首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The detection of galectin-1 (gal-1) in pig granulosa cell lysates by immunoblotting and its cytosolic as well as membrane-associated localization prompted us to study its effects on cell proliferation and regulation of progesterone synthesis. The lectin stimulated the proliferation of granulosa cells from pig ovaries cultured in serum-free medium. Gal-1 inhibited the FSH-stimulated progesterone synthesis of granulosa cells. This inhibitory effect was strongly reduced by the disaccharidic competitor lactose at 30 mM. The absence of inhibitory effects on dibutyryl-cAMP (db-cAMP), forskolin, and pregnenolone-enhanced cellular progesterone synthesis suggests that gal-1interferes with the receptor-dependent mechanism of FSH-stimulated progesterone production. In FSH-stimulated granulosa cells, western blot analysis revealed the gal-1-mediated suppression of the cytochrome P450-dependent cholesterol side chain cleavage enzyme (P450(SCC)) that catalyzes the conversion of cholesterol to pregnenolone. In the presence of 30 mM lactose, the gal-1-reduced P450(SCC) expression was prevented. Strongly reduced mRNA levels were recorded for P450(SCC) and 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) when FSH-stimulated granulosa cells were cultured in the presence of gal-1. We conclude that gal-1 exerts its inhibitory effect on steroidogenic activity of granulosa cells by interfering the hormone-receptor interaction resulting in decreased responses to FSH stimulation.  相似文献   

2.
The concentration of ferredoxin reductase, a component of the mitochondrial steroidogenic electron transport chain, was measured in the ovaries of pigs and superovulated rats by a protein blotting procedure using polyclonal antibodies to the purified protein. The concentration of ferredoxin reductase in porcine granulosa cells doubled during growth of follicles from small (1-2 mm diameter) to large (6-12 mm diameter). The concentration doubled again during the period of luteinization. This is in contrast to the rate of cholesterol side-chain cleavage, which showed little change during follicular growth but increased by more than tenfold during luteinization. A similar large increase in cholesterol side-chain cleavage occurs during the period of luteinization in the ovaries of superovulated rats, but as for the pig, only a small increase in ferredoxin reductase was observed. A threefold increase in the yield of mitochondrial protein from tissue homogenates was found between the granulosa cells of small-medium follicles and the cells of the corpora luteum. The increase in ferredoxin reductase during follicular development and luteinization, therefore, correlates well with the increase in mitochondria in the cells, but does not correlate with the dramatic increase in cholesterol side-chain cleavage activity which occurs during luteinization. Based on these results, it is unlikely that the level of ferredoxin reductase limits the expression of the full steroidogenic activity of the granulosa cells of the ovary.  相似文献   

3.
To understand the functional compartmentalization of human placental mitochondria, we analyzed the composition and steroidogenic activity of contact sites. Several fractions containing contact sites were isolated using osmotic shock treatment and sucrose gradient centrifugation. These fractions contained various proteins and marker enzymes associated with mitochondrial membranes. The fractions containing the cytochrome P450 side chain cleavage system, cholesterol, nicotinamide adenine dinucleotide phosphate-isocitrate dehydrogenase, porin, and adenosine 5(')-triphosphate-diphosphohydrolase activity showed the capacity to synthesize progesterone. Our observations indicate that all necessary elements and enzymes for steroidogenesis are present and functional in placental mitochondrial contact sites. This organization may facilitate the metabolism of cholesterol delivered to the outer mitochondrial membrane into steroid hormones by the inner mitochondrial membrane cholesterol side chain cleavage system.  相似文献   

4.
The synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and adrenodoxin was studied both in freshly harvested bovine granulosa cells and in granulosa cells maintained in primary monolayer culture. In addition, the action of follicle-stimulating hormone (FSH) and cyclic AMP analogs to stimulate the synthesis of cytochrome P-450scc was investigated in cultured cells. Precursor forms of cytochrome P-450scc and adrenodoxin were immunoisolated from a cell-free translation system directed by RNA prepared from freshly obtained granulosa cells that were not luteinized. Furthermore, the presence of cytochrome P-450scc in lysates of granulosa cells freshly obtained from very small follicles (containing less than 0.1 ml of follicular fluid) and in mitochondria of freshly obtained granulosa cells was demonstrated by using an immunoblotting technique. Continuous treatment of cultured granulosa cells with FSH or with cyclic AMP analogs (dibutyryl cyclic AMP or 8-bromo cyclic AMP) for 72 h increased incorporation of [35S]methionine into immunoprecipitable cytochrome P-450scc. Moreover, FSH, dibutyryl cyclic AMP, and 8-bromo cyclic AMP stimulated pregnenolone production by cultured granulosa cells (2.3-, 4.0-, and 7.5-fold increase over control, respectively), indicative of an increase in cholesterol side chain cleavage activity. The results of this study demonstrate for the first time the presence of two components of the cholesterol side chain cleavage system in freshly obtained granulosa cells, and provide direct evidence for the trophic effect of FSH and its presumed mediator, cyclic AMP, on the synthesis of cytochrome P-450scc in granulosa cells.  相似文献   

5.
Swine granulosa cells respond to follicle-stimulating hormone (FSH) and the insulin-like growth factor, IGF-I (somatomedin C), with synergistic increases in progesterone production. This facilitative interaction was not attributable to decreased catabolism of progesterone to 20 alpha-hydroxypregn-4-en-3-one, but rather to enhanced pregnenolone biosynthesis observed in response to provision of 25-hydroxycholesterol as exogenous sterol substrate. The latter evidence of increased functional cholesterol side-chain cleavage activity was accompanied by augmented incorporation of [35S]methionine into specific immunoisolated components of the cholesterol side-chain cleavage apparatus, viz. cytochrome P-450scc and adrenodoxin. The synergism between FSH and IGF-I could be sustained over 4 days of serum-free monolayer culture. Under these conditions, compactin, a competitive inhibitor of de novo endogenous cholesterol biosynthesis, suppressed stimulated progesterone production by approximately equal to 50%. However, synergism was not expressed at the levels of [14C]acetate incorporation into nonsaponifiable lipids or endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity per se. Conversely, exogenous sterol substrate provided in the form of low-density lipoprotein (LDL)-borne cholesterol increased the absolute magnitude of the combined actions of IGF-I and FSH by 3-6-fold. This increase in steroidogenesis in response to LDL was associated with enhanced surface binding, internalization, and degradation of [125I] iodo-LDL. In addition, when granulosa cells were incubated with [3H]cholesteryl linoleate-labeled LDL, FSH and IGF-I synergistically augmented the intracellular accumulation of [3H]cholesterol and [3H]cholesteryl ester and the production of [3H]progesterone. Moreover, FSH and IGF-I coordinately increased the total mass of free and esterified cholesterol contained in granulosa cells. We conclude that FSH and IGF-I can augment absolute rates of progestin biosynthesis by granulosa cells by activating dual mechanisms: stimulation of functional cholesterol side chain cleavage activity and enhancement of effective cellular uptake and utilization of low-density lipoprotein-borne sterol substrate.  相似文献   

6.
The actions of follicle-stimulating hormone (FSH), 8-bromo-cyclic AMP (8-Br-cAMP), and low density lipoprotein (LDL) to stimulate the production of progesterone and the synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450ssc) and adrenodoxin were investigated in bovine granulosa cells maintained in primary monolayer culture. Treatment of granulosa cells in culture with FSH resulted in an increased incorporation of [35S]methionine into immunoprecipitable cytochrome P-450scc in a concentration-dependent fashion with a maximal effect being obtained at an FSH concentration of 500 ng/ml. Treatment of granulosa cells with FSH also resulted in the induction of synthesis of adrenodoxin. The cyclic AMP analog, 8-Br-cAMP, induced the synthesis of both cytochrome P-450scc and adrenodoxin to a greater extent than did FSH. LDL also stimulated the synthesis of both cytochrome P-450scc and adrenodoxin, when added to cells maintained in the presence of lipoprotein-poor serum. The presence of FSH or 8-Br-cAMP together with LDL resulted in a higher rate of enzyme synthesis than that observed with each effector alone. FSH, 8-Br-cAMP, and LDL also stimulated progesterone production by cultured granulosa cells. The results of this study offer a possible mechanism whereby granulosa cells undergo cytodifferentiation in vivo into luteal cells. The concentration of LDL in follicular fluid is very low. Following ovulation, vascularization of the follicle occurs and thus the granulosa cells are exposed to high levels of LDL, allowing for provision of substrate cholesterol, as well as stimulation of the synthesis of the enzymes involved in cholesterol side chain cleavage.  相似文献   

7.
8.
The effects of kaurenol, a diterpene alcohol, were evaluated on progesterone and cyclic AMP (cAMP) production in freshly dispersed avian granulosa cells. Kaurenol (50 microM) alone caused a fourfold increase in progesterone synthesis without a measurable influence on cAMP levels. When granulosa cells were challenged with near-maximally stimulating concentrations of LH (50 ng/ml) or forskolin (10 microM), kaurenol (10-100 microM) dose-dependently suppressed steroidogenesis. Similarly, cAMP production in response to LH and forskolin stimulation was also inhibited. When progesterone synthesis was stimulated by the addition of pregnenolone or 25-hydroxycholesterol substrates to the culture medium, the typical dose response to the latter precursor, but not to pregnenolone, was abolished by kaurenol. Whereas the mechanism of kaurenol's stimulatory effect on basal steroidogenesis remains unknown, it is suggested that its inhibitory action on LH- and forskolin-promoted progesterone production may be due to the inhibition of the adenylate cyclase cAMP effector system as well as to the impairment of the action of the mitochondrial cholesterol side chain cleavage enzyme system.  相似文献   

9.
Summary Granulosa cells, isolated by collagenase digestion from the mature ovarian follicle of laying hens, were incubated in the presence of two ionophores, lasalocid (X537A) and ionomycin, to determine their effects on basal and stimulated steroidogenesis, as well as their effects on various cell parameters including DNA, RNA, and protein synthesis. Both ionophores caused a dose-dependent inhibition of agonist-promoted progesterone production and, in the presence of calcium, a small but significant increase in basal output of progesterone. Whereas the conversion of pregnenolone to progesterone was unaffected by the ionophores, the activity of cholesterol side-chain cleavage enzyme was inhibited in a dose-related manner. Both ionophores decreased cellular levels of ATP and inhibited the incorporation of radioactively-labeled precursors into DNA, RNA, and proteins. Morphologically, ionophoretreated cells showed swelling of the rough endoplasmic reticulum. Similar morphological changes were also observed in cells treated with oligomycin, a known metabolic inhibitor. These results suggest that the ionophores lasalocid and ionomycin impair release of energy and thereby exert the principal cause of the inhibited steroidegenic response by granulosa cells to a variety of agonists.  相似文献   

10.
The regulation of steroidogenesis by luteinizing hormone (LH) was studied in granulosa cells during follicular development using a fluorescent reporter assay based on the metabolism of a fluorescent probe specific for cytochrome P-450SCC (cholesterol side-chain cleavage enzyme). Intact granulosa cells or mitochondria were obtained from the first (F1) second (F2) and third (F3) largest preovulatory follicles of the hen ovary and incubated with the fluorogenic substrate. Metabolism of this substrate by cytochrome P-450SCC generates the highly fluorescent resorufin anion (the fluorescent reporter). In both mitochondria and intact granulosa cells, incubated with the fluorescent substrate, an increase in resorufin fluorescence was observed and the increase was greater in samples derived from F1 than in samples from F2 or F3. In cells, LH added simultaneously with the P-450SCC substrate significantly increased resorufin fluorescence above control values in a time- and dose-dependent manner up to 2-3 h after the incubation was initiated. Forskolin and 8-bromo-cAMP also stimulated metabolism of the P-450SCC substrate significantly by 15 min. When granulosa cells were preincubated with LH before exposure to the P-450SCC substrate resorufin fluorescence was significantly attenuated compared to controls (not exposed to LH in the preincubation period). The decrease in resorufin fluorescence observed when cells were pretreated with LH, may be due to the release of cholesterol from endogenous pools and its competition with the exogenous fluorogenic for the substrate P-450SCC enzyme. In granulosa cells that were preloaded with the P-450SCC substrate, the stimulatory effect of LH treatment remained constant from 30 min to 2 h after hormone addition. The results show that this fluorescent probe can be used in a rapid assay for the continuous measurement of the acute effects of hormone agonists on cholesterol conversion to pregnenolone in steroidogenic cells.  相似文献   

11.
Rat granulosa cells (GCs) were treated with human chorionic gonadotropin (hCG), 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), forskolin, phorbol 12-myristate 13-acetate (PMA), A23187 or pregnenolone in the absence or presence of hydrogen peroxide (H(2)O(2)). Different doses of trilostane were applied to GCs treated with steroidogenic precursors, that is, 25-hydroxy-cholesterol (25-OH-C) in the absence or presence of H(2)O(2). Results showed that all of the chemicals stimulated the progesterone (PG) release from rat GCs, but the stimulatory effects were inhibited by H(2)O(2) dose-dependently. 25-OH-C stimulated the PG release, which was inhibited by H(2)O(2) in the presence of trilostane. H(2)O(2) attenuated steroidogenic acute regulatory (StAR) protein expression, but did not alter the expression of cytochrome P450 side chain cleavage (P450scc) in Western blotting. This study indicated that H(2)O(2) inhibited PG production by GCs via cAMP pathway, protein kinase C (PKC) and the activities of intracellular calcium, P450scc and StAR protein.  相似文献   

12.
Undifferentiated granulosa cells from prehierarchal (6- to 8-mm-diameter) hen follicles express very low to undetectable levels of LH receptor (LH-R) mRNA, P450 cholesterol side chain cleavage (P450scc) enzyme activity, and steroidogenic acute regulatory (StAR) protein, and produce negligible progesterone, in vitro, following an acute (3-h) challenge with either FSH or LH. It has previously been established that culturing such cells with FSH for 18-20 h induces LH-R, P450scc, and StAR expression, which enables the initiation of progesterone production. The present studies were conducted to characterize the ability of activin and transforming growth factor (TGF) beta, both alone and in combination with FSH, to promote hen granulosa cell differentiation, in vitro. A 20-h culture of prehierarchal follicle granulosa cells with activin A or transforming growth factor beta (TGFbeta)1 increased LH-R mRNA levels compared with control cultured cells. Activin A and TGFbeta1 also promoted FSH-receptor (FSH-R) mRNA expression when combined with FSH treatment. Neither activin A nor TGFbeta1 alone stimulated progesterone production after 20 h culture. However, preculture with either factor for 20 h (to induce gonadotropin receptor mRNA expression) followed by a 3-h challenge with FSH or LH potentiated StAR expression and progesterone production compared with cells challenged with gonadotropin in the absence of activin A or TGFbeta1 preculture. Significantly, activation of the mitogen-activated protein (MAP) kinase pathway with transforming growth factor alpha (TGFalpha) (monitored by Erk phosphorylation) blocked TGFbeta1-induced LH-R expression, and this effect was associated with the inhibition of Smad2 phosphorylation. We conclude that a primary differentiation-inducing action of activin A and TGFbeta1 on hen granulosa cells from prehierarchal follicles is directed toward LH-R expression. Enhanced LH-R levels subsequently sensitize granulosa cells to LH, which in turn promotes StAR plus P450scc expression and subsequently an increase in P4 production. Significantly, the finding that TGFbeta signaling is negatively regulated by MAP kinase signaling is proposed to represent a mechanism that prevents premature differentiation of granulosa cells.  相似文献   

13.
Plasma high-density lipoproteins (HDL) can provide rat ovary steroidogenic tissue with cholesterol for steroid hormone production, but the mechanism of cholesterol transfer is unknown. To test the importance of apolipoprotein A-I (the major HDL apolipoprotein) in HDL-cell interactions, we examined the ability of canine-human HDL hybrids containing various proportions of canine apolipoprotein A-I and human apolipoprotein A-II to stimulate steroidogenesis by cultured rat ovary granulosa cells. We observed that as the apolipoprotein A-II to apolipoprotein A-II ratio decreased, the ability of the hybrid particles to stimulate granulosa cell progestin (progesterone and 20 alpha-dihydroprogesterone) production diminished. However, granulosa cell progestin (progesterone and 20 alpha-dihydroprogesterone) production diminished. However, apolipoprotein A-I was not necessary for cholesterol transfer, since hybrids with less than 5% of their total apolipoprotein mass as apolipoprotein A-I stimulated progestin production 30% as effectively as canine HDL, which contained essentially only apolipoprotein A-I. These data indicate that the delivery of cholesterol from HDL into the rat ovary cell for steroidogenesis is not strictly dependent on the presence of a specific HDL apolipoprotein.  相似文献   

14.
In this study we attempted to examine the effects of ketoconazole on steroid biosynthesis and to determine which steps in the steroidogenic pathway were blocked using MA-10 Mouse Leydig tumor cells. This cloned cell line produces progesterone as the major steroid following stimulation by hCG or dbcAMP. At a concentration of 1 microM ketoconazole completely inhibited the hCG- and dbcAMP-stimulated progesterone synthesis in MA-10 Leydig cells. The conversion of 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone was also suppressed by this drug. The presence of ketoconazole inhibited mitochondrial steroid synthesis but required high concentrations of the drug as compared to inhibition in intact cells. No accumulation of pregnenolone was observed in the presence of ketoconazole indicating that the activity of 3 beta-hydroxysteroid dehydrogenase was not affected. We conclude that ketoconazole directly inhibits the activity of cholesterol side-chain cleavage enzyme (CSCC), a rate-determining enzymatic step in steroidogenesis, by interacting with cytochrome P-450scc.  相似文献   

15.
L R Chaudhary  D M Stocco 《Biochimie》1988,70(12):1799-1806
Using a cloned Leydig tumor cell line (designated MA-10), we have studied the activity of cholesterol side-chain (CSCC) enzyme, the rate-determining step in steroidogenesis, in mitochondria isolated from cells pretreated either with human chorionic gonadotropin (hCG) or dibutyryl cyclic adenosine monophosphate (dbcAMP). Results showed a slight but significant increase in CSCC activity with treatment by cAMP (25% increase) and hCG (60% increase), as compared to mitochondria isolated from nontreated control cells. However, this stimulation of CSCC activity appears to be of limited significance when compared to the approximately 1000-fold or greater increase observed in progesterone production in the presence of hCG or dbcAMP. On the other hand, unstimulated MA-10 cells or isolated mitochondria efficiently converted 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone, and this conversion was not affected by cycloheximide. The addition of cholesterol to intact cells or to isolated mitochondria did not affect progesterone production. Our observations clearly indicate that given the proper hydroxy substrates (22R-hydroxycholesterol or 25-hydroxycholesterol), MA-10 Leydig cells are able to convert them into progesterone without any stimulation by steroidogenic stimuli, i.e. cAMP or hCG. Since MA-10 Leydig cells can efficiently convert 22R-hydroxycholesterol--an intermediate in CSCC reaction--into progesterone, these results suggest that the key regulatory step in the mechanism of trophic hormone-stimulated steroid production is the first hydroxylation step of the 3 sequential monooxygenation reactions involved in the conversion of cholesterol to pregnenolone.  相似文献   

16.
Progesterone receptor membrane component 1 (PGRMC1) mediates antimitotic and antiapoptotic actions of progesterone in granulosa cells, which indicates that PGRMC1 may play a key role in maintaining the status of granulosa cells. The current study investigated the effects of progesterone on intracellular signaling involved in differentiation, follicle development, inflammatory responses, and antioxidation, and determined the role of PGRMC1 in these processes. Our results demonstrated that progesterone slowed follicle development and inhibited p-ERK1/2, p-p38, caspase-3, p-NF-κB, and p-IκB-α signals involved in differentiation, steroidogenesis, and inflammatory responses in granulosa cells. Progesterone inhibited the steroidogenic acute regulatory protein and the cholesterol side-chain cleavage enzyme and decreased pregnenolone production. A PGRMC1 inhibitor and a PGRMC1 small interfering RNA ablated these inhibitory effects of progesterone. Interfering with PGRMC1 functions also decreased cellular antioxidative effects induced by an oxidant. These results suggest that PGRMC1 might play a critical role in maintaining the status of granulosa cells and balancing follicle numbers.  相似文献   

17.
Granulosa cells isolated from immature Sprague-Dawley rat ovaries produce progesterone (31.7 pg/micrograms cell protein) in response to an acute FSH stimulus (5 micrograms/ml NIH-FSH-S11, 2 H). After culture for 48 h in the absence of hormones (control culture), progesterone production by the granulosa cells in response to FSH is significantly reduced (2.9 pg/micrograms cell protein). Cells cultured with prostaglandin E2 (PGE2, 1 microgram/ml) or dibutyryl-cAMP (dbcAMP, 1 mM) exhibited a discernibly greater steroidogenic response to FSH (12.5 and 53.4 pg/microgram cell protein, respectively) than that of control cultures. Therefore the presence of PGE2 or dbcAMP in the culture medium helps to maintain the steroidogenic capacity of granulosa cells in culture. It is probable that this capacity is maintained at a locus distal to the production of cAMP by FSH. Paradoxically, granulosa cells cultured with PGE2 produce less cAMP in response to FSH stimulation than cells in control cultures (15.9 vs. 250.3 fm/micrograms cell protein). This may be due to a suppressive effect of prior exposure to PGE2 on the subsequent activity of adenylate cyclase when the FSH is introduced and a concomitant elevation of phosphodiesterase activity.  相似文献   

18.
Purified sterol carrier protein2 (SCP2) from rat liver stimulated utilization of endogenous cholesterol for pregnenolone synthesis by adrenal mitochondria. Cytosolic preparations of rat liver, adrenal and luteinized ovary were also stimulatory in mitochondrial pregnenolone synthesis to different extents. Treatment of all preparations with rabbit anti-rat SCP2 IgG neutralized the stimulatory effects, and immunoprecipitated proteins gave similar patterns on SDS-gradient polyacrylamide gel electrophoresis. Treatment with rabbit pre-immune IgG had no effect on these parameters. Thus, proteins which are immunochemically compatible with hepatic SCP2 appear to be present in steroidogenic tissues and may play a role in control of mitochondrial cholesterol side chain cleavage activity.  相似文献   

19.
In vitro exposure for 2 h to 250 ng/ml of pregnenolone led to increased production of progesterone and 17 alpha-hydroxyprogesterone (17 alpha-OHP) by hamster ovaries on Days 5, 10 and 15 of age. Similar incubations with 250 ng/ml progesterone or androstenedione caused significant increases in 17 alpha-OHP or testosterone, respectively. When testosterone was added in doses of 32.5, 250 and 500 ng/ml to ovaries on Days 5-30, as early as Day 5 the ovaries aromatized the androgen to estradiol. Day 30 ovaries were the most efficient in the conversion because antral follicles, the principal site for aromatization, were then present. In terms of progesterone production, 400 ng/ml of luteinizing hormone (LH) during 4 h of in vitro incubation stimulated ovaries on Days 5, 10 and 15. Cyclic adenosine 3':5' monophosphate (cAMP) at a dose of 1 mM and 5 mM stimulated progesterone production by Days 5 and 10 ovaries more efficiently than LH. However, Day 15 ovaries produced more progesterone in response to LH compared to cAMP. These experiments establish that the steroidogenic enzymes differentiate at a very early age in the hamster ovary, even before the appearance of gonadotropin receptors. The inability of the early postnatal ovary to produce steroids is apparently attributable to lack of precursors such as cholesterol or cholesterol side chain cleavage enzymes.  相似文献   

20.
1. Low molecular weight fractions (mol. wt. 3500-10 000) prepared from cytosols of luteinized rat ovaries inhibited succinate-supported cholesterol side chain cleavage by intact ovarian mitochondria utilizing endogenous or exogenous sterol as substrate. 2. The low molecular weight fractions inhibited steroid secretion by collagenase-dispersed ovarian cells stimulated with lutropin or dibutyryl cyclic AMP. 3. Steroidogenesis by intact mitochondria incubated with NADPH was enhanced by the low molecular weight ovarian fraction, but cholesterol side chain cleavage carried out by sonicated mitochondria incubated with NADPH was unaffected. 4. Succinate-supported mitochondrial respiration was stimulated by the low molecular weight factor, apparently by uncoupling of oxidative phosphorylation. The uncoupling seems to be the mechanism by which steroid synthesis is inhibited. 5. The low molecular weight factor was heat-labile and not extracted by activated charcoal. Similar heat-labile material capable of inhibiting succinate-supported mitochondrial steroid synthesis was not found in low molecular weight fractions prepared from rat kidney, liver, spleen, brain, plasma and bovine corpus luteum. 6. Treatment of rats with cycloheximide 1 h before killing resulted in a reduction of inhibitory activity in ovarian low molecular weight cytosolic fractions. 7. We conclude that ovarian cytosols contain a low molecular weight factor, presumably a protein, which inhibits mitochondrial cholesterol side chain cleavage by uncoupling oxidative phosphorylation. The physiological function of this factor remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号