首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In slices and homogenate from rat brain striatum bromocriptine in marked contrast to DA. NA and apomorphine. had no stimulatory effect on adenylate cyclase activity, but antagonised the stimulatory effects of both NA and DA. Bromocriptine (10 mg/kg s.c.) decreased the turnover of DA in striatum and limbic structures 3h after drug administration. However, an increase in the turnover of NA in the brain stem and that of 5-HT in the cortex was observed 4h following treatment with bromocriptine. Possible modes of action of bromocriptine are discussed.  相似文献   

2.
—The utilization of citrate by the cytoplasmic fraction of rat brain is inhibited in hypoxia and remains unaltered in anaesthesia. The addition of exogenous aspartate to the cytosolic fraction isolated from brains of hypoxic animals increases the rate of citrate removal. The level of cytosolic aspartate gradually decreases when the exposure period to low oxygen tension is increased and reaches a minimum after 30 min. The levels of mitochondrial aspartate and of cytoplasmic carbamyl aspartate remain constant. The low level of cytosolic aspartate is accompanied by an increase in the concentration of cytosolic urea and increase in the aspartate level in blood serum. It is suggested that the oxidation of citrate by the cytoplasmic fraction of brain is inhibited in hypoxia owing to the decrease in endogenous aspartate. The decrease in the level of cytoplasmic aspartate is caused by the diversion of this substrate toward urea synthesis and by the increased leakage across the cell/blood barrier to the blood stream. Anaesthesia prevents the changes induced by hypoxia.  相似文献   

3.
Abstract— Rats were exposed to 5.6% oxygen environments for up to 2 h. The accumulation of brain DOPA and 5-hydroxytryptophan at 30 min after decarboxylase inhibition was used to estimate cerebral tryosine and tryptophan hydroxylase activity, respectively, in vivo. There was a continuing decrease in tryosine hydroxylase activity during the 2 h in whole brain as well as five brain regions. Tryptophan hydroxylase activity declined during the 1st h, but then increased towards control levels during the 2nd h. There was an increase in brain tryptophan during the 2nd h as well. In whole brain and the five brain regions, there was no significant change in the levels of noradrenaline, dopamine or 5-hydroxytrypamine. During a 1 h exposure to 5.6% oxygen, there was decreased accumulation of noradrenaline, dopamine and 5-hydroxytryptamine after MAO inhibition and decreased accumulation of homovanillic acid and 5-hydroxyindoleacetic acid after probenecid administration. The dercreased synthesis and metabolism of the monoamines is most likely attributable to insufficient brain tissue oxygen as a substrate for the two hydroxylase enzymes.  相似文献   

4.
5.
The effects of different ionic environments were measured on the concentration of acetyl-choline (ACh) from synaptosomes and their effect on subsequent high affinity choline (Ch) transport and ACh synthesis after resuspension of the synaptosomes in the normal Krebs medium. KCl (40 mM) was used to induce ACh release and reduce synaptosomal ACh content. The effects of Na+ omission, Ca2+ omission, and high Mg2+ on spontaneous (KC1: 4.75 mM) and potassium induced (KC1: 40 mM) ACh release and other cholinergic parameters are presented. The high affinity transport of Ch was more highly correlated with the reciprocal of the ACh level (r= 0.934, P= 9.7 × 10-4) than with the ACh release rate during preincubation (r= 0.792, P= 3.4 × 10-2). The results are consistent with the view that the consequences of the various ionic conditions on Ch transport and ACh synthesis are dependent on their effects on intrasynaptosomal ACh levels and only secondarily on synaptosomal ACh release.  相似文献   

6.
THE EFFECT OF DEVELOPMENT ON THE GANGLIOSIDES OF RAT AND PIG BRAIN   总被引:10,自引:8,他引:2  
Abstract— The ganglioside content of the forebrain, brain stem and cerebellum have been studied, in the rat at various ages from 1 day to 27 months, and in the pig at various ages from 93 days gestation to 30 months. Each part of the brain was analysed for total ganglioside NANA and for four major gangliosides (GMl, GD1a, GDlb and GT1 in the nomenclature of S vennerholm , 1963). In the rat forebrain, the concentration of ganglioside NANA rose rapidly between 1 and 21 days after birth, fell to 3 months and subsequently rose to a mature value at 6 months. In the rat cerebellum, the peak concentration was reached at 2 months and the lower adult value at 9 months, whilst in the brain stern, the concentration rose more slowly and had a broad peak from 15 days to 2 months. Values are also given for the changes in the total amounts in each brain part. The changes in the concentrations and total amounts of ganglioside NANA, in the three parts of the pig brain were, on the whole, similar to those in rat brain except that the percentage distribution of the major gangliosides had almost attained the mature pattern at birth. In the forebrain of both species, the disialoganglioside, GD1a, accounted for the highest percentage of the total gangliosides. The results are discussed with respect to their possible structural significance.  相似文献   

7.
8.
—The subcutaneous administration of 2·0 mg DFP per kg to rats causes a diminution in the lysophosphatidylcholine content in the brain, which is followed by a decrease of glycerylphosphorylcholine concentration and by a reduced post mortem choline increase. This supports the hypothesis that a post mortem increase in choline is due to phosphatidylcholine breakdown. Since the amount of phosphatidylcholine in brains of di-isopropylfluorophosphate-treated rats increases, it is concluded that phospholipase A is inhibited by di-isopropylfluorophosphate, which corresponds to findings of other authors in vitro. The activity of glycerylphosphorylcholine diesterase (EC 3.1.4.2) is not altered.  相似文献   

9.
THE EFFECT OF INDUCED HYPOTHERMIA UPON OXYGEN CONSUMPTION IN THE RAT BRAIN   总被引:7,自引:4,他引:3  
The effect of hypothermia upon cerebral metabolic rate for oxygen (CMRO2) was studied in artificially ventilated rats, anaesthetized with nitrous oxide. Cerebral blood flow was measured with a modification of the Kety and Schmidt technique using 133xenon. CMRO2, was found to decrease linearily with temperature in the temperature range 37°C-22°C. At normal temperatures CMRO2, fell by about 5 per cent per degree C. At a body temperature of 22°C both cerebral blood flow and CMRO2, were reduced to about 25 per cent of normal.  相似文献   

10.
In order to test the proposition that hypoxia leads to a change in the concentration ratio of reduced (GSH) and oxidized (GSSG) glutathione in the brain, enzymatic, fluorometric assays were worked out for measuring GSH and GSSG. In lightly anaesthetized and immobilized rats. GSH concentrations in the cerebral cortex and the cerebellum were close to 2 μmol.g-1 while a slightly lower concentration (approx 1.4μmol.g-1) was found in the brain stem. In order to avoid artefactual oxidation of GSH during sample preparation for GSSG determination the tissue was extracted with trichloroacetic acid, following alkylation of SH groups with N-ethylmaleimide. With these precautions GSSG concentrations were approx 0.7% of the corresponding GSH concentrations. However. the results indicated that the true GSSG concentrations may be even lower. During hypoxia there was neither a decrease in GSH nor an increase in GSSG concentrations in cortical tissue or cisternal CSF.  相似文献   

11.
Abstract— The effect of increased exposure to ketone bodies in the developing rat brain suggest that intrauterine and postnatal hyperketonemia lead to an altered metabolism of glutamine and glutamate. It is postulated that this effect is related to the delayed development of glutaminase ( l -glutamine amido-hydrolase EC 3.5.1.2) and glutamate dehydrogenase ( l -glutamate: NAD oxidoreductase EC 1.4.1.2).
The specific activities of glutamate dehydrogenase (GDH), glutaminase and glutamine synthetase ( l -glutamate: ammonia ligase EC 6.3.1.2) in the brains of newborn rats increased during early development. A positive correlation was observed between the specific activity of glutaminase and the concentration of glutamate in the brain as well as between the concentrations of blood and brain glutamine and glutamate in both control and hyperketonemic pups. This indicates a different degree of permeability and metabolism for glutamine and glutamate in the brain during the neonatal period, as compared to adulthood.
In hyperketonemic pups, glutamine and glutamate metabolism were found to differ from that in control animals. The concentrations of glutamate were higher, and glutamine lower, in both the blood and brain as compared to that in controls. The concentrations of α-ketoglutarate were also lower in their brain. In the brains of hyperketonemic and control pups, the concentration of malate was the same. During the first 3 weeks of life the increase of spec. act. of GDH and glutaminase was found to be suppressed in the brains of hyperketonemic pups. However, the spec. act. of glutamine synthetase was similar to that of the control pups.  相似文献   

12.
The effects of the presence of large amounts of 5-HT and of its precursor 5-HTP in brain on cerebral utilization of glucose were studied. [U-14C]Glucose was injected to fed rats that had previously been treated with L-5-HTP, L-5-HTP and an inhibitor—N-[β-(2-chlorophenoxy)-ethyl]-cyclopropylamine hydrochloride (Lilly-51641)-of MAO, or Lilly-51641 alone. Such treatment increased the concentrations of 5-HTP and 5-HT in the brain. After treatment with 5-HTP and Lilly-51641, and to a lesser extent with Lilly-51641 alone, the concentration of glucose in plasma was increased. However, the uptake of glucose by the brain did not appear to be proportionately increased, and this suggested an impairment in this mechanism. After the administration of Lilly-51641 alone and more especially of Lilly-51641 plus 5-HTP, the concentration of glucose in the brain was increased. This increase was thought to be due to an impairment of glucose utilization, because the flux of 14C from glucose to amino acids in the brain was reduced. The concentrations of most major amino acids in the brain were not greatly affected by these treatments. GABA and alanine concentrations in the brain were modestly increased after treatment with 5-HTP alone or in combination with Lilly-51641. The present results suggest that the metabolism of glucose to amino acids in the brain is altered when the concentration of 5-HTP, or more especially that of 5-HT, in the brain is increased.  相似文献   

13.
Abstract— dl -Allylglycine, a potent inhibitor of glutamate decarboxylase in vivo when given intraperitoneally, causes a marked decrease in brain GABA concentration and at the same time a dramatic increase in l -ornithine decarboxylase activity and a simultaneous decrease in S -adenosyl- l -methionine decarboxylase activity followed by putrescine accumulation. It does not, however, alter the degree of GABA formation from putrescine. The timing of the recovery of glutamate decarboxylase activity after the injection of dl -allylglycine is concomitant with that of the GABA concentration, indicating that it is probably glutamate decarboxylase that is solely responsible for making up the GABA deficit caused by dl -allylglycine, and that the changes in polyamine metabolism are associated in some indirect way with the recovery process.  相似文献   

14.
The effects of neonatal hypothyroidism on electrolyte contents and the Na+ and K+ activated ATPase system was studied in the cerebral cortex and cerebellum of the developing rat. Neonatal hypothyroidism increased Na+ and CI? contents and decreased K+ and Mg2+ contents in both brain areas. Hypothyroidism also resulted in a decrease in the specific activity of the Na-K ATPase extracted by deoxycholate treatment from brain homogenate as well as in the specific activity of this enzyme in the heavy microsomal fraction. The decrease in Mg2+ content and ATPase activity is discussed in relation to the changes occurring in Na+ and K+. Both enzymic and ionic changes may underlie the biochemical and physiological abnormalities observed when the brain is deprived of thyroxine at critical stages of its development.  相似文献   

15.
The effects of chronic administration of clorgyline and pargyline on rat brain monoamine metabolism have been examined. The inhibitory selectivity of these drugs towards serotonin deamina-tion (MAO type A) and phenylethylamine deamination (MAO type B) can be maintained over a 21-day period by proper selection of low doses of these drugs (0.5-1.0 mg/kg/24h). The results are consistent with MAO type A catalyzing the deamination of serotonin and norepinephrine and with MAO type B having little effect on these monoamines. Dopamine appears to be dcaminated in vivo principally by MAO type A. Clorgyline administration during a 3-week period was accompanied by persistent elevations in brain norepinephrine concentrations; serotonin levels were also increased during the first 2 weeks, but returned towards control levels by the third week of treatment. Low doses of pargyline did not increase brain monoamine concentrations, but treatment with higher doses for 3 weeks led to elevations in brain norepinephrine and 5-hydroxytryptamine; at this time significant MAO-A inhibition had developed. The changes in monoamine metabolism seen at the end of the chronic clorgyline regimen are not due to alterations in tryptophan hydroxylase activity. At this time tyrosine hydroxylase activity was also unaffected.  相似文献   

16.
Abstract— Unconjugated bilirubin caused uncoupling of oxidative phosphorylation in brain mitochondria prepared from mature or weanling rats. Human serum albumin in an amount sufficient to bind 100 per cent of the added bilirubin was able to protect the mitochondria from the inhibitory effects of bilirubin. Bilirubin inhibited both the endogenous and DNP-activated ATPase activities but had no effect upon the Mg2+-stimulated ATPase; albumin prevented the inhibition.  相似文献   

17.
—Intracisternally injected l or d-[14C]leucine was retained longer in the brains of morphine-treated rats than in saline-injected control animals. This resulted in higher levels of the labelled leucine and of labelled metabolites of the l-isomer in free pools of brain tissue. However, the absolute levels of brain amino acids and the relative distribution of radioactivity among l-leucine metabolites in brain were unaffected by treatment with morphine, indicating that no disturbance of leucine oxidation through the citric acid cycle was produced by the drug. The inhibition of protein synthesis caused by acute administration of morphine was calculated to be greater than previously reported since morphine treatment increased the specific radioactivity of the free pool of leucine in brain following the intracisternal injection of the labelled amino acid. Possible mechanisms responsible for these morphine effects are discussed.  相似文献   

18.
Abstract— Rats were subjected to cerebral compression ischaemia for 15min and were subsequently recirculated with blood for periods up to 3 h. In vivo incorporation of intravenously administered L-[1–14C]valine into total brain proteins was found to be severely inhibited (about 20% of controls) after 45 min of recirculation. After 3 h, protein synthesis had increased, the specific radioactivity of proteins then being about 40% of controls. The post-ischaemic inhibition of protein synthesis was accompanied by a breakdown in polyribosomes and a concomitant increase in ribosomal subunits. In vitro incorporation of L-[1–14C]phenylalanine by a postmitochondrial supernatant system derived from animals subjected to 15 min ischaemia and 15 min recirculation was also severely reduced and showed, in contrast to control animals, no response to the addition of a specific inhibitor of polypeptide chain initiation (Poly(I)). Together with the in vivo accumulation of ribosomal subunits this indicates a block in peptide chain initiation during the early stages of recirculation.
Polyribosomes from animals subjected to 15 min ischaemia without recirculation showed a normal rate of in vitro protein synthesis which was inhibited by Poly(I) to a similar extent as polyribosomes from control animals. These results suggest that the post-ischaemic inhibition in chain initiation develops during the early stages of recirculation rather than during the ischaemic period itself.  相似文献   

19.
Abstract— Withdrawal of food or immobilization both led to changes in rat brain tryptophan metabolism. Brain tryptophan and 5-hydroxyindolylacetic acid concentrations both increased while changes in 5-hydroxytryptamine were much smaller. Changes were greater upon withdrawal of food. The brain tryptophan change did not appear merely to reflect an overall increase of brain amino acid concentrations, brain tyrosine concentration being only slightly increased by food withdrawal and significantly decreased upon immobilization. Plasma tryptophan did not increase. The changes in brain indole metabolism were not abolished by adrenalectomy. Results are discussed in relation to the regulation of brain serotonin metabolism.  相似文献   

20.
Abstract— A phenylketonuria-like state was produced in the preweanling rat, and the metabolism of phenylalanine in the normal and phenylketonuric brain was compared. The effect of B6 vitamers on the disposition of phenylalanine was also investigated. Phenylalanine was metabolized mainly by transamination and to a lesser extent by decarboxylation in both the normal and phenylketonuric-like brain. Small amounts of amine were detected in all the brains throughout the experimental period. More than 95 percent of the metabolized amino acid appeared as aromatic acids, which steadily accumulated and remained in the brain for the duration of the experiment. No change in the metabolic pattern was produced by pyridoxol. In striking contrast, pyridoxamine prevented the accumulation of acidic metabolites in the brains of all animals tested. We suggest that pyridoxamine phosphate and/or pyridoxamine is actively associated with the removal of excess keto acids and aldehydes from the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号