scutellaris densities. Based on the collected data and on practical considerations, we recommend the combined use of transect‐wise sweep netting and sticky traps for the sampling of Auchenorrhyncha in maize.  相似文献   

13.
Biological control research often focuses on the ability of predators to reduce pest densities and protect crops through consumption. Less studied is their ability to protect crops by altering pest behaviour (non‐consumptive effects). Lab experiments were conducted to test predation rates of striped cucumber beetles (Acalymma vittatum; Coleoptera: Chrysomelidae) and spotted cucumber beetles (Diabrotica undecimpunctata howardi; Coleoptera: Chrysomelidae) by large (>10 mm) wolf spiders (Araneae: Lycosidae). Field experiments were conducted to examine how the physical presence and/or cues of spiders impact the behaviour and mortality of A. vittatum (specialist) and D. undecimpunctata (generalist) cucumber beetles as well as growth and damage of cucumber plants (Cucumis sativus; Cucurbitaceae). A. vittatum and D. undecimpunctata adults were added to caged cucumber plants without a spider, with spider cues only (spider removed before beetle inclusion), with spider only (spider introduced to plants immediately before beetle inclusion), and with spiders and their cues present (spiders introduced 24 hr in advance of beetle inclusion). A. vittatum responded to spider cues primarily by emigrating from plants. Contrarily, D. undecimpunctata did not display obvious responses, such as reduced feeding or increased emigration, to spider foraging and/or cues. Actively foraging lycosids increased A. vittatum mortality and reduced densities of D. undecimpunctata in the field when cucumber plants were flowering. This study highlights how non‐consumptive and consumptive effects can play a role in modifying pest populations, and how these effects can vary across species and plant growth stages.  相似文献   

14.
The root-feeding flea beetle, Longitarsus sp. (Coleoptera: Chrysomelidae: Alticinae), was studied as a potential biological control agent for Lantana camara L. (Verbenaceae) in South Africa. Host range tests were carried out on 52 plant species in 11 families. Although 11 plant species, all in the family Verbenaceae, supported complete development of Longitarsus sp. during no-choice tests, the beetles showed very strong preferences for L. camara during paired-choice and multi-choice tests. The results confirm that the beetles have a narrow host range, and that under natural conditions they are highly unlikely to utilise plants other than L. camara. In the unlikely event that some of the Lippia spp. are attacked in the field, they are not expected to sustain populations of the flea beetle over time. Attributes that should enhance the biocontrol potential of Longitarsus sp. include: the adults are long-lived and highly mobile; and, the larvae cause extensive direct damage to the roots of L. camara, which could in turn expose the plants to soil-born pathogens. All indications are that Longitarsus sp. could make a substantial contribution to the biological control of L. camara in many countries around the world because the beetles pose no threat to non-target plant species and they damage a part of the plant (i.e. roots) not yet affected by any other agent species.  相似文献   

15.
The cereal leaf beetle (CLB), Oulema melanopus L. (Coleoptera: Chrysomelidae), is a major pest of cereal crops that has recently been reported in western Canada. We developed a set of primers to detect CLB DNA in the gut of six common predator taxa in wheat fields: lady beetles (20 positives of 143 individuals), nabid bugs (73 positives of 206 individuals), and wolf spiders (2 positives of 25 individuals). Nabis americoferus Carayon (Hemiptera: Nabidae) and Coccinella septempunctata L. (Coleoptera: Coccinellidae) were the most abundant predators in cereal fields, with 0.35 and 0.05 proportion of samples positive for CLB DNA, respectively. The prey DNA half-lives were used to adjust the estimates for N. americoferus to 0.22, due to its longer DNA detectability relative to C. septempunctata. Overall, Hippodamia parenthesis (Say) (Coleoptera: Coccinellidae) had the highest proportion of positives at 0.43. There was a positive association between CLB abundance and proportion of N. americoferus and C. septempunctata positives for CLB DNA. This study highlights the contribution of generalist predators to CLB mortality and their important role in integrated management for CLB. Furthermore, we provide a molecular tool that can be used to identify predators of CLB and predation frequency in agricultural fields .  相似文献   

16.
Rotated and non-rotated commercial potato fields were sampled intensively to follow Colorado potato beetle,Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), colonization and subsequent oviposition patterns in the spring of 1990 and 1991. Maximum densities of colonizing adults ranged from 0 to 14,891/ha and maximum egg mass densities ranged from 0 to 48,451/ha. Crop rotation generally resulted in lower potato beetle populations. Regardless of crop rotation management practices, colonization of fields planted in potatoes began at field edges and progressed inward in all fields for both years. Management of potato beetles is discussed in light of these findings.  相似文献   

17.
This study provides C-value (haploid nuclear DNA content) estimates for 31 species of ladybird beetles (representing 6 subfamilies and 8 tribes), the first such data for the family Coccinellidae. Despite their unparalleled diversity, the Coleoptera have been very poorly studied in terms of genome size variation, such that even this relatively modest sample of species makes the Coccinellidae the third best studied family of beetles, behind the Tenebrionidae and Chrysomelidae. The present study provides a comparison of patterns of genome size variation with these two relatively well-studied families. No correlation was found between genome size and body size in the ladybirds, in contrast to some other invertebrate groups but in keeping with findings for other beetle families. However, there is some indication that developmental time and/or feeding ecology is related to genome size in this group. Some phylogenetic patterns and possible associations with subgenomic features are also discussed.  相似文献   

18.
A number of recent studies indicated that establishment of exotic lady beetles (Coleoptera: Coccinellidae) may have adverse affects on native lady beetle species. In the present study, we analyzed changes in coccinellid community inhabiting potato crops in northern Maine over the past 31 years. Prior to 1980, lady beetle communities were comprised almost exclusively of the two native species, Coccinella transversoguttata Brown and Hippodamia tredecimpunctata(Say). Starting 1980, an exotic species Coccinella septempunctata L. became permanently established in potato crops and quickly started to dominate lady beetle community. Two other exotic species, Harmonia axyridis(Pallas) and Propylea quatordecimpunctata(L.) became prominent members of the lady beetle community in 1995 and 1996. Invasion by exotic species was followed by a significant decline in the abundance of C. transversoguttata and H. tredecimpunctata, and a significant increase in the overall diversity of lady beetle community. The abundance of aphid prey was substantially reduced after the establishment of H. axyridis. The observed trends demonstrate the profound effects that exotic natural enemies may have on target and non-target native species, and highlight the importance of their thorough evaluation before initiating biological control programs.  相似文献   

19.
Xia H  Lu BR  Xu K  Wang W  Yang X  Yang C  Luo J  Lai F  Ye W  Fu Q 《Transgenic research》2011,20(3):655-664
The rapid development of transgenic biotechnology has greatly promoted the breeding of genetically engineered (GE) rice in China, and many GE rice lines are in the pipeline for commercialization. To understand field performances of GE rice, key agronomic traits of two insect-resistant Bt rice lines that have been granted biosafety certificates for commercial production in China were evaluated together with their nontransgenic counterparts under environmental conditions with significant differences in insect pressure. Results from the experiments showed enhanced field performances of the Bt GE rice lines compared with the non-GE counterparts for yield-related traits such as number of panicles and filled seeds per plant, under environmental conditions with no insecticide application. No detectable underlying cost of the Bt transgene was observed in the two insect-resistant GE rice lines, particularly in the GE hybrid rice line. Results further indicated significantly greater yield performances of the two insect-resistant GE rice lines under environmental conditions with non-target insect control compared with no insect control. It is concluded from this study that insect-resistant Bt GE rice, particularly the hybrid line, has great potential to maintain its high yield when ambient insect pressure is high. In addition, proper application of insecticides to control non-target insects will guarantee optimal performance of insect-resistant Bt GE rice.  相似文献   

20.
Biochemical profiles on API Rapid CH* strips and protein profiles on polyacrylamide gels in the presence of sodium dodecyl sulfate were used to distinguish two strains of the entomopathogenic fungusBeauveria bassiana (Balsamo) Vuillemin, ARSEF 2991 and ATCC 44860. Next, the toxicity of these two strains was determined at concentrations of 102, 104, 106 and 108 blastospores/ml on larvae of the Colorado potato beetleLeptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) and of its predator, the spotted ladybird beetle,Coleomegilla maculata lengi Timberlake (Coleoptera: Coccinellidae). Both strains were highly toxic toL. decemlineata larvae. However, the two strains exhibited different levels of toxicity forC. maculata larvae: ARSEF 2991 was toxic, whereas ATCC 44860 caused little coccinellid larval mortality.
Résumé Les profils biochimiques sur galeries API Rapid CH* et les profils protéiques sur gels de polyacrylamide ont été utilisés pour distinguer deux souches du champignon entomopathogèneBeauveria bassiana (Balsamo) Vuillemin. La toxicité de ces deux souches a été déterminée à des concentrations de 102, 104, 106 et 108 blastospores/ml sur des larves du doryphore,Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) et de la coccinelle maculéeColeomegilla maculata lengi Timberlake (Coleoptera: Coccinellidae). Les deux souches deB. bassiana se sont avérées actives à l'égard des larves deL. decemlineata. Toutefois la souche ARSEF 2991 s'est avérée pathogène pour les larves deC. maculata, alors que la souche ATCC 44860 a provoqué une faible mortalité des larves.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号