共查询到20条相似文献,搜索用时 0 毫秒
1.
Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion. 相似文献
2.
Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex 总被引:14,自引:0,他引:14 下载免费PDF全文
We purified native WASp (Wiskott-Aldrich Syndrome protein) from bovine thymus and studied its ability to stimulate actin nucleation by Arp2/3 complex. WASp alone is inactive in the presence or absence of 0.5 microM GTP-Cdc42. Phosphatidylinositol 4,5 bisphosphate (PIP(2)) micelles allowed WASp to activate actin nucleation by Arp2/3 complex, and this was further enhanced twofold by GTP-Cdc42. Filaments nucleated by Arp2/3 complex and WASp in the presence of PIP(2) and Cdc42 concentrated around lipid micelles and vesicles, providing that Cdc42 was GTP-bound and prenylated. Thus, the high concentration of WASp in neutrophils (9 microM) is dependent on interactions with both acidic lipids and GTP-Cdc42 to activate actin nucleation by Arp2/3 complex. The results also suggest that membrane binding increases the local concentrations of Cdc42 and WASp, favoring their interaction. 相似文献
3.
Abad PC Mian IS Plachot C Nelpurackal A Bator-Kelly C Lelièvre SA 《Protein science : a publication of the Protein Society》2004,13(10):2573-2577
The C terminus of the nuclear protein NuMA, NuMA-CT, has a well-known function in mitosis via its proximal segment, but it seems also involved in the control of differentiation. To further investigate the structure and function of NuMA, we exploited established computational techniques and tools to collate and characterize proteins with regions similar to the distal portion of NuMA-CT (NuMA-CTDP). The phylogenetic distribution of NuMA-CTDP was examined by PSI-BLAST- and TBLASTN-based analysis of genome and protein sequence databases. Proteins and open reading frames with a NuMA-CTDP-like region were found in a diverse set of vertebrate species including mammals, birds, amphibia, and early teleost fish. The potential structure of NuMA-CTDP was investigated by searching a database of protein sequences of known three-dimensional structure with a hidden Markov model (HMM) estimated using representative (human, frog, chicken, and pufferfish) sequences. The two highest scoring sequences that aligned to the HMM were the extracellular domains of beta3-integrin and Her2, suggesting that NuMA-CTDP may have a primarily beta fold structure. These data indicate that NuMA-CTDP may represent an important functional sequence conserved in vertebrates, where it may act as a receptor to coordinate cellular events. 相似文献
4.
The establishment of cell polarity in budding yeast involves assembly of actin filaments at specified cortical domains. Elucidation of the underlying mechanism requires an understanding of the machinery that controls actin polymerization and how this machinery is in turn controlled by signaling proteins that respond to polarity cues. We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization. Here, we demonstrate further that these proteins together with Vrp1p form a multivalent Arp2/3-activating complex. During cell polarization, a bifurcated signaling pathway downstream of the Rho-type GTPase Cdc42p recruits and activates this complex, leading to local assembly of actin filaments. One branch, which requires formin homologues, mediates the recruitment of the Bee1p complex to the cortical site where the activated Cdc42p resides. The other is mediated by the p21-activated kinases, which activate the motor activity of myosin-I through phosphorylation. Together, these findings provide insights into the essential processes leading to polarization of the actin cytoskeleton. 相似文献
5.
Jean-Fran?ois Gaucher Chloé Maugé Dominique Didry Bérengère Guichard Louis Renault Marie-France Carlier 《The Journal of biological chemistry》2012,287(41):34646-34659
Wiskott-Aldrich syndrome proteins (WASP) are a family of proteins that all catalyze actin filament branching with the Arp2/3 complex in a variety of actin-based motile processes. The constitutively active C-terminal domain, called VCA, harbors one or more WASP homology 2 (WH2) domains that bind G-actin, whereas the CA extension binds the Arp2/3 complex. The VCA·actin·Arp2/3 entity associates with a mother filament to form a branched junction from which a daughter filament is initiated. The number and function of WH2-bound actin(s) in the branching process are not known, and the stoichiometry of the VCA·actin·Arp2/3 complex is debated. We have expressed the tandem WH2 repeats of N-WASP, either alone (V) or associated with the C (VC) and CA (VCA) extensions. We analyzed the structure of actin in complex with V, VC, and VCA using protein crystallography and hydrodynamic and spectrofluorimetric methods. The partial crystal structure of the VC·actin 1:1 complex shows two actins in the asymmetric unit with extensive actin-actin contacts. In solution, each of the two WH2 domains in V, VC, and VCA binds G-actin in 1:2 complexes that participate in barbed end assembly. V, VC, and VCA enhance barbed end depolymerization like profilin but neither nucleate nor sever filaments, in contrast with other WH2 repeats. VCA binds the Arp2/3 complex in a 1:1 complex even in the presence of a large excess of VCA. VCA·Arp2/3 binds one actin in a latrunculin A-sensitive fashion, in a 1:1:1 complex, indicating that binding of the second actin to VCA is weakened in the ternary complex. 相似文献
6.
《Microbes and infection / Institut Pasteur》2022,24(4):104931
Syndecan-4 (SDC4) is a transmembrane heparin sulfate proteoglycan that regulates inflammatory responses, cell motility, cell adhesion and intracellular signaling. In this study, we found that overexpression of SDC4 promoted the infection efficiency of Mycobacterium tuberculosis (Mtb), whereas knockdown of SDC4 reduced the infection efficiency, suggesting that SDC4 assisted Mtb infection of epithelial cells. We also observed that Mtb infection affected the F-actin/G-actin ratio, which was also correlated with SDC4 expression levels. Analysis of the Cdc42, N-WASP, and Arp2/3 signaling pathways during Mtb infection revealed that knockdown of Cdc42 and N-WASP or the addition of ZCL278, Wiskostatin or CK636 (blockers of Cdc42, N-WASP, and Arp2/3, respectively) significantly exacerbated Mtb infection in lung epithelial cells. Taken together, our data indicate that SDC4 assists Mtb infection of epithelial cells by regulating the Cdc42, N-WASP, and Arp2/3 signaling pathways, which regulate the polymerization of the actin cytoskeleton. 相似文献
7.
Sivko GS Sanford DC Dearth LD Tang D DeWille JW 《Journal of cellular biochemistry》2004,93(4):844-856
8.
9.
C Egile T P Loisel V Laurent R Li D Pantaloni P J Sansonetti M F Carlier 《The Journal of cell biology》1999,146(6):1319-1332
To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial protein IcsA binds N-WASP and activates it in a Cdc42-like fashion. Dramatic stimulation of actin assembly is linked to the formation of a ternary IcsA-N-WASP-Arp2/3 complex, which nucleates actin polymerization. The Arp2/3 complex is essential in initiation of actin assembly and Shigella movement, as previously observed for Listeria monocytogenes. Activation of N-WASP by IcsA unmasks two domains acting together in insertional actin polymerization. The isolated COOH-terminal domain of N-WASP containing a verprolin-homology region, a cofilin-homology sequence, and an acidic terminal segment (VCA) interacts with G-actin in a unique profilin-like functional fashion. Hence, when N-WASP is activated, its COOH-terminal domain feeds barbed end growth of filaments and lowers the critical concentration at the bacterial surface. On the other hand, the NH(2)-terminal domain of N-WASP interacts with F-actin, mediating the attachment of the actin tail to the bacterium surface. VASP is not involved in Shigella movement, and the function of profilin does not require its binding to proline-rich regions. 相似文献
10.
Humphries CL Balcer HI D'Agostino JL Winsor B Drubin DG Barnes G Andrews BJ Goode BL 《The Journal of cell biology》2002,159(6):993-1004
Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin. 相似文献
11.
Hong Shik Yun Eun-Hee Hong Su-Jae Lee Jeong-Hwa Baek Chang-Woo Lee Ji-Hye Yim Hong-Duck Um Sang-Gu Hwang 《Biochemical and biophysical research communications》2013
Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer. 相似文献
12.
The WASP and cortactin families constitute two distinct classes of Arp2/3 modulators in mammalian cells. Physical and functional interactions among the Arp2/3 complex, VCA (a functional domain of N-WASP), and cortactin were examined under conditions that were with or without actin polymerization. In the absence of actin, cortactin binds significantly weaker to the Arp2/3 complex than VCA. At concentrations of VCA 20-fold lower than cortactin, the association of cortactin with the Arp2/3 complex was nearly abolished. Analysis of the cells infected with Shigella demonstrated that N-WASP located at the tip of the bacterium, whereas cortactin accumulated in the comet tail. Interestingly, cortactin promotes Arp2/3 complex-mediated actin polymerization and actin branching in the presence of VCA at a saturating concentration, and cortactin acquired 20 nm affinity for the Arp2/3 complex during actin polymerization. The interaction of VCA with the Arp2/3 complex was reduced in the presence of both cortactin and actin. Moreover, VCA reduced its affinity for Arp2/3 complex at branching sites that were stabilized by phalloidin. These data imply a novel mechanism for the de novo assembly of a branched actin network that involves a coordinated sequential interaction of N-WASP and cortactin with the Arp2/3 complex. 相似文献
13.
Transforming growth factor-β1 (TGF-β1) regulates a variety of cellular functions. In several types of cells, for example, it acts as a growth inhibitor and an inducer of apoptotic cell death. Although one of the important modulators in retinal vascular development and retinal neovascularization, the effects of TGF-β1 on retinal microvascular cells are not fully defined. We have found that proliferation of both bovine retinal endothelial cells (EC) and pericytes was inhibited by TGF-β1 in a concentration-dependent manner. However, only retinal EC lost viability after exposure to increasing concentrations of TGF-β1 (up to 10 μg/ml) in the presence of 2% fetal bovine serum. Dying EC exhibited the morphological and biochemical characteristics of apoptosis. Fragmented nuclei and chromatin condensation were apparent after staining with the fluorochrome Hoechst 33258 and the reagent ApopTag; moreover, gel electrophoresis of DNA from TGF-β1-treated EC demonstrated degradation of chromatin into the discrete fragments typically associated with apoptosis. The addition of anti-TGF-β1 neutralizing antibody abolished the apoptotic cell death induced by TGF-β1. Because not all the EC in a given culture died after exposure to TGF-β1, we separated the apoptosis-sensitive cells from those resistant to TGF-β1-mediated apoptosis and determined the expression of several proteins associated with this apoptotic pathway. Apoptosis of EC mediated by TGF-β1 was associated with a decreased level of the cyclin-dependent kinase inhibitor p21waf1/cip1, compared with that observed in the apoptosis-resistant cells. In contrast, the translation product of the tumor-suppressor gene p53 was increased in the TGF-β1-treated apoptotic cells. Thus, we propose that p21waf1/cip1 and p53 function in distinct pathways that are protective or permissive, respectively, for the apoptotic signals mediated by TGF-β1. J. Cell. Biochem. 70:70–83, 1998. © 1998 Wiley-Liss, Inc. 相似文献
14.
15.
"Loss of function" alterations in growth inhibitory signal transduction pathways are common in cancer cells. In this study, we show that growth arrest (GA) treatments--serum and growth factor withdrawal and growth inhibitory IL-6 family cytokines (Interleukin-6 and Oncostatin M (OSM))--increase STAT3 phosphorylation (pSTAT3), increase CCAAT enhancer binding protein delta (C/EBPdelta) gene expression and induce GA of primary, finite-lifespan human mammary epithelial cells (HMECs), and immortalized breast cell lines (MCF-10A and MCF-12A). In contrast, serum and growth factor withdrawal from human breast cancer cell lines (MCF-7, SK-BR-3, T-47D, and MDA-MB-231) for up to 48 h induced a relatively modest increase in pSTAT3 levels and C/EBPdelta gene expression and resulted in varying levels of GA. In most breast cancer cell lines, IL-6 family cytokine treatment increased pSTAT3 levels and C/EBPdelta gene expression, however, growth inhibition was cell line dependent. In addition to "loss of function" alterations in growth inhibitory pathways, breast cancer cell lines also exhibit "gain of function" alterations in growth signaling pathways. The Akt growth/ survival pathway is constitutively activated in T-47D and MCF-7 breast cancer cells. The Akt inhibitor LY 294,002 significantly enhanced T-47D growth inhibition by serum and growth factor withdrawal or IL-6 family cytokine treatment. Finally, we show that activation of the pSTAT3/C/EBPdelta growth control pathway is independent of estrogen receptor status. These results demonstrate that "loss of function" alterations in the pSTAT3/C/EBPdelta growth inhibitory signal transduction pathway are relatively common in human breast cancer cell lines. Defective activation of the pSTAT3/ C/EBPdelta growth inhibitory signal transduction pathway, in conjunction with constitutive activation of the Akt growth stimulatory pathway, may play a synergistic role in the etiology or progression of breast cancer. 相似文献
16.
Teillaud C Nemere I Boukhobza F Mathiot C Conan N Oboeuf M Hotton D Macdougall M Berdal A 《Journal of cellular biochemistry》2005,94(1):139-152
The rapid, nongenomic effects of 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3 have been related to a 1,25D3-membrane associated, rapid response steroid binding protein or 1,25D3-[MARRS]bp, with a molecular weight of 65 kDa, in several tissues and species. Currently, no information is available concerning the nongenomic responses to 1alpha,25-(OH)2D3 in dental tissues. In order to investigate the expression of 1,25D3-[MARRS]bp in dental cells, in the presence or absence of 1alpha,25-(OH)2D3, we have used rabbit polyclonal antibodies directed against the N-terminus of the 1,25D3-[MARRS]bp (Ab099) that recognizes the 1alpha,25-(OH)2D3 binding protein in chick intestinal basolateral membranes and a mouse odontoblast-like cell line (MO6-G3). Western blotting and flow cytometric analyses with Ab099 specifically detected 1,25D3-[MARRS]bp in MO6-G3 cells. Moreover, 1,25D3-[MARRS]bp was up-regulated, in vivo, in differentiated dental cells. Electron microscopic analysis confirmed the plasma membrane localization of this binding protein and also showed its intracellular presence. Incubation of MO6-G3 cells with different doses of 1alpha,25-(OH)2D3 for 36 h resulted in an inhibition of 1,25D3-[MARRS]bp expression with a maximal effect at 50 nM steroid. In addition, the culture media of MO6-G3 cells contains immunoreactive 1,25D3-[MARRS]bp. Immunogold positive membrane vesicle-like structures are present in the extracellular matrix of MO6-G3 cells. Altogether, these results indicate that the 1,25D3-[MARRS]bp expression in MO6-G3 cells is modulated by 1alpha,25-(OH)2D3. In conclusion, this 1alpha,25-(OH)2D3 binding protein could play an important role in the rapid, nongenomic responses to 1alpha,25-(OH)2D3 in dental cells. 相似文献
17.
Arc35p, a component of the Arp2/3 complex, plays at least two distinct roles, regulating the actin cytoskeleton, but also microtubule function during cell division. Both functions involve calmodulin (CMD1). To investigate the pathway affecting microtubule function, we identified genes that are able to suppress the temperature-sensitive growth defect of the arc35-1 strain. Genes encoding gamma-tubulin (TUB4) or any subunit of casein kinase II (CKII) suppressed this growth defect, but did not suppress the growth defect of a mutant in another subunit of the Arp2/3 complex, arp2-1. We could also show a physical association of Arc35p with subunits of CKII, Cmd1p, and Tub4p. Based on the exclusive localization of Arc35p to the cytosolic Arp2/3 complex and on mutant phenotypes, we propose that the role of the Arc35p/CKII interaction might be to activate a cytosolic pool of gamma-tubulin, likely via calmodulin, for its nuclear and/or cytoplasmic functions. 相似文献
18.
Chiarini A Dal Pra I Gottardo R Bortolotti F Whitfield JF Armato U 《Journal of cellular biochemistry》2005,94(4):731-743
Nitric oxide (NO) from astrocytes is one of the signalers used by the brain's extensive glial-neuronal-vascular network, but its excessive production by pro-inflammatory cytokine-stimulated glial cells can be cytodestructive. Here, we show how three pro-inflammatory cytokines (IL-1beta, TNF-alpha, and IFN-gamma) together stimulated the activation, but not the prior expression, of NOS-2 protein via a mechanism involving MEK-ERKs protein kinases in astrocytes from adult human cerebral temporal cortex. The cytokines triggered a transient burst of p38 MAPK activity and the production of NOS-2 mRNA which were followed by bursts of MEK-ERK activities, synthesis of the NOS-2 co-factor tetrahydrobiopterin (BH(4)), a build-up of NOS-2 protein and from it active NOS-2 enzyme. Selectively inhibiting MEK1/MEK2, but not the earlier burst of p38 MAPK activity, with a brief exposure to U0126 between 24 and 24.5 h after adding the cytokine triad affected neither NOS-2 expression nor NOS-2 protein accumulation but stopped BH(4) synthesis and the assembly of the NOS-2 protein into active NOS-2 enzyme. The complete blockage of active NOS-2 production by the brief exposure to U0126 was bypassed by simply adding BH(4) to the culture medium. Therefore, this cytokine triad triggered two completely separable, tandem operating mechanisms in normal human astrocytes, the first being NOS-2 gene expression and accumulation of NOS-2 protein and the second being the synthesis of the BH(4) factor needed to dimerize the NOS-2 protein into active, NO-making NOS-2 enzyme. 相似文献
19.
20.
Weitzdoerfer R Fountoulakis M Lubec G 《Biochemical and biophysical research communications》2002,293(2):836-841
Down syndrome (DS) patients present with morphological abnormalities in brain development, leading to mental retardation. Given the importance of actin cytoskeleton to form the basis of various cell functions, the regulation of actin system is crucial during brain development. We therefore aimed to study the expression levels of actin binding proteins in fetal DS and control cortex. We evaluated the levels of eight actin binding proteins using the proteomic approach of two-dimensional gel electrophoresis with subsequent mass spectroscopical identification of protein spots. In fetal DS brain we found a significant reduction of the actin-related protein complex 2/3 (Arp2/3) 20 kDa subunit and the coronin-like protein p57, which are involved in actin filament cross-linking and nucleation and capping of actin filaments. We conclude that deficient levels of these proteins may, at least partially, be involved in the dysgenesis of the brain in DS. 相似文献