首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Identification and cloning of a fur regulatory gene in Yersinia pestis.   总被引:37,自引:15,他引:22       下载免费PDF全文
Yersinia pestis is one of many microorganisms responding to environmental iron concentrations by regulating the synthesis of proteins and an iron transport system(s). In a number of bacteria, expression of iron uptake systems and other virulence determinants is controlled by the Fur regulatory protein. DNA hybridization analysis revealed that both pigmented and nonpigmented cells of Y. pestis possess a DNA locus homologous to the Escherichia coli fur gene. Introduction of a Fur-regulated beta-galactosidase reporter gene into Y. pestis KIM resulted in iron-responsive beta-galactosidase activity, indicating that Y. pestis KIM expresses a functional Fur regulatory protein. A cloned 1.9-kb ClaI fragment of Y. pestis chromosomal DNA hybridized specifically to the fur gene of E. coli. The coding region of the E. coli fur gene hybridized to a 1.1-kb region at one end of the cloned Y. pestis fragment. The failure of this clone to complement an E. coli fur mutant suggests that the 1.9-kb clone does not contain a functional promoter. Subcloning of this fragment into an inducible expression vector restored Fur regulation in an E. coli fur mutant. In addition, a larger 4.8-kb Y. pestis clone containing the putative promoter region complemented the Fur- phenotype. These results suggest that Y. pestis possesses a functional Fur regulatory protein capable of interacting with the E. coli Fur system. In Y. pestis Fur may regulate the expression of iron transport systems and other virulence factors in response to iron limitation in the environment. Possible candidates for Fur regulation in Y. pestis include genes involved in ferric iron transport as well as hemin, heme/hemopexin, heme/albumin, ferritin, hemoglobin, and hemoglobin/haptoglobin utilization.  相似文献   

9.
10.
11.
The promoter region of the pColV-K30-encoded operon specifying biosynthesis and transport of the siderophore aerobactin was subjected to deletion analysis to determine the smallest DNA sequence affording iron regulation of a iucA'-'lacZ gene fusion. A 78-base-pair (bp) region containing the main (P1) promoter retained the character of inducibility under iron starvation. A 250-bp fragment carrying this sequence was examined for protection against DNase I by the Fur protein, the product of a gene (fur) required for negative control of several iron-regulated functions. The DNase I footprints, in the presence of various divalent heavy-metal ions added as corepressors, revealed two contiguous binding sites with different lengths and affinities for Fur. Increased concentrations of the protein appeared to elicit formation of repressor oligomers which bind to the upstream and downstream regions of the P1 promoter in a metal-dependent fashion, but with a presently undefined stoichiometry. The primary site for Fur binding spans 31 bp and contains two overlapping symmetry dyads which share the sequence 5'-TCATT-3'. It also contains extensive homology with a 19-bp consensus sequence for iron-regulated genes as deduced from comparison with the fhuA and fepA putative promoter sequences.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号