首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutathione (GSH) is a ubiquitous, redox-active, small molecule that is critical to cellular and organism health. In red blood cells (RBCs), the influence of the environment (e.g., diet and lifestyle) on GSH levels has been demonstrated in numerous studies. However, it remains unknown if levels of GSH are determined principally by environmental factors or if there is a genetic component, i.e., heritability. To investigate this we conducted a twin study. Twin studies are performed by comparing the similarity in phenotypes between mono- and dizygotic twin pairs. We determined the heritability of GSH, as well as its oxidation product glutathione disulfide (GSSG), the sum of GSH equivalents (tGSH), and the status of the GSSG/2GSH couple (marker of oxidation status, Ehc) in RBCs. In our study population we found that the estimated heritability for the intracellular concentration of GSH in RBCs was 57 %; for GSSG it was 51 %, tGSH 63 %, and Ehc 70 %. We conclude that a major portion of the phenotype of these traits is controlled genetically. We anticipate that these heritabilities will also be reflected in other cell types. The discovery that genetics plays a major role in the innate levels of redox-active species in RBCs is paradigm shifting and opens new avenues of research in the field of redox biology. Inherited RBC antioxidant levels may be important disease modifiers. By identifying the relative contributions of genes and the environment to antioxidant variation between individuals, new therapeutic strategies can be developed. Understanding the genetic determinants of these inherited traits may allow personalized approaches to relevant therapies.  相似文献   

2.

Background

In our institution, we have redefined our criteria for direct availability of red blood cell (RBC) units in the operation room. In this study, we sought to evaluate the safety of applying this new logistical policy of blood transfusion in the first preliminary group of patients.

Methods

In March 2010, we started a new policy concerning the elective availability of RBC units in the operation room. This policy was called: No Elective Red Cells (NERC) program. The program was applied for patients undergoing primary isolated coronary artery bypass grafting (CABG) or single valve surgery. No elective RBC units were preoperatively ordered for these patients. In case of urgent need, blood was delivered to the operating room within 20 min. The present study includes the first 500 patients who were managed according to this policy. Logistic regression analyses were performed to investigate the impact of biomedical variables on fulfilling this NERC program.

Results

The majority of patients (n = 409, 81 %) did not receive any RBCs during the hospital stay. In patients who did receive RBCs (n = 91, 19 %), 11 patients (2.2 %) received RBCs after 24 h postoperatively. Female gender, left ventricular ejection fraction (LVEF) and EuroSCORE were significant predictors for the need of blood transfusion (OR = 3.12; 2.79; 1.17 respectively).

Conclusion

In a selected group of patients, it is safe to perform cardiac surgery without the immediate availability of RBCs in the operating room. Transfusion was avoided in 81 % of these patients. Female gender, LVEF and EuroSCORE were associated with blood transfusion.  相似文献   

3.
The storage of packed red blood cells (RBCs) is associated with the development of morphological and biochemical changes leading to a reduced posttransfusion functionality and viability of the cells. Within this study, 2D DIGE and high‐resolution/high‐accuracy Orbitrap MS were used to analyze the storage‐induced changes of the cytosolic RBC proteome and identify characteristic protein patterns and potential marker proteins for the assessment of RBC storage lesions. Leukodepleted RBC concentrates were stored according to standard blood bank conditions for 0, 7, 14, 28, and 42 days and analyzed by using a characterized and validated protocol. Following statistical evaluation, a total of 14 protein spots were found to be significantly altered after 42 days of ex vivo storage. Protein identification was accomplished by tryptic digestion and LC‐MS/MS and three proteins potentially useful as biomarkers for RBC aging comprising transglutaminase 2, beta actin, and copper chaperone for superoxide dismutase were selected and validated by western blot analysis. These can serve as a basis for the development of a screening assay to detect RBC storage lesions and autologous blood doping in sports.  相似文献   

4.
An extensive programme of comparative nuclear magnetic resonance measurements of the membrane diffusional permeability for water (Pd) and of the activation energy (Ea,d) of this process in red blood cells (RBCs) from 21 mammalian species was carried out. On the basis of Pd, these species could be divided into three groups. First, the RBC's from humans, cow, sheep and “large” kangaroos (Macropus giganteus and Macropus rufus) had Pd values 5 × 10−3 cm/s at 25°C and 7 × 10−3 cm/s at 37°C. The RBCs from other marsupial species, mouse, rat, guinea pig and rabbit, had Pd values roughly twice higher, whereas echidna RBCs were twice lower than human RBCs. The value of Ea,d was in most cases correlated with the values of Pd. A value of Ea,d -26 kJ/mol was found for the RBCs from humans and the species having similar Pd values. Low values of Ea,d (ranging from 15 to 22 kJ/mol) appeared to be associated with relatively high values of Pd. The highest value of Ea,d (33 kJ/mol) was found in echidna RBCs. This points to specialized channels for water diffusion incorporated in membrane proteins; a relatively high water permeability of the RBC membrane could be due to a greater number of channel proteins. There are, however, situations where a very high water permeability of RBCs is associated with a high value of Ea,d (above 25 kJ/mol) as in the case of RBCs from mouse, rat and tree kangaroo. Moreover, it was found that Pd in different species was positively correlated to the RBC membrane phosphatidylcholine and negatively correlated to the sphingomyelin content. This suggests that in addition to the number of channel proteins, other factors are involved in the water permeability of the RBC membrane.  相似文献   

5.
Glycerolized red blood cells (RBC) are approved for long-term cryopreservation. However, the need to remove the glycerol cryoprotectant prior to transfusion has limited the usefulness of this cryopreservation method. This report describes using non-cryoprotectant biochemical stabilization techniques to substitute for the standard glycerol cryoprotectant. The glycerolized RBC method was compared to a newly developed LC-V method that combines transfusable cryoprotectants (hydroxyethyl starch and dextran) and specific non-cryoprotectant biochemical stabilizers (nicotinamide, nifedipine, and flurbiprofen). Results demonstrate that the biochemical stabilizers significantly reduce cryopreservation-induced hemolysis compared to cryopreservation in their absence and that thaw hemolysis levels approach those of standard 40% (w/v) glycerolized RBC (3.1+/-0.2% for 40% glycerol compared to 8.7+/-0.9% for the LC-V protocol). Furthermore, LC-V cryopreserved RBC exhibit a significantly enhanced post-thaw stability compared to glycerolized RBC as determined by osmotic fragility index (0.557+/-0.034 for 40% glycerol compared to 0.478+/-0.016 for the LC-V protocol). Analysis of biochemically stabilized RBC proteins revealed a transient translocation of carbonic anhydrase to the membrane fraction. However, the enhanced RBC recovery and stability could not be attributed to this event. Finally, DSC analysis demonstrated that the biochemical stabilizers of the LC-V process were not functioning as surrogate cryoprotectants in that they did not affect the quantity or quality of ice formed. Overall, this work demonstrates that cryopreservation-induced RBC damage may be corrected or prevented through specific biochemical stabilization and represents a significant step toward a directly transfusable cryopreserved RBC product.  相似文献   

6.
Red blood cells (RBCs) are stored up to 35–42 days at 2–6 °C in blood banks. During storage, the RBC membrane is challenged by energy depletion, decreasing pH, altered cation homeostasis, and oxidative stress, leading to several biochemical and morphological changes in RBCs and to shedding of extracellular vesicles (EVs) into the storage medium. These changes are collectively known as RBC storage lesions. EVs accumulate in stored RBC concentrates and are, thus, transfused into patients. The potency of EVs as bioactive effectors is largely acknowledged, and EVs in RBC concentrates are suspected to mediate some adverse effects of transfusion. Several studies have shown accumulation of lipid raft–associated proteins in RBC EVs during storage, whereas a comprehensive phospholipidomic study on RBCs and corresponding EVs during the clinical storage period is lacking. Our mass spectrometric and chromatographic study shows that RBCs maintain their major phospholipid (PL) content well during storage despite abundant vesiculation. The phospholipidomes were largely similar between RBCs and EVs. No accumulation of raft lipids in EVs was seen, suggesting that the primary mechanism of RBC vesiculation during storage might not be raft -based. Nonetheless, a slight tendency of EV PLs for shorter acyl chains was observed.  相似文献   

7.
In this work, we present a new version of the dilution-filtration system for rapidly deglycerolizing a large volume of cryopreserved blood. In our earlier system, one of the major problems was the damage induced to the red blood cells (RBCs) due to high osmolality change at the dilution point. Therefore, we devised a new system to solve this problem. First, we theoretically simulated the osmolality variation in the new system and the variation of the maximum and minimum volumes of the RBCs at the dilution point to examine the effects of operating parameters/conditions. Next, we experimentally validated the effects of these operating parameters by deglycerolizing porcine blood. The results show that when the initial NaCl concentration in the hypertonic solution is 18%, the volume of the hypertonic solution is 200 mL, and the flow rate of the filtrate is 50 mL/min, the system can effectively remove glycerin from 200 mL of porcine blood in 30 min, with ∼87% RBC survival rate and ∼73% RBC recovery rate. Our results indicated that in the new system the concentration and the volume of the hypertonic solution used to dilute the blood are the important parameters that need to be adjusted to reduce osmotic damage to the RBCs. In addition, a fast filtrate flow rate is highly recommended. This work can significantly contribute to the development of a more efficient and effective system for deglycerolizing large volumes of cryopreserved blood in clinic.  相似文献   

8.
AimHigh glycerol cryopreservation of red blood cells (RBCs) reduces metabolic processes at ultralow temperatures but less is known regarding the effect of cryopreservation on RBC nitric oxide (NO) metabolism, haemorheological properties, structural behaviour and membrane fragility.MethodsBlood from ten healthy participants was sampled, glycerolized and stored at −80 °C (SB). Aliquots were thawed and further processed after 4, 8 and 12 weeks, respectively. At these time points, fresh blood (FB) was additionally sampled from each participant. FB/SB mixtures were prepared corresponding to transfusion of 1–3 blood bags. Additionally, mixtures were exposed to shear stress similar to that found in the circulation and deformability was measured to estimate possible behaviour of cryopreserved RBC in vivo.ResultsAgeing of RBC was reduced during cryopreservation. Markers for RBC metabolism (ATP, 2,3-DPG) were not altered but RBC sodium levels increased and potassium and calcium decreased, respectively. Mean cellular volume was higher and accordingly, mean cellular haemoglobin concentration was lower in SB. Deformability was altered during storage with less shear stress necessary to deform RBCs. Changes were also detectable in blood mixtures. Deformability remained unaltered in shear stress settings in FB and SB. RBC viscosity was reduced in SB. RBC-NOS content and phosphorylation sites as well as nitrite and RxNO levels seem not to be affected by the intervention.ConclusionCryopreservation maintains RBC metabolic function in vitro, but structure and function of cryopreserved RBC seems to be altered. Impact of these alterations in vivo seems to be less but needs further investigation.  相似文献   

9.
Cryopreservation of red blood cells (RBCs) holds great potential benefits for supplying transfusion timely in emergencies. Currently, glycerol is the main cryoprotectant permitted in clinical therapy for RBCs cryopreservation, but its broad application is limited by the toxicity and complex deglycerolization process. Successful cryopreservation of RBCs using more effective materials should be studied to reduce freezing damage, increase biocompatibility, and save processing time. Herein, a simple protocol using natural cryoprotectants combinations of l-proline and trehalose attains a low degree of hemolysis (11.2 ± 2.73%) after thawing compared to glycerol. Furthermore, the morphology of RBCs and the activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase maintain well. Further mechanism study shows that l-proline plays an important role in decreasing the freezing points and inhibiting the growth of ice crystal by permeating into cells during the freezing process. While trehalose works as an inhibitor of ice growth in the freezing process and ice recrystallization in the thawing process. This simple l-proline & trehalose combinations protocol is a promising method to replace current time-consuming and labor-intensive cryopreservation methods of RBCs.  相似文献   

10.
11.
BackgroundGadolinium-based contrast media (GBCM) are commonly used in diagnostic magnetic resonance imaging (MRI) in clinical applications. The objective of this study is to evaluate the antioxidant properties and effects on red blood cells (RBCs) and K562 cancer cells of three GBCMs (i.e.; gadoterate meglumine, gadopentetate dimeglumine, and gadobenate dimeglumine) inin vitro levels.MethodsFor determiningin vitro antioxidant properties, the di (phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH) and ferric reducing ability of plasma (FRAP) assay were used. For determining effect on red blood cells, hemolysis, morphology and reactive oxygen species (ROS) were used. For determining effect on K562 cancer cells, cytotoxicity and ROS were used. The GBCM -exposed cells were compared to corresponding non-exposed control groups at various harvest times.ResultsThe results show no changes occurring in the DPPH data. However, there were significant increases based on FRAP data in three GBCMs compared to the corresponding control at all concentrations. The ROS, morphology, and percentage of hemolysis in red blood cells indicated that no change had occurred in three GBCMs-exposed red blood cells compared to the corresponding non-exposed control groups at all harvest times. The percentage of cell viability in K562 cancer cells showed decreases in gadoterate meglumine- and gadobenate dimeglumine- in a concentration dependent manner, but did not show same in gadopentetate dimeglumine-exposed K562 cancer cells. The percentage of ROS in K562 cancer cells indicated that no change in three GBCMs-exposed cells had occurred when compared to the corresponding non-exposed control groups at all harvest times.ConclusionThese findings suggests thatin vitro antioxidant properties exhibited by those three GBCMs depends on their concentration and species of radical in testing assay. There were no toxic effects from those GBCMs when red blood cells were exposed in an in vitro condition. In addition, some of those GBCMs could induce cell death in cancer cells.  相似文献   

12.
13.
Polarization effects in light scattering are sensitive indicators of cell structure and structural changes in time. In the spectral regions where the optical properties of the scatterers are relatively constant, the scattering pattern scales, it contracts or expands in a predictable manner as a function of the wavelength. In the spectral regions where the optical properties are strongly wavelength dependent (near absorption bands, etc.) the scattering curves do not scale, but change drastically in phase and amplitude as the wavelength is varied. Reported here is an empirical study of the magnitude of the influence of absorption on the polarization effects in light scattering. Scattering curves have been obtained for human red blood cells in the absorption band (blue light) and far from the absorption band (red light). The scattering at these wavelengths shows very strong nonscaling differences. These observations suggest the use of polarization effects in light scattering and their wavelength dependence for the studies of structural changes in cell nuclei. Nucleoproteins have strong absorption, optical rotatory dispersion and circular dichroism bands in the ultraviolet region of the spectrum, whereas there is little ψ-dependence in the visible range. There is also the possibility of binding specific chromophoric dyes to cell components, thus introducing absorption bands in the visible range, where scattering instrumentation and laser light sources are more readily available.  相似文献   

14.
An extensive multi-laboratory study was conducted to compare three different field-flow fractionation (FFF) systems for use in the analysis of human erythrocytes. The object of this study was to determine the relationship between the FFF elution properties for each system and the traditional hematological blood cell parameters. One centrifugal system (Utah) and two gravitational systems (Paris and Abbott) were compared. In order to analyze erythrocyte populations with a broad range of hematological indices, blood samples were collected from individuals heterozygous for sickle cell anemia (A/S) and also from normal controls (A/A), and these were analyzed at each site. Identical samples were analyzed by the Abbott and Utah sites. With all three systems, blood samples from each category produced narrow, overlapping distributions of FFF retention ratios, with the Abbott and Utah systems showing slight elevations in the mean retention ratios for the sickle cell samples. Blood cell elution peak characteristics were compared with standard hematological parameters for each of the FFF systems, and negative correlations were consistently found between mean corpuscular volume (MCV) and retention ratios. Positive correlations were found between red cell distribution width (RDW) and retention ratios. Elevated FFF retention ratios were frequently found with blood samples having abnormal hematological profiles. These results demonstrate that the three differently configured systems all produce similar analysis profiles for erythrocytes from the classes studied here. The relationships between FFF parameters and hematological indices were consistent for all systems.  相似文献   

15.
Loading red blood cells with trehalose: a step towards biostabilization   总被引:22,自引:0,他引:22  
A method for freeze-drying red blood cells (RBCs) while maintaining a high degree of viability has important implications in blood transfusion and clinical medicine. The disaccharide trehalose, found in animals capable of surviving dehydration can aid in this process. As a first step toward RBC preservation, we present a method for loading RBCs with trehalose. The method is based on the thermal properties of the RBC plasma membranes and provides efficient uptake of the sugar at 37 degrees C in a time span of 7 h. The data show that RBCs can be loaded with trehalose from the extracellular medium through a combination of osmotic imbalance and the phospholipid phase transition, resulting in intracellular trehalose concentrations of about 40 mM. During the loading period, the levels of ATP and 2,3-DPG are maintained close to the levels of fresh RBCs. Increasing the membrane fluidity through the use of a benzyl alcohol results in a higher concentration of intracellular trehalose, suggesting the importance of the membrane physical state for the uptake of the sugar. Osmotic fragility data show that trehalose exerts osmotic protection on RBCs. Flow cytometry data demonstrate that incubation of RBCs in a hypertonic trehalose solution results in a fraction of cells with different complexity and that it can be removed by washing and resuspending the RBCs in an iso-osmotic medium. The data provide an important first step in long-term preservation of RBCs.  相似文献   

16.
Improved preservation of human red blood cells by lyophilization   总被引:7,自引:0,他引:7  
Han Y  Quan GB  Liu XZ  Ma EP  Liu A  Jin P  Cao W 《Cryobiology》2005,51(2):152-164
The lyophilization of human red blood cells has important implications for blood transfusion in clinical medicine. In this study, sugars, human serum albumin, polyvinylpyrrolidone, and dimethyl sulfoxide were used as protective reagents for the lyophilization of red blood cells. Freezing temperature, shelf temperature, and the rehydration conditions were optimized. The results showed that extracellular disaccharides, especially trehalose, did not increase the recovery of hemoglobin. However, when the concentration of human serum albumin was higher than 25%, it had a considerable protective effect on the recovery of lyophilized red blood cells; the cellular hemoglobin recovery was over 70%, which was significantly higher than that in the group without human serum albumin (P<0.01). As the concentration of polyvinylpyrrolidone was increased, the extent of vitrification also increased. But when the concentration of polyvinylpyrrolidone was over 40%, the resulting concentration of free hemoglobin was over 1g/L, which was significantly higher than that with 40% (P<0.01). When lyophilization was carried out after freezing at different temperatures, the recovery of cells and hemoglobin was 70-80% and there were no significant differences among the five groups. When the shelf temperature was higher than -30 degrees C, the samples were partly collapsed, but when the shelf temperature was lower than -30 degrees C, the recovery of cells in the -40 and -45 degrees C groups was significantly higher than in the -30 and -35 degrees C groups (P<0.05). The recovery of cells and hemoglobin after lyophilization and rehydration in solutions containing low concentrations of polymers was over 80%, which is significantly higher than the other groups (P<0.01). In addition, when the temperature was higher than 25 degrees C, the concentration of free hemoglobin was significantly lower than it was at 4 degrees C (P<0.01). In conclusion, our study showed the lyophilization of red blood cells is feasible. Disaccharides have no protective effect on lyophilized cells when they are only extracellular and extensive vitrification may be not beneficial. Although the recovery of cells after lyophilization and rehydration by our method was over 70%, the ultrastructure of the cells may be compromised and some hemolysis does still exist. Further research is required.  相似文献   

17.
The behavior of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cell membrane proteins upon treatment with diamide, the thiol-oxidizing agent (Kosower, N.S. et al. (1969) Biochem. Biophys. Res. Commun. 37, 593–596), was studied with the aid of monobromobimane, a fluorescent labeling agent (Kosower, N.S., Kosower, E.M., Newton, G.L. and Ranney, H.M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3382–3386) convenient for following membrane thiol group status. In diamide-treated G6PD-deficient red cells (and in glucose deprived normal cells), glutathione (GSH) is oxidized to glutathione disulfide (GSSG). When cellular GSH is absent, membrane protein thiols are oxidized with the formation of intrachain and interchain disulfides. Differences in sensitivity to oxidation are found among membrane thiols. In diamidetreated normal red cells, GSH is regenerated in the presence of glucose and membrane disulfides reduced. In G6PD-deficient cells, GSSG is not reduced, and the oxidative damage (disulfide formation) in the membrane not repaired. Reduction of membrane disulfides does occur after the addition of GSH to these membranes. A direct link between the thiol status of the cell membrane and cellular GSH is thereby established. GSH serves as a reductant of membrane protein disulfides, in addition to averting membrane thiol oxidation.  相似文献   

18.
Red blood cells (RBCs) contain large amounts of iron and operate in highly oxygenated tissues. As a result, these cells encounter a continuous oxidative stress. Protective mechanisms against oxidation include prevention of formation of reactive oxygen species (ROS), scavenging of various forms of ROS, and repair of oxidized cellular contents. In general, a partial defect in any of these systems can harm RBCs and promote senescence, but is without chronic hemolytic complaints. In this review we summarize the often rare inborn defects that interfere with the various protective mechanisms present in RBCs. NADPH is the main source of reduction equivalents in RBCs, used by most of the protective systems. When NADPH becomes limiting, red cells are prone to being damaged. In many of the severe RBC enzyme deficiencies, a lack of protective enzyme activity is frustrating erythropoiesis or is not restricted to RBCs. Common hereditary RBC disorders, such as thalassemia, sickle-cell trait, and unstable hemoglobins, give rise to increased oxidative stress caused by free heme and iron generated from hemoglobin. The beneficial effect of thalassemia minor, sickle-cell trait, and glucose-6-phosphate dehydrogenase deficiency on survival of malaria infection may well be due to the shared feature of enhanced oxidative stress. This may inhibit parasite growth, enhance uptake of infected RBCs by spleen macrophages, and/or cause less cytoadherence of the infected cells to capillary endothelium.  相似文献   

19.
Cord blood has numerous facilities for life and used in many different areas. Cord blood contains many different catalytic proteins including antioxidant enzymes. Here we purified human cord blood glutathione reductase (hcbGR), glutathione S-transferase (hcbGST) and human cord blood glutathione peroxidase (hcbGPx) from human cord blood erythrocytes and analyzed the inhibition effects of the antibiotics incorporating cefuroxime, ceftriaxone, ceftizoxime and cefoperazone, on these enzymes. KI values for the drugs ranged from 10.42 to 28.72 µM for hcbGR, 32.7 to 244.8 µM for hcbGPx, and 32.39 to 267.3 µM for hcbGST. Cefuroxime caused the highest inhibition on all enzymes with KI values of 10.42, 32.39, 32.7 µM for hcbGR, hcbGST, and hcbGPx, respectively. All drugs displayed non-competitive inhibition regardless of their structures. Since these drugs are often used during pregnancy, identification of possible undesired impacts on various parameters has a great importance for pharmacological and medical applications.  相似文献   

20.
This study was carried out to investigate HOCl-induced lysis of human erythrocytes. Using reagent HOCl with isolated red cells, we showed that the rate of lysis was dependent on the dose of HOCl per red cell rather than on the concentration of oxidant. The process was inhibited by scavengers such as methionine and taurine, but only if they were present at the time of addition of HOCl. Lysis was preceded by a decrease in cell density, a change in the deformability of the membrane as evidence by ektacytometry, and an increase in K+-leak. Electron microscopy showed extensive disruption of the membrane. Increasing doses of HOCl caused progressive loss of membrane thiols, bu complete thiol oxidation by N-ethylmaleimide did not result in an equivalent rate of lysis. Restoration of oxidised thiols by incubation with glucose did not significantly alter the pattern of lysis. Taken together, these results suggest that thiol oxidation was not responsible for HOCl-mediated lysis. There was evidence of increasing crosslinking of membrane proteins on electrophoresis, only some of which was due to the formation of disulfides. TLC of the membrane lipids indicated that there may be formation of chlorohydrins by reaction of HOCl with the fatty acid double bonds. This reaction results in the formation of a more polar species which, if formed, would be extremely disrupting to the lipid bilayer. The results indicate that HOCl-mediated damage to the membrane proteins or to the lipid bilayer comprises an initial damaging event that sets the cells on a path toward eventual lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号