首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen peroxide (H2O2), a major reactive oxygen species (ROS) produced during oxidative stress, is toxic to the cells. Hence, H2O2 has been extensively used to study the effects of antioxidant and cytoprotective role of phytochemicals. In the present investigation H2O2 was used to induce oxidative stress via ROS production within PC12 and L132 cells. Cytoprotective propensity of Bacopa monniera extract (BME) was confirmed by cell viability assays, ROS estimation, lipid peroxidation, mitochondria membrane potential assay, comet assay followed by gene expression studies of antioxidant enzymes in PC12 and L132 cells treated with H2O2 for 24 h with or without BME pre-treatment. Our results elucidate that BME possesses radical scavenging activity by scavenging 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide radical, and nitric oxide radicals. The IC50 value of BME against these radicals was found to be 226.19, 15.17, 30.07, and 34.55 µg/ml, respectively). The IC50 of BME against ROS, lipid peroxidation and protein carbonylation was found to be 1296.53, 753.22, and 589.04 µg/ml in brain and 1137.08, 1079.65, and 11101.25 µg/ml in lung tissues, respectively. Further cytoprotective potency of the BME ameliorated the mitochondrial and plasma membrane damage induced by H2O2 as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase leakage assays in both PC12 and L132 cells. H2O2 induced cellular, nuclear and mitochondrial membrane damage was restored by BME pre-treatment. H2O2 induced depleted antioxidant status was also replenished by BME pre-treatment. This was confirmed by spectrophotometric analysis, semi-quantitative RT-PCR and western blot studies. These results justify the traditional usage of BME based on its promising antioxidant and cytoprotective property.  相似文献   

2.
Photoreceptor degeneration (PD) refers to a group of heterogeneous outer retinal dystrophies characterized by the death of photoreceptors. Both oxidative stress and inflammation are involved in the pathogenesis of PD. We investigate whether vitamin D has a potential for the treatment of PD by evaluating the anti‐oxidative stress and anti‐inflammatory properties of the active form of vitamin D3, 1,α, 25‐dihydroxyvitamin D3, in a mouse cone cell line, 661W. Mouse cone cells were treated with H2O2 or a mixture of H2O2 and vitamin D; cell viability was determined. The production of reactive oxygen species (ROS) in treated and untreated cells was measured. The expression of key anti‐oxidative stress and inflammatory genes in treated and untreated cells was determined. Treatment with vitamin D significantly increased cell viability and decreased ROS production in 661W cells under oxidative stress induced by H2O2. H2O2 treatment in 661W cells can significantly down‐regulate the expression of antioxidant genes and up‐regulate the expression of neurotoxic cytokines. Vitamin D treatment significantly reversed these effects and restored the expression of antioxidant genes. Vitamin D treatment also can block H2O2 induced oxidative damages. The data suggested that vitamin D may offer a therapeutic potential for patients with PD.  相似文献   

3.
Nobiletin (3′,4′,5,6,7,8‐hexamethoxyflavone), a dietary polymethoxylated flavonoid found in Citrus fruits, has been reported to have antioxidant effect. However, the effect of nobiletin on human retinal pigment epithelium (RPE) cells induced by hydrogen peroxide (H2O2) is still unclear. Therefore, we investigated the protective effect of nobiletin against H2O2‐induced cell death in RPE cells. Our results demonstrated that nobiletin significantly increased cell viability from oxidative stress. Nobiletin inhibited H2O2‐induced ROS production and caspase‐3/7 activity in ARPE‐19 cells. Furthermore, nobiletin significantly increased Akt phosphorylation in ARPE‐19 cells exposed to H2O2. Meanwhile, LY294002, an inhibitor of PI3K/Akt, abolished the protective effect of nobiletin against H2O2‐induced decreased cell viability and increased caspase‐3/7 activity in ARPE‐19 cells. In summary, these data show that nobiletin protects RPE cells against oxidative stress through activation of the Akt‐signaling pathway. Thus, nobiletin should be an oxidant that attenuates the development of age‐related macular degeneration.  相似文献   

4.

It is known that oxidative stress may cause neuronal injury and several experimental models showed that As2O3 exposure causes oxidative stress. Lycopene, a carotenoid, has been shown to have protective effect in neurological disease models due to antioxidant activity, but its effect on As2O3-induced neurotoxicity is not identified yet. The aim of this study is to investigate the effects of lycopene on As2O3-induced neuronal damage and the related mechanisms. Cell viability was determined by the MTT assay. Lycopene was administrated with different concentrations (2, 4, 6 and 8 µM) one hour before 2 µM As2O3 exposure in SH-SY5Y human neuroblastoma cells. The anti-oxidant effect of lycopene was determined by measuring superoxide dismutase (SOD), catalase (CAT) hydrogen peroxide (H2O2), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS). MTT results and LDH cytotoxicity analyses showed that pretreatment with 8 µM lycopene significantly improved the toxicity due to As2O3 exposure in SH?SY5Y neuroblastoma cells. Pretreatment with lycopene significantly increased the activities of anti?oxidative enzymes as well as total antioxidant status and decreased total oxidative status in As2O3 exposed cells. The results of this study indicate that lycopene may be a potent neuroprotective against oxidative stress and could be used to prevent neuronal injury or death in several neurological diseases.

  相似文献   

5.
Several neurodegenerative diseases and brain injury involve reactive oxygen species and implicate oxidative stress in disease mechanisms. Hydrogen peroxide (H2O2) formation due to mitochondrial superoxide leakage perpetuates oxidative stress in neuronal injury. Catalase, an H2O2-degrading enzyme, thus remains an important antioxidant therapy target. However, catalase therapy is restricted by its labile nature and inadequate delivery. Here, a nanotechnology approach was evaluated using catalase-loaded, poly(lactic co-glycolic acid) nanoparticles (NPs) in human neuronal protection against oxidative damage. This study showed highly efficient catalase encapsulation capable of retaining∼99% enzymatic activity. NPs released catalase rapidly, and antioxidant activity was sustained for over a month. NP uptake in human neurons was rapid and nontoxic. Although human neurons were highly sensitive to H2O2, NP-mediated catalase delivery successfully protected cultured neurons from H2O2-induced oxidative stress. Catalase-loaded NPs significantly reduced H2O2-induced protein oxidation, DNA damage, mitochondrial membrane transition pore opening and loss of cell membrane integrity and restored neuronal morphology, neurite network and microtubule-associated protein-2 levels. Further, catalase-loaded NPs improved neuronal recovery from H2O2 pre-exposure better than free catalase, suggesting possible applications in ameliorating stroke-relevant oxidative stress. Brain targeting of catalase-loaded NPs may find wide therapeutic applications for oxidative stress-associated acute and chronic neurodegenerative disorders.  相似文献   

6.
《Free radical research》2013,47(9):1156-1164
Abstract

Oxidative phosphorylation (OXPHOS) is not only the main source of ATP for the cell, but also a major source of reactive oxygen species (ROS), which lead to oxidative stress. At present, mitochondria are considered the organelles responsible for the OXPHOS, but in the last years we have demonstrated that it can also occur outside the mitochondrion. Myelin sheath is able to conduct an aerobic metabolism, producing ATP that we have hypothesized is transferred to the axon, to support its energetic demand.

In this work, spectrophotometric, cytofluorimetric, and luminometric analyses were employed to investigate the oxidative stress production in isolated myelin, as far as its respiratory activity is concerned. We have evaluated the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), markers of lipid peroxidation, as well as of hydrogen peroxide (H2O2), marker of ROS production. To assess the presence of endogenous antioxidant systems, superoxide dismutase, catalase, and glutathione peroxidase activities were assayed. The effect of certain uncoupling or antioxidant molecules on oxidative stress in myelin was also investigated.

We report that isolated myelin produces high levels of MDA, 4-HNE, and H2O2, likely through the pathway composed by Complex I–III–IV, but it also contains active superoxide dismutase, catalase, and glutathione peroxidase, as antioxidant defense. Uncoupling compounds or Complex I inhibitors increase oxidative stress, while antioxidant compounds limit ROS generation.

Data may shed new light on the role of myelin sheath in physiology and pathology. In particular, it can be presumed that the axonal degeneration associated with myelin loss in demyelinating diseases is related to oxidative stress caused by impaired OXPHOS.  相似文献   

7.
Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age‐related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo‐excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age‐related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L‐Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE‐19) cells were exposed to hydrogen peroxide (H2O2) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE‐19 cells against H2O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL‐8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.  相似文献   

8.
The overproduction of reactive oxygen species (ROS) causes oxidative stress, such as Hydrogen peroxide (H2O2). Acute oxidative stress is one of the main reasons for cell death. In this study, the antioxidant properties of vanillic acid- a polyphenolic compound was evaluated. Therefore, this study aims to check the effectiveness of vanillic acid in H2O2-induced oxidative stress in D. Mel-2 cell line. The efficacy was determined by biochemical tests to check the ROS production. The cytotoxicity of H2O2 and vanillic acid was checked by MTT assay. The DNA fragmentation was visualized by gel electrophoresis. Protein biomarkers of oxidative stress were analyzed by western blotting. The results depict a promising antioxidant effect of vanillic acid. The IC50 value of vanillic acid and H2O2 was found 250 μg/ml and 125 μg/ml, respectively. The catalase activity, SOF, GPx, and PC was seen less in H2O2 treated group compared with the control and vanillic acid treated group. However, the TBRAS activity was hight in H2O2 treated group. The effect of H2O2 on DNA fragmentation was high as compared with vanillic acid-treated cells. The protein expression of Hsp70, IL-6 and iNOS was seen significant in a vanillic acid-treated group as compared with H2O2 treated group. These results reinforce that at low concentration, vanillic acid could be used as an antioxidant agent in the food and pharmaceutical industries.  相似文献   

9.
Oxidative stress can cause injury in retinal endothelial cells. Carboxymethyl cellulose modified with collagen peptide (CMCC) is of a distinct antioxidant capacity and potentially a good drug carrier. In this study, the protective effects of CMCC against H2O2‐induced injury of primary retinal endothelial cells were investigated. In vitro, we demonstrated that CMCC significantly promoted viability of H2O2‐treated cells, efficiently restrained cellular reactive oxygen species (ROS) production and cell apoptosis. Then, the CMCC was employed as both drug and anti‐inflammatory drug carrier for treatment of retinal ischaemia/reperfusion (I/R) in rats. Animals were treated with CMCC or interleukin‐10‐loaded CMCC (IL‐10@CMCC), respectively. In comparisons, the IL‐10@CMCC treatment exhibited superior therapeutic effects, including better restoration of retinal structural thickness and less retinal apoptosis. Also, chemiluminescence demonstrated that transplantation of IL‐10@CMCC markedly reduced the retinal oxidative stress level compared with CMCC alone and potently recovered the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that CMCC provides a promising platform to enhance the drug‐based therapy for I/R‐related retinal injury.  相似文献   

10.
How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study’s intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial–mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial–mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.  相似文献   

11.
Mitochondrial damage and oxidative stress are known to contribute to the pathogenesis of noise-induced hearing loss (NIHL). In this study, we examined the protective effect of O2/O3 mixture (ozone/oxygen) therapy against mitochondrial induced damage and oxidative stress by noise exposure in rat brain and cochlear. For this purpose, rats were divided into four groups: 1 – control group; 2 – noise-exposed group (100?dB); 3 – noise?+?O2/O3, and 4 – O2/O3 (30 µg/ml). After 14 d, animals were anesthetised. Rat brain and cochlear tissue were removed for evaluation of the histopathological damages, oxidative stress, and mitochondrial dysfunction in both tissues. Our findings indicated that noise caused pathological damage, oxidative stress, and mitochondrial dysfunction in rat brain and cochlear. Also, daily administration of an O2/O3 therapy (30 µg/ml intravenous) efficiently increased enzymatic and non-enzymatic antioxidant in brain and cochlear that this action led to inhibition of pathological damages, oxidative stress, reactive oxygen species formation, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, and cytochrome c release resulting from noise. These findings suggest that the moderate O2/O3 therapy enhances the capacity of enzymatic and non-enzymatic antioxidant in brain and cochlear that protects against NIHL.  相似文献   

12.
H2O2 can freely crosses membranes and in the presence of Fe2+ (or Cu+) it is prone to participate in Fenton reaction. This study evaluated the concentration and time-dependent effects of H2O2-induced oxidative stress on MnSOD, Se:GPx and catalase and on aconitase. Acute and chronic H2O2 treatments were able to induce oxidative stress in HeLa cells as they significantly decreased aconitase activity and also caused a very significant decrease on antioxidant enzyme activities. The inhibition of enzyme activities was time- and concentration-dependent. Chronic treatment with 5 µM H2O2/h after 24 h was able to decrease all enzyme activities almost at the same level as the acute treatment. Acute and chronic treatments on antioxidant enzyme activities were prevented by cell treatment with ascorbic acid or N-acetylcysteine. These results indicate that antioxidant enzymes can also be affected by the same ROS they produce or neutralize if the time of exposure is long enough.  相似文献   

13.
Pterostilbene (PTE, trans-3,5-dimethoxy-4′-hydroxystilbene), a natural plant polyphenol, possesses numerous pharmacological effects, including antioxidant, antidiabetic, antiatherosclerotic, and neuroprotective aspects. This study aims to investigate whether PTE plays a protective role against oxidative stress injury by GAS6/Axl signaling pathway in cardiomyocytes. Hydrogen peroxide (H2O2)-induced oxidative stress HL-1 cells were used as models. The mechanism by which PTE protected oxidative stress is investigated by combining cell viability, cell ROS levels, apoptosis assay, molecular docking, quantitative real-time PCR, and western blot analysis. GAS6 shRNA was performed to investigate the involvement of GAS6/Axl pathways in PTE's protective role. The results showed that PTE treatment improved the cell morphology and viability, and inhibited the apoptosis rate and ROS levels in H2O2-injured HL-1 cells. Particularly, PTE treatment upregulated the levels of GAS6, Axl, and markers related to oxidative stress, apoptosis, and mitochondrial function related. Molecular docking showed that PTE and GAS6 have good binding ability. Taken together, PTE plays a protective role against oxidative stress injury through inhibiting oxidative stress and apoptosis and improving mitochondrial function. Particularly, GAS6/Axl axis is the surprisingly prominent in the PTE-mediated pleiotropic effects.  相似文献   

14.
Oxidative stress within chloroplasts is originated due to light‐dependent O2 reduction. This may be exacerbated by bipyridinium herbicides, which act at photosystem I as artificial electron acceptors. Their oxidation produces a superoxide anion that further dismutates to H2O2 and then, by the Fenton reaction, H2O2 may be reduced to the hydroxyl radical (OH?). Reactive oxygen species (ROS), when produced in high amounts, provoke severe damage to the plant cell. Herein it is reported that two nitric oxide (NO) donors, sodium nitroprusside (100 µm ) and S‐nitroso‐N‐acetylpenicillamine (200 µm ), greatly reduced lipid peroxidation and the protein loss caused by the application of a high dose of the bipyridinium herbicide diquat to potato leaf pieces or isolated chloroplasts. Nitric oxide donors also protected the RNA against oxidative damage. Photo‐oxidative toxicity was correlated with an increase in photosynthetic electron transport and ROS production, but the rate of electron transport was restored and the ROS free amount was markedly reduced in the presence of NO. The specific activity of superoxide dismutase was not affected by diquat or NO donors, whereas just a small increase in catalase activity was observed after 24 h of treatment. These results provide strong evidence that NO is a potent antioxidant in plants and that its action may, at least in part, be explained by its ability to directly scavenge ROS.  相似文献   

15.
Water stress is a major limitation for plant survival and growth. Several physiological and antioxidative mechanisms are involved in the adaptation to water stress by plants. In this experiment, tea cultivars (TV-1, TV-20, TV-29 and TV-30) were subjected to drought stress by withholding water for 20 days followed by rehydration. An experiment was thus performed to test and compare the effect of dehydration and rehydration in growing seedlings of tea cultivars. The effect of drought stress and post stress rehydration was measured by studying the reactive oxygen species (ROS) metabolism in tea. Water stress decreased nonenzymic antioxidants like ascorbate and glutathione contents with differential responses of enzymic antioxidants in selected clones of Camellia sinensis indicating an oxidative stress situation. This was also apparent from increased lipid peroxidation, O2 and H2O2 content in water stress imposed plants. But the oxidative damage was not permanent as the plants recovered after rehydration. Comparatively less decrease in antioxidants, higher activities of POX, GR, CAT with higher phenolic contents suggested better drought tolerance of TV-1, which was also visible from the recovery study, where it showed lower ROS level and higher recovery of antioxidant property in response to rehydration, thus proving its better recovery potential. On the other hand, highest H2O2 and lipid peroxidation with decrease in phenolic content during stress in TV-29 suggested its sensitivity to drought. The antioxidant efficiency and biochemical tolerance in response to drought stress thus observed in the tested clones of Camellia sinensis can be arranged in the order as TV-30 > TV-1 > TV-29 > TV-20.  相似文献   

16.
Oxidative stress can cause injury in retinal endothelial cells. Salidroside is a strong antioxidative and cytoprotective supplement in Chinese traditional medicine. In this study, we investigated the effects of salidroside on H2O2-induced primary retinal endothelial cells injury. Salidroside decreased H2O2-induced cell death, and efficiently suppressed cellular ROS production, malondialdehyde generation, and cell apoptosis induced by H2O2 treatment. Salidroside induced the intracellular mRNA expression, protein expression, and enzymatic activities of catalase and Mn-SOD and increased the ratio of Bcl2/Bax. Our results demonstrated that salidroside protected retinal endothelial cells against oxidative injury through increasing the Bcl2/Bax signaling pathway and activation of endogenous antioxidant enzymes. This finding presents salidroside as an attractive agent with potential to attenuate retinopathic diseases.  相似文献   

17.
Oxidative damage from reactive oxygen species (ROS) has been implicated in many diseases, including age-related macular degeneration, in which the retinal pigment epithelium (RPE) is considered a primary target. The aim of this study was to determine whether erythropoietin (EPO) protects cultured human RPE cells against oxidative damage and to identify the pathways that may mediate protection. EPO (1 IU/ml) significantly increased the viability of oxidant-treated RPE cells, decreased the release of the inflammatory cytokines tumor necrosis factor-α and interleukin-1β, recovered the RPE cells' barrier integrity disrupted by oxidative stress, prevented oxidant-induced cell DNA fragmentation and membrane phosphatidylserine exposure, and also reduced the levels of oxidant-induced intracellular ROS and restored cellular antioxidant potential, total antioxidant capacity, glutathione peroxidase, and superoxide dismutase and decreased malondialdehyde, the end product of lipid peroxidation. EPO inhibited caspase-3-like activity. Protection by EPO was partly dependent on the activation of Akt1 and the maintenance of the mitochondrial membrane potential. No enhanced or synergistic protection was observed during application of Z-DEVD-FMK (caspase-3 inhibitor) combined with EPO compared with cultures exposed to EPO and H2O2 alone. Together, these results suggest that EPO could protect against oxidative injury-induced cell death and mitochondrial dysfunction in RPE cells through modulation of Akt1 phosphorylation, mitochondrial membrane potential, and cysteine protease activity.  相似文献   

18.
19.
Nowadays, increased use of nanomaterials in industry and biomedicine poses potential risks to human health and the environment. Studying their possible toxicological effects is therefore of great significance. The present investigation was designed to examine the status of oxidative stress induced by nanoparticles (NPs) of ferric oxide (Fe2O 3) and titanium oxide (TiO 2) with their micro-sized counterpart on mouse lung and bone marrow–derived normal tissue cells. We assessed the induction of oxidative stress by measuring its indicators such as antioxidant scavenging activity of superoxide dismutase and catalase as well as malondialdehyde concentration. Moreover, colony formation of bone marrow cells was assayed following induction with colony stimulating factor (CSF) from lung cells. NPs had a more potent stimulatory effect on the oxidative stress status than their micron-sized counterparts. In addition, the highest level of oxidative stress derived from TiO 2 NPs was observed in both tissue types. Cotreatment with NPs and the antioxidant α-tocopherol reduced antioxidant activities and membrane lipid peroxidation (LPO) in the lung cells, but increased CSF-induced colony formation activity of bone marrow cells, suggesting that oxidative stress may be the cause of the cytotoxic effects of NPs. It is concluded that free radicals generated following exposure to NPs resulted in significant oxidative stress in mouse cells, indicated by increased LPO and antioxidant enzyme activity and decreased colony formation.  相似文献   

20.
Tang  Ying  Li  Yingqin  Yu  Guangyin  Ling  Zemin  Zhong  Ke  Zilundu  Prince L. M.  Li  Wenfu  Fu  Rao  Zhou  Li-Hua 《Cellular and molecular neurobiology》2021,41(6):1373-1387

The imbalance between excess reactive oxygen species (ROS) generation and insufficient antioxidant defenses contribute to a range of neurodegenerative diseases. High ROS levels damage cellular macromolecules such as DNA, proteins and lipids, leading to neuron vulnerability and eventual death. However, the underlying molecular mechanism of the ROS regulation is not fully elucidated. Recently, an increasing number of studies suggest that microRNAs (miRNAs) emerge as the targets in regulating oxidative stress. We recently reported the neuroprotective effect of miR-137-3p for brachial plexus avulsion-induced motoneuron death. The present study is sought to investigate whether miR-137-3p also could protect PC12 cells against hydrogen peroxide (H2O2) induced neurotoxicity. By using cell viability assay, ROS assay, gene and protein expression assay, we found that PC-12 cells exposed to H2O2 exhibited decreased cell viability, increased expression levels of calpain-2 and neuronal nitric oxide synthase (nNOS), whereas a decreased miR-137-3p expression. Importantly, restoring the miR-137-3p levels in H2O2 exposure robustly inhibited the elevated nNOS, calpain-2 and ROS expression levels, which subsequently improved the cell viability. Furthermore, the suppressive effect of miR-137-3p on the elevated ROS level under oxidative stress was considerably blunted when we mutated the binding site of calpain-2 targted by miR-137-3p, suggesting the critical role of calpain-2 involving the neuroprotective effect of miR-137-3p. Collectively, these findings highlight the neuroprotective role of miR-137-3p through down-regulating calpain and NOS activity, suggesting its potential role for combating oxidative stress insults in the neurodegenerative diseases.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号