首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Insulin controls glucose flux into muscle and fat by regulating the trafficking of GLUT4 between the interior and surface of cells. Here, we show that the AS160 Rab GTPase activating protein (GAP) is a negative regulator of basal GLUT4 exocytosis. AS160 knockdown resulted in a partial redistribution of GLUT4 from intracellular compartments to the plasma membrane, a concomitant increase in basal glucose uptake, and a 3-fold increase in basal GLUT4 exocytosis. Reexpression of wild-type AS160 restored normal GLUT4 behavior to the knockdown adipocytes, whereas reexpression of a GAP domain mutant did not revert the phenotype, providing the first direct evidence that AS160 GAP activity is required for basal GLUT4 retention. AS160 is the first protein identified that is specially required for basal GLUT4 retention. Our findings that AS160 knockdown only partially releases basal GLUT4 retention provides evidence that insulin signals to GLUT4 exocytosis by both AS160-dependent and -independent mechanisms.  相似文献   

2.
Insulin stimulates the rapid translocation of intracellular glucose transporters of the GLUT4 isotype to the plasma membrane in fat and muscle cells. The connections between known insulin signaling pathways and the protein machinery of this membrane-trafficking process have not been fully defined. Recently, we identified a 160-kDa protein in adipocytes, designated AS160, that is phosphorylated by the insulin-activated kinase Akt. This protein contains a GTPase-activating domain (GAP) for Rabs, which are small G proteins required for membrane trafficking. In the present study we have identified six sites of in vivo phosphorylation on AS160. These sites lie in the motif characteristic of Akt phosphorylation, and insulin treatment increased phosphorylation at five of the sites. Expression of AS160 with two or more of these sites mutated to alanine markedly inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Moreover, this inhibition did not occur when the GAP function in the phosphorylation site mutant was inactivated by a point mutation. These findings strongly indicate that insulin-stimulated phosphorylation of AS160 is required for GLUT4 translocation and that this phosphorylation signals translocation through inactivation of the Rab GAP function.  相似文献   

3.
Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.  相似文献   

4.
Insulin modulates glucose disposal in muscle and adipose tissue by regulating the cellular redistribution of the GLUT4 glucose transporter. Protein kinase Akt/PKB is a central mediator of insulin-regulated translocation of GLUT4; however, the GLUT4 trafficking step(s) regulated by Akt is not known. Here, we use acute pharmacological Akt inhibition to show that Akt is required for insulin-stimulated exocytosis of GLUT4 to the plasma membrane. Our data also suggest that the AS160 Rab GAP is not the only Akt target required for insulin-stimulated GLUT4 translocation. Using a total internal reflection microscopy assay, we show that Akt activity is specifically required for an insulin-mediated prefusion step involving the recruitment and/or docking of GLUT4 vesicles to within 250 nm of the plasma membrane. Moreover, the insulin-stimulated fusion of GLUT4 vesicles with the plasma membrane can occur independently of Akt activity, although based on inhibition by wortmannin, it is dependent on phosphatidylinositol 3' kinase activity. Hence, to achieve full redistribution of GLUT4 into the plasma membrane, insulin signaling bifurcates to independently regulate both fusion and a prefusion step(s).  相似文献   

5.
Insulin stimulates glucose uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. In the absence of insulin GLUT4 is actively sequestered away from the general endosomes into GLUT4-specialized compartments, thereby controlling the amount of GLUT4 at the plasma membrane. Here, we investigated the role of the aminopeptidase IRAP in GLUT4 trafficking. In unstimulated IRAP knockdown adipocytes, plasma membrane GLUT4 levels are elevated because of increased exocytosis, demonstrating an essential role of IRAP in GLUT4 retention. Current evidence supports the model that AS160 RabGAP, which is required for basal GLUT4 retention, is recruited to GLUT4 compartments via an interaction with IRAP. However, here we show that AS160 recruitment to GLUT4 compartments and AS160 regulation of GLUT4 trafficking were unaffected by IRAP knockdown. These results demonstrate that AS160 is recruited to membranes by an IRAP-independent mechanism. Consistent with a role independent of AS160, we showed that IRAP functions in GLUT4 sorting from endosomes to GLUT4-specialized compartments. This is revealed by the relocalization of GLUT4 to endosomes in IRAP knockdown cells. Although IRAP knockdown has profound effects on GLUT4 traffic, GLUT4 knockdown does not affect IRAP trafficking, demonstrating that IRAP traffics independent of GLUT4. In sum, we show that IRAP is both cargo and a key regulator of the insulin-regulated pathway.  相似文献   

6.
GLUT4 trafficking to the plasma membrane of muscle and fat cells is regulated by insulin. An important component of insulin-regulated GLUT4 distribution is the Akt substrate AS160 rab GTPase-activating protein. Here we show that Rab10 functions as a downstream target of AS160 in the insulin-signaling pathway that regulates GLUT4 translocation in adipocytes. Overexpression of a mutant of Rab10 defective for GTP hydrolysis increased GLUT4 on the surface of basal adipocytes. Rab10 knockdown resulted in an attenuation of insulin-induced GLUT4 redistribution to the plasma membrane and a concomitant 2-fold decrease in GLUT4 exocytosis rate. Re-expression of a wild-type Rab10 restored normal GLUT4 translocation. The basal increase in plasma-membrane GLUT4 due to AS160 knockdown was partially blocked by knocking down Rab10 in the same cells, further indicating that Rab10 is a target of AS160 and a positive regulator of GLUT4 trafficking to the cell surface upon insulin stimulation.  相似文献   

7.
Stimulations of glucose transport produced by insulin action, contraction, or through a change in cell energy status are mediated by separate signaling pathways. These are the wortmannin-sensitive phosphatidylinositol 3-kinase pathway leading to the intermediate Akt and the wortmannin-insensitive AMP-activated protein kinase (AMPK) pathway. Electrical stimulation of cardiomyocytes produced a rapid, insulin-like, wortmannin-sensitive stimulation of glucose transport activity, but this occurred without extensive activation of Akt. Although AMPK phosphorylation was increased by contraction, this response was not wortmannin-inhibitable and consequently did not correlate with the wortmannin sensitivity of the transport stimulation. Oxidative metabolism stress due to hypoxia or treatment with oligomycin led to increased AMPK activity with a corresponding increase in glucose transport activity. We show here that these separate signaling pathways converge on GLUT4 trafficking at separate steps. The rate of exocytosis of GLUT4 was rapidly stimulated by insulin, but insulin treatment did not alter the endocytosis rate. Like insulin stimulation, electrical stimulation of contraction led to a stimulation of GLUT4 exocytosis without any marked change in endocytosis. By contrast, after oxidative metabolism stress, no stimulation of GLUT4 exocytosis occurred; instead, this treatment led to a reduction in GLUT4 endocytosis.  相似文献   

8.
9.
Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.  相似文献   

10.
The GLUT4 glucose transporter is predominantly retained inside basal fat and muscle cells, and it is rapidly recruited to the plasma membrane with insulin stimulation. There is controversy regarding the mechanism of basal GLUT4 retention. One model is that GLUT4 retention is dynamic, based on slow exocytosis and rapid internalization of the entire pool of GLUT4 (Karylowski, O., Zeigerer, A., Cohen, A., and McGraw, T. E. (2004) Mol. Biol. Cell 15, 870-882). In this model, insulin increases GLUT4 in the plasma membrane by modulating GLUT4 exocytosis and endocytosis. The second model is that GLUT4 retention is static, with approximately 90% of GLUT4 stored in compartments that are not in equilibrium with the cell surface in basal conditions (Govers, R., Coster, A. C., and James, D. E. (2004) Mol. Cell Biol. 24, 6456-6466). In this model, insulin increases GLUT4 in the plasma membrane by releasing it from the static storage compartment. Here we show that under all experimental conditions examined, basal GLUT4 retention is by a bipartite dynamic mechanism involving slow efflux and rapid internalization. To establish that the dynamic model developed in studies of the extreme conditions of >100 nm insulin and no insulin also describes GLUT4 behavior at more physiological insulin concentrations, we characterized GLUT4 trafficking in 0.5 nm insulin. This submaximal insulin concentration promotes an intermediate effect on both GLUT4 exocytosis and endocytosis, resulting in an intermediate degree of redistribution to the plasma membrane. These data establish that changes in the steady-state surface/total distributions of GLUT4 are the result of gradated, insulin-induced changes in GLUT4 exocytosis and endocytosis rates.  相似文献   

11.
Glucose transporter 4: cycling, compartments and controversies   总被引:7,自引:0,他引:7  
Dugani CB  Klip A 《EMBO reports》2005,6(12):1137-1142
Insulin promotes glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). In unstimulated cells, rapid endocytosis, slow exocytosis and dynamic or static retention cause GLUT4 to concentrate in early recycling endosomes, the trans-Golgi network and vesicle-associated protein 2-containing vesicles. The coordinated action of phosphatidylinositol 3-kinase effectors, protein kinase Akt, atypical protein kinase C (aPKC) and Akt substrate of 160-kDa (AS160), regulates the GLUT4 cycle by affecting its translocation, fusion with the plasma membrane, internalization and sorting. We review the evidence that supports such cycling, evaluate current models proposing static or dynamic retention, and highlight how distinct steps of GLUT4 transport are regulated by insulin signals. In particular, fusion seems to be regulated by aPKC (via munc18) and Akt (via syntaxin4-interacting protein (synip)). AS160 participates in GLUT4 intracellular retention, and possibly fusion, through candidate ras-related GTP-binding protein (Rab)2, Rab8, Rab10 and/or Rab14. The localization of the insulin-sensitive GLUT4 compartment and the precise target of insulin-derived signals remain open for future investigation.  相似文献   

12.
Insulin-responsive aminopeptidase trafficking in 3T3-L1 adipocytes   总被引:9,自引:0,他引:9  
The insulin-responsive aminopeptidase (IRAP/VP165/gp160) was identified originally in GLUT4-containing vesicles and shown to translocate in response to insulin, much like the glucose transporter 4 (GLUT4). This study characterizes the trafficking and kinetics of IRAP in exocytosis, endocytosis, and recycling to the membrane in 3T3-L1 adipocytes. After exposure of 3T3-L1 adipocytes to insulin, IRAP translocated to the plasma membrane as assessed by either cell fractionation, surface biotinylation, or the plasma membrane sheet assay. The rate of exocytosis closely paralleled that of GLUT4. In the continuous presence of insulin, IRAP was endocytosed with a half-time of about 3-5 min. IRAP endocytosis is inhibited by cytosol acidification, a property of clathrin-mediated endocytosis, but not by the expression of a constitutively active Akt/PKB. Arrival in an LDM fraction derived via subcellular fractionation exhibited a slower time course than disappearance from the cell surface, suggesting additional endocytic intermediates. As assayed by membrane "sheets," GLUT4 and IRAP showed similar internalization rates that are wortmannin-insensitive and occur with a half-time of roughly 5 min. IRAP remaining on the cell surface 10 min following insulin removal was both biotin- and avidin-accessible, implying the absence of thin-necked invaginations. Finally, endocytosed IRAP quickly recycled back to the plasma membrane in a wortmannin-sensitive process. These results demonstrate rapid endocytosis and recycling of IRAP in the presence of insulin and trafficking that matches GLUT4 in rate.  相似文献   

13.
Upon binding and activating its cell-surface receptor, insulin triggers signaling cascades that regulate many cellular processes. Regarding glucose homeostasis, insulin suppresses hepatic glucose production and increases glucose transport into muscle and adipose tissues. At the cellular level, glucose uptake results from the insulin-stimulated translocation of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Although the signaling molecules that function proximal to the activated insulin receptor have been well characterized, it is not known how the distal insulin-signaling cascade interfaces with and mobilizes GLUT4-containing compartments. Recently, several candidate signaling molecules, including AS160, PIKfyve and synip, have been identified that might provide functional links between the insulin signaling cascade and GLUT4 compartments. Future work will focus on delineating the precise GLUT4 trafficking steps regulated by these molecules.  相似文献   

14.
Insulin stimulation of the trafficking of the glucose transporter GLUT4 to the plasma membrane is controlled in part by the phosphorylation of the Rab GAP (GTPase-activating protein) AS160 (also known as Tbc1d4). Considerable evidence indicates that the phosphorylation of this protein by Akt (protein kinase B) leads to suppression of its GAP activity and results in the elevation of the GTP form of a critical Rab. The present study examines a similar Rab GAP, Tbc1d1, about which very little is known. We found that the Rab specificity of the Tbc1d1 GAP domain is identical with that of AS160. Ectopic expression of Tbc1d1 in 3T3-L1 adipocytes blocked insulin-stimulated GLUT4 translocation to the plasma membrane, whereas a point mutant with an inactive GAP domain had no effect. Insulin treatment led to the phosphorylation of Tbc1d1 on an Akt site that is conserved between Tbc1d1 and AS160. These results show that Tbc1d1 regulates GLUT4 translocation through its GAP activity, and is a likely Akt substrate. An allele of Tbc1d1 in which Arg(125) is replaced by tryptophan has very recently been implicated in susceptibility to obesity by genetic analysis. We found that this form of Tbc1d1 also inhibited GLUT4 translocation and that this effect also required a functional GAP domain.  相似文献   

15.
Regulation of glucose transport by insulin: traffic control of GLUT4   总被引:1,自引:0,他引:1  
Despite daily fasting and feeding, plasma glucose levels are normally maintained within a narrow range owing to the hormones insulin and glucagon. Insulin increases glucose uptake into fat and muscle cells through the regulated trafficking of vesicles that contain glucose transporter type 4 (GLUT4). New insights into insulin signalling reveal that phosphorylation events initiated by the insulin receptor regulate key GLUT4 trafficking proteins, including small GTPases, tethering complexes and the vesicle fusion machinery. These proteins, in turn, control GLUT4 movement through the endosomal system, formation and retention of specialized GLUT4 storage vesicles and targeted exocytosis of these vesicles. Understanding these processes may help to explain the development of insulin resistance in type 2 diabetes and provide new potential therapeutic targets.  相似文献   

16.
Insulin stimulation of glucose uptake is achieved by redistribution of insulin-responsive glucose transporters, GLUT4, from intracellular storage compartment(s) to the plasma membrane in adipocytes and muscle cells. Although GLUT4 translocation has been investigated using various approaches, GLUT4 trafficking properties within the cell are largely unknown. Our novel method allows direct analysis of intracellular GLUT4 dynamics at the single molecule level by using Quantum dot technology, quantitatively establishing the behavioral nature of GLUT4. Our data demonstrate the predominant mechanism for intracellular GLUT4 sequestration in the basal state to be “static retention” in fully differentiated 3T3L1 adipocytes. We also directly defined three distinct insulin-stimulated GLUT4 trafficking processes: 1) release from the putative GLUT4 anchoring system in storage compartment(s), 2) the speed at which transport GLUT4-containing vesicles move, and 3) the tethering/docking steps at the plasma membrane. Intriguingly, insulin-induced GLUT4 liberation from its static state appeared to be abolished by either pretreatment with an inhibitor of phosphatidylinositol 3-kinase or overexpression of a dominant-interfering AS160 mutant (AS160/T642A). In addition, our novel approach revealed the possibility that, in certain insulin-resistant states, derangements in GLUT4 behavior can impair insulin-responsive GLUT4 translocation.  相似文献   

17.
Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking   总被引:3,自引:0,他引:3  
Glucose transporter 4 (GLUT4) is the major insulin-regulated glucose transporter expressed mainly in muscle and adipose tissue. GLUT4 is stored in a poorly characterized intracellular vesicular compartment and translocates to the cell surface in response to insulin stimulation resulting in an increased glucose uptake. This process is essential for the maintenance of normal glucose homeostasis and involves a complex interplay of trafficking events and intracellular signaling cascades. Recent studies have identified sortilin as an essential element for the formation of GLUT4 storage vesicles during adipogenesis and Golgi-localized gamma-ear-containing Arf-binding protein (GGA) as a key coat adaptor for the entry of newly synthesized GLUT4 into the specialized compartment. Insulin-stimulated GLUT4 translocation from this compartment to the plasma membrane appears to require the Akt/protein kinase B substrate termed AS160 (Akt substrate of 160kDa). In addition, the VPS9 domain-containing protein Gapex-5 in complex with CIP4 appears to function as a Rab31 guanylnucleotide exchange factor that is necessary for insulin-stimulated GLUT4 translocation. Here, we attempt to summarize recent advances in GLUT4 vesicle biogenesis, intracellular trafficking and membrane fusion.  相似文献   

18.
Insulin increases glucose transport by stimulating the trafficking of intracellular GLUT4 to the cell surface, a process known as GLUT4 translocation. A key protein in signaling this process is AS160, a Rab GTPase-activating protein (GAP) whose activity appears to be suppressed by Akt phosphorylation. Tbc1d1 is a Rab GAP with a sequence highly similar to that of AS160 and with the same Rab specificity as that of AS160. The role of Tbc1d1 in regulating GLUT4 trafficking has been unclear. Our previous study showed that overexpressed Tbc1d1 inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes, even though insulin caused phosphorylation on its single canonical Akt motif. In the present study, we show in 3T3-L1 adipocytes that Tbc1d1 is only 1/20 as abundant as AS160, that knockdown of Tbc1d1 has no effect on insulin-stimulated GLUT4 translocation, and that overexpressed Tbc1d1 also inhibits GLUT4 translocation elicited by activated Akt expression. These results indicate that endogenous Tbc1d1 does not participate in insulin-regulated GLUT4 translocation in adipocytes and suggest that the GAP activity of Tbc1d1 is not suppressed by Akt phosphorylation. In addition, we discovered that Tbc1d1 is much more highly expressed in skeletal muscle than fat and that the AMP-activated protein kinase (AMPK) activator 5'-aminoimidazole-4-carboxamide ribonucleoside partially reversed the inhibition of insulin-stimulated GLUT4 translocation by overexpressed Tbc1d1 in 3T3-L1 adipocytes. 5'-Aminoimidazole-4-carboxamide ribonucleoside activation of the kinase AMPK is known to cause GLUT4 translocation in muscle. The above findings strongly suggest that Tbc1d1 is a component in the signal transduction pathway leading to AMPK-stimulated GLUT4 translocation in muscle.  相似文献   

19.
The insulin-responsive glucose transporter GLUT4 plays an essential role in glucose homeostasis. A novel assay was used to study GLUT4 trafficking in 3T3-L1 fibroblasts/preadipocytes and adipocytes. Whereas insulin stimulated GLUT4 translocation to the plasma membrane in both cell types, in nonstimulated fibroblasts GLUT4 readily cycled between endosomes and the plasma membrane, while this was not the case in adipocytes. This efficient retention in basal adipocytes was mediated in part by a C-terminal targeting motif in GLUT4. Insulin caused a sevenfold increase in the amount of GLUT4 molecules present in a trafficking cycle that included the plasma membrane. Strikingly, the magnitude of this increase correlated with the insulin dose, indicating that the insulin-induced appearance of GLUT4 at the plasma membrane cannot be explained solely by a kinetic change in the recycling of a fixed intracellular GLUT4 pool. These data are consistent with a model in which GLUT4 is present in a storage compartment, from where it is released in a graded or quantal manner upon insulin stimulation and in which released GLUT4 continuously cycles between intracellular compartments and the cell surface independently of the nonreleased pool.  相似文献   

20.
To investigate the potential role of microtubules in the regulation of insulin-responsive glucose transporter (GLUT4) trafficking in adipocytes, we examined the effects of microtubule depolymerizing and stabilizing agents. In contrast to previous reports, disruption or stabilization of microtubule structures had no significant effect on insulin-stimulated GLUT4 translocation. However, consistent with a more recent study (Molero, J. C., J. P. Whitehead, T. Meerloo, and D. E. James, 2001, J Biol Chem 276:43829-43835) nocodazole did inhibit glucose uptake through a direct interaction with the transporter itself independent of the translocation process. In addition, the initial rate of GLUT4 endocytosis was not significantly affected by microtubule depolymerization. However, these internalized GLUT4 compartments are confined to regions just beneath the plasma membrane and were not exposed to the extracellular space. Furthermore, they were unable to undergo further sorting steps and trafficking to the perinuclear region. Nevertheless, these apparent early endocytic GLUT4 compartments fully responded to a second insulin stimulation with an identical extent of plasma membrane translocation. Together, these data demonstrate that although microtubular organization may play a role in the trafficking of GLUT4 early endocytic vesicles back to the perinuclear region, they do not have a significant role in insulin-stimulated GLUT4 exocytosis, initial endocytosis from the plasma membrane and/or recycling back to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号