首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver fibrosis, an important health condition associated with chronic liver injury that provides a permissive environment for cancer development, is characterized by the persistent deposition of extracellular matrix components that are mainly derived from activated hepatic stellate cells (HSCs). CDH11 belongs to a group of transmembrane proteins that are principally located in adherens junctions. CDH11 mediates homophilic cell-to-cell adhesion, which may promote the development of cirrhosis. The goal of this study was to determine whether CDH11 regulates liver fibrosis and to examine its mechanism by focusing on HSC activation. Here we demonstrate that CDH11 expression is elevated in human and mouse fibrotic liver tissues and that CDH11 mediates the profibrotic response in activated HSCs. Our data indicate that CDH11 regulates the TGFβ-induced activation of HSCs. Moreover, cells from CDH11 deficient mice displayed decreased HSC activation in vitro, and CDH11 deficient mice developed liver fibrogenesis in response to chronic damage induced by CCl4 administration. In addition, CDH11 expression was positively correlated with liver fibrosis in patients with cirrhosis, and could therefore be a prognostic factor in patients with liver fibrosis. Collectively, our findings demonstrate that CDH11 promotes liver fibrosis by activating HSCs and may represent a potential target for anti-fibrotic therapies.  相似文献   

2.
Hepatic stellate cells play a key role in the development of hepatic fibrosis. Activated hepatic stellate cells can be reversed to a quiescent-like state or apoptosis can be induced to reverse fibrosis. Some studies have recently shown that Schistosoma mansoni eggs could suppress the activation of hepatic stellate cells and that soluble egg antigens from schistosome eggs could promote immunocyte apoptosis. Hence, in this study, we attempt to assess the direct effects of Schistosoma japonicum soluble egg antigens on hepatic stellate cell apoptosis, and to explore the mechanism by which the apoptosis of activated hepatic stellate cells can be induced by soluble egg antigens, as well as the mechanism by which hepatic stellate cell activation is inhibited by soluble egg antigens. Here, it was shown that S. japonicum-infected mouse livers had increased apoptosis phenomena and a variability of peroxisome proliferator-activated receptor γ expression. Soluble egg antigens induce morphological changes in the hepatic stellate cell LX-2 cell line, inhibit cell proliferation and induce cell-cycle arrest at the G1 phase. Soluble egg antigens also induce apoptosis in hepatic stellate cells through the TNF-related apoptosis-inducing ligand/death receptor 5 and caspase-dependent pathways. Additionally, soluble egg antigens could inhibit the activation of hepatic stellate cells through peroxisome proliferator-activated receptor γ and the transforming growth factor β signalling pathways. Therefore, our study provides new insights into the anti-fibrotic effects of S. japonicum soluble egg antigens on hepatic stellate cell apoptosis and the underlying mechanism by which the liver fibrosis could be attenuated by soluble egg antigens.  相似文献   

3.
Liver fibrosis occurs in most cases of chronic liver disease, which are somewhat common, but also a potentially deadly group of diseases. In vitro modeling of liver fibrosis relies primarily on the isolation of in vivo activated hepatic stellate cells (aHSCs) and studying them in standard tissue culture dishes (two-dimensional [2D]). In contrast, modeling of fibrosis in a biofabricated three-dimensional (3D) construct allows us to study changes to the environment, such as extracellular matrix (ECM) composition and structure, and tissue rigidity. In the current study, we used aHSCs produced through subcultures in 2D and encapsulated them in a 3D collagen gel to form spherical constructs. In parallel, and as a comparison, we used an established HSC line, LX-2, representing early and less severe fibrosis. Compared with LX-2 cells, the aHSCs created a stiffer environment and expressed higher levels of TIMP1 and LOXL2, all of which are indicative of advanced liver fibrosis. Collectively, this study presents a fibrosis model that could be incorporated with multi-cellular models to more accurately reflect the effects of a severe fibrotic environment on liver function.  相似文献   

4.
5.
Liver fibrosis (LF) mortality rate is approximately 2 million per year. Irrespective of the etiology of LF, a key element in its development is the transition of hepatic stellate cells (HSCs) from a quiescent phenotype to a myofibroblast-like cell with the production of fibrotic proteins. It is necessary to define optimal isolation and culturing conditions for good HSCs yield and proper phenotype preservation for studying the activation of HSCs in vitro. In the present study, the optimal conditions of HSC isolation and culture were examined to maintain the HSC’s undifferentiated phenotype. HSCs were isolated from Balb/c mice liver using Nycodenz, 8, 9.6, and 11%. The efficiency of the isolation procedure was evaluated by cell counting and purity determination by flow cytometry. Quiescent HSCs were cultured in test media supplemented with different combinations of fetal bovine serum (FBS), glutamine (GLN), vitamin A (vitA), insulin, and glucose. The cells were assessed at days 3 and 7 of culture by evaluating the morphology, proliferation using cell counting kit-8, lipid storage using Oil Red O (ORO) staining, expression of a-smooth muscle actin, collagen I, and lecithin-retinol acyltransferase by qRT-PCR and immunocytochemistry (ICC). The results showed that Nycodenz, at 9.6%, yielded the best purity and quantity of HSCs. Maintenance of HSC undifferentiated phenotype was achieved optimizing culturing conditions (serum-free Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with glucose (100 mg/dl), GLN (0.5 mM), vitA (100 μM), and insulin (50 ng/ml)) with a certain degree of proliferation allowing their perpetuation in culture. In conclusion, we have defined optimal conditions for HSCs isolation and culture.  相似文献   

6.
Myung SJ  Yoon JH  Gwak GY  Kim W  Lee JH  Kim KM  Shin CS  Jang JJ  Lee SH  Lee SM  Lee HS 《FEBS letters》2007,581(16):2954-2958
Wnt signaling was implicated in pulmonary and renal fibrosis. Since Wnt activity is enhanced in liver cirrhosis, Wnt signaling may also participate in hepatic fibrogenesis. Thus, we determined if Wnt signaling modulates hepatic stellate cell (HSC) activation and survival. Wnt3A treatment significantly activated human HSCs, while this was inhibited in secreted frizzled-related protein 1 (sFRP1) overexpressing cells. Wnt3A treatment significantly suppressed TRAIL-induced apoptosis in control HSCs versus sFRP1 over-expressing cells. Particularly, caspase 3 was more activated in sFRP1 over-expressing cells following TRAIL and Wnt3A treatment. These observations imply that Wnt signaling promotes hepatic fibrosis by enhancing HSC activation and survival.  相似文献   

7.
目的: 探讨大鼠肝纤维化病理过程中肝组织及在体肝星状细胞 (HSC)的含SH2结构域的蛋白酪氨酸磷酸酶1 (SHP1)表达变化与在体HSC活化及增殖的关系。方法: 随机将50只健康雄性SD大鼠分为对照组(10只)、模型组(40只),采用腹腔注射四氯化碳法建立大鼠肝纤维化模型,Masson三色染色及HE染色检测大鼠肝脏组织的病理组织学变化,SHP1与α-平滑肌肌动蛋白 (α-SMA)免疫荧光双标记检测大鼠肝组织中活化HSC的SHP1表达,免疫组织化学染色检测大鼠肝组织的α-SMA及SHP1表达,并分别对大鼠肝组织的SHP1表达及大鼠肝组织中活化HSC的SHP1表达与大鼠肝组织的α-SMA表达进行Pearson’s相关性分析。结果: 大鼠肝纤维化模型成功构建,随着造模时间延长,大鼠肝纤维化逐渐加重。与对照组大鼠肝组织的SHP1阳性表达平均光密度值 (MOD) (0.08±0.01)比较,造模不同时间(2周、4周、6周、8周)大鼠纤维化肝组织的SHP1阳性表达MOD (0.11±0.01、0.14±0.01、0.16±0.01、0.19±0.01)显著增加(P<0.05),并逐渐升高(P<0.05)。与对照组大鼠肝组织的α-SMA阳性表达MOD (0.04±0.01)比较,造模不同时间(2周、4周、6周、8周)大鼠纤维化肝组织的α-SMA阳性表达MOD (0.06±0.01、 0.09±0.01、0.12±0.01、0.16±0.02)明显增加(P<0.05),并逐渐升高(P<0.05),即在体HSC的活化及增殖逐渐加快(α-SMA是HSC的活化标志)。SHP1与α-SMA免疫荧光双标记检测显示,造模2周、4周、6周、8周大鼠纤维化肝组织中表达SHP1的活化HSC占总的活化HSC的百分比(26.49%±3.44%、37.14%±4.57%、44.90%±2.94%、58.09%±5.33%)逐渐升高(P<0.05)。上述大鼠纤维化肝组织的SHP1表达及大鼠纤维化肝组织中表达SHP1的活化HSC占总的活化HSC的百分比均与大鼠纤维化肝组织的α-SMA表达呈显著正相关(r值为0.926, 0.984,P<0.05)。结论: 在大鼠肝纤维病理过程中,肝组织及在体HSC 的SHP1表达与在体HSC的活化及增殖呈显著正相关。  相似文献   

8.
李严严  姜颖 《生物工程学报》2014,30(7):1059-1072
肝星型细胞(Hepatic stellate cells,HSCs),又叫储脂细胞(Fat-storing cells,FSCs)或脂肪细胞(lipocytes),是肝脏固有的非实质细胞类型之一,存在于狄氏腔内,以脂滴的形式储存人体维生素A总量的50%–80%。原代HSCs分离方法,目前主要集中于密度梯度离心法结合离心淘洗、HSCs高侧向角的流式分选法、紫外激发的自发荧光或特异性抗体标记的流式细胞术等,将为HSCs生理和病理研究提供坚实的基础。近年来,HSCs的研究蓬勃发展,合作领域不断拓宽。生理状态下,HSCs处于静息状态,合成细胞外基质(Extracellular matrix,ECM)并维持其稳态,同时广泛摄取和储存维生素A,并具有调节肝细胞再生的功能;而病理状态下,HSCs在肝损伤和持续性刺激条件下被激活,增殖活性明显增强,脂滴减少或消失,ECM合成也明显增加,具有收缩性,同时分泌多种促炎因子和粘附分子,并向肌成纤维细胞转变,表明HSCs的活化是肝纤维化发生发展过程中的关键环节之一。有关HSCs的分离和功能研究一直是肝脏细胞学和肝脏病理学研究的热点之一。文中我们将系统总结和探讨HSCs的分离方法和改进策略,及其功能研究进展和具有潜在价值的研究方向。  相似文献   

9.
Caveolin-1 (Cav-1) expression is increased in hepatic stellate cells (HSC) upon liver cirrhosis and it functions as an integral membrane protein of lipid rafts and caveolae that regulates and integrates multiple signals as a platform. This study aimed to evaluate the role of Cav-1 in HSC. Thus, the effects of exogenous expression of Cav-1 in GRX cells, a model of activated HSC, were determined. Here, we demonstrated through evaluating well-known HSC activation markers – such as α-smooth muscle actin, collagen I, and glial fibrillary acidic protein – that up regulation of Cav-1 induced GRX to a more activated phenotype. GRXEGFP-Cav1 presented an increased migration, an altered adhesion pattern, a reorganization f-actin cytoskeleton, an arrested cell cycle, a modified cellular ultrastructure, and a raised endocytic flux. Based on this, GRX EGFP-Cav1 represents a new cellular model that can be an important tool for understanding of events related to HSC activation. Furthermore, our results reinforce the role of Cav-1 as a molecular marker of HSC activation.  相似文献   

10.
11.
12.
Hepatic stellate cells (HSCs) activation is a key step that promotes hepatic fibrosis. Emerging evidence suggests that aerobic glycolysis is one of its important metabolic characteristics. Our previous study has reported that CD147, a glycosylated transmembrane protein, contributes significantly to the activation of HSCs. However, whether and how it is involved in the aerobic glycolysis of HSCs activation is unknown. The objective of the present study was to validate the effect of CD147 in HSCs activation and the underlying molecular mechanism. Our results showed that the silencing of CD147 decreased the expression of α-smooth muscle-actin (α-SMA) and collagen I at both mRNA and protein levels. Furthermore, CD147 silencing decreased the glucose uptake, lactate production in HSCs, and repressed the lactate dehydrogenase (LDH) activity, the expression of hexokinase 2 (HK2), glucose transporter 1 (Glut1). The effect of galloflavin, a well-defined glycolysis inhibitor, was similar to CD147 siRNA. Mechanistically, CD147 silencing suppressed glycolysis-associated HSCs activation through inhibiting the hedgehog signaling. Moreover, the hedgehog signaling agonist SAG could rescue the above effect of CD147 silencing. In conclusion, CD147 silencing blockade of aerobic glycolysis via suppression of hedgehog signaling inhibited HSCs activation, suggesting CD147 as a novel therapeutic target for hepatic fibrosis.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10616-021-00460-9.  相似文献   

13.
为揭示细胞珠蛋白对肝星状细胞氧化损伤的保护作用及相关机制,通过siRNA干扰内源性细胞珠蛋白基因,利用重组细胞珠蛋白作用于完全活化的人肝星状细胞系LX-2及大鼠原代肝星状细胞,并在LX-2细胞内过表达细胞珠蛋白,考察在过氧化氢及铁过载两种不同作用机制的氧化反应模型中细胞的增殖性及细胞内超氧化物水平。结果表明内源性细胞珠蛋白对于两种氧化反应导致的肝星状细胞损伤都具有显著性的保护作用,证明其在活化肝星状细胞内的表达上调是其应对氧化应激的保护性措施;重组细胞珠蛋白不仅能保护完全活化的LX-2细胞免受氧化应激损伤,并且能抑制未完全活化的原代肝星状细胞过度增殖以及保护其被过度损伤;重组细胞珠蛋白对细胞内的活性氧清除效果不理想,可能与其进出细胞缺乏相应的主动运输机制有关。进一步在LX-2细胞内过表达细胞珠蛋白对无论是铁过载或是过氧化氢引起的氧化反应均能发挥较好的保护性作用。为加速肝纤维化药物新靶点开发提供了理论依据。  相似文献   

14.
The dimerization and auto-transphosphorylation of platelet-derived growth factor receptor (PDGFR) upon engagement by platelet-derived growth factor (PDGF) activates signals promoting the mitogenic response of hepatic stellate cells (HSCs) due to liver injury, thus contributing to the development of hepatic fibrosis. We demonstrate that the tyrosine phosphatases Src homology 2 domain-containing phosphatase 1 and 2 (SHP-1 and SHP-2) act as crucial regulators of a complex signaling network orchestrated by PDGFR activation in a spatio-temporal manner with diverse and opposing functions in HSCs. In fact, silencing of either phosphatase shows that SHP-2 is committed to PDGFR-mediated cell proliferation, whereas SHP-1 dephosphorylates PDGFR hence abrogating the downstream signaling pathways that result in HSC activation. In this regard, SHP-1 as an off-switch of PDGFR signaling appears to emerge as a valuable molecular target to trigger as to prevent HSC proliferation and the fibrogenic effects of HSC activation. We show that boswellic acid, a multitarget compound with potent anti-inflammatory action, exerts an anti-proliferative effect on HSCs, as in other cell models, by upregulating SHP-1 with subsequent dephosphorylation of PDGFR-β and downregulation of PDGF-dependent signaling after PDGF stimulation. Moreover, the synergism resulting from the combined use of boswellic acid and imatinib, which directly inhibits PDGFR-β activity, on activated HSCs offers new perspectives for the development of therapeutic strategies that could implement molecules affecting diverse players of this molecular circuit, thus paving the way to multi-drug low-dose regimens for liver fibrosis.  相似文献   

15.
BACKGROUND/AIMS: Transforming growth factor beta (TGFbeta1) is considered the key mediator in the process of liver fibrosis. The purpose of this investigation was to evaluate the activity of ribozymes against TGFbeta1 in a cell-free system and activated hepatic stellate cells (HSCs), and antifibrotic effect in activated HSCs in vitro and in rats. METHODS: Three ribozymes targeting against TGFbeta1 mRNA were designed, and then cloned into the U1 snRNA expression cassette. The chimeric ribozymes were selected for the analysis of their performances in activated HSCs through the detection of their cleavage activities in a cell-free system. After ribozyme-encoding plasmids had been transfected into HSC-T6 cells, the effects of ribozymes on activated HSCs were evaluated through the analysis of proliferation, activation and collagen deposition of HSC-T6. The adenoviral vector expressing the ribozymes was constructed, and then delivered into rat models of hepatic fibrosis induced by carbon tetrachloride. RESULTS: TGFbeta1 expression was efficiently down-regulated in activated HSCs by U1 snRNA chimeric ribozymes which possessed perfect cleavage activity in a cell-free system. Further studies demonstrated that U1 snRNA chimeric ribozymes inhibited the synthesis of collagen I, reduced deposition of collagen I, suppressed BrdU incorporation, but had no effect on desmin and alpha-SMA expression in transfected HSC-T6 cells. Histological analysis demonstrated that the adenoviral vector expressing ribozyme (Rz803) could alleviate fibrotic pathology in rats treated with carbon tetrachloride. CONCLUSIONS: The anti-TGFbeta1 ribozymes could reverse the character of activated HSCs in vitro and improve fibrotic pathology in vivo. It indicated that TGFbeta1 could be considered as a novel candidate for a therapeutic agent against hepatic fibrosis.  相似文献   

16.
YB1 is a negative regulator in liver fibrosis. We wondered whether SJYB1, a homologous protein of YB1 from Schistosoma japonicum, has an effect on liver fibrosis in vitro. Recombinant SJYB1 (rSJYB1) protein was expressed in a bacterial system and purified by Ni‐NTA His·Bind Resin. A human hepatic stellate cell line, the LX‐2 cell line, was cultured and treated with rSJYB1. The role of rSJYB1 on LX‐2 cells was then analysed by Western blot and luciferase assay. We succeeded in expressing and purifying SJYB1 in a bacterial system and the purified rSJYB1 could be recognized by S japonicum‐infected rabbit sera. Western bolt analysis showed that rSJYB1 inhibited the expression of collagen type I, but had little effect on α‐smooth muscle actin (α‐SMA). Further analysis revealed that rSJYB1 inhibited the activity of collagen α1 (I) (COL1A1) promoter and functioned at ?1592/?1176 region of COL1A1 promoter. Our data demonstrate that rSJYB1‐mediated anti‐fibrotic activity involves inhibiting the activity of COL1A1 promoter and subsequently suppressing the expression of collagen type I in hepatic stellate cells.  相似文献   

17.
It is well established that growth-factor-induced reactive oxygen species (ROS) act as second messengers in cell signaling. We have previously reported that betaPix, a guanine nucleotide exchange factor for Rac, interacts with NADPH oxidase 1 (Nox1) leading to EGF-induced ROS generation. Here, we report the identification of the domains of Nox1 and betaPix responsible for the interaction between the two proteins. GST pull-down assays show that the PH domain of betaPix binds to the FAD-binding region of Nox1. We also show that overexpression of the PH domain of betaPix results in inhibition of superoxide anion generation in response to EGF. Additionally, NADPH oxidase Organizer 1 (NoxO1) is shown to interact with the NADPH-binding region of Nox1. These results suggest that the formation of the complex consisting of Nox1, betaPix, and NoxO1 is likely to be a critical step in EGF-induced ROS generation.  相似文献   

18.

Background

Augmenter of liver regeneration (ALR) protects liver from various injuries, however, the association of ALR with liver fibrosis, particularly its effect on hepatic stellate cells (HSC), remains unclear. In this study, we investigated the impact of ALR on the activation of HSC, a pivotal event in occurrence of liver fibrosis.

Methods

Liver fibrosis was induced in vivo in mice with heterozygous ALR knockdown (ALR-KD) by administration of CCl4 or bile duct ligation. The effect of ALR-KD and ALR-overexpression on liver fibrosis was studied in mice and in HSC cells as well.

Results

Hepatic collagen deposition and expression of α-smooth muscle actin (α-SMA) were significantly increased in the ALR-KD mice compared to wild-type mice. In vitro, ALR-shRNA resulted in the activation of HSC cell line (LX-2). Furthermore, ALR-shRNA promoted LX-2 cell migration, accompanied by increased filamentous actin (F-actin) assembly. The ALR-KD-mediated increase in HSC migration was associated with mitochondrial fusion, resulting in mitochondria elongation and enhancing ATP production. In contrast, ALR transfection (ALR-Tx) decelerated HSC migration and inhibited F-actin assembly, concomitantly enhancing mitochondrial fission and reducing ATP synthesis. Mechanically, stimulation of HSC migration by ALR-shRNA was attributed to the increased mitochondrial Ca2+ influx in HSCs. Treatment of ALR-shRNA-cells with Ruthenium Red (RuR), a specific inhibitor of mitochondrial calcium uniporter (MCU), significantly suppressed mitochondrial Ca2+ influx, HSC migration, mitochondrial fusion and ATP production. ALR-KD-induced HSC migration was verified in vitro in primary mouse HSCs.

Conclusion

Inhibition of ALR expression aggravates liver fibrosis, probably via promoting HSC migration and mitochondrial fusion.  相似文献   

19.
20.
Neurodegenerative diseases are attributed to impairment of the ubiquitin–proteasome system (UPS). Oxidative stress has been considered a contributing factor in the pathology of impaired UPS by promoting protein misfolding and subsequent protein aggregate formation. Increasing evidence suggests that NADPH oxidase is a likely source of excessive oxidative stress in neurodegenerative disorders. However, the mechanism of activation and its role in impaired UPS is not understood. We show that activation of NADPH oxidase in a neuroblastoma cell line (SHSY-5Y) resulted in increased oxidative and nitrosative stress, elevated cytosolic calcium, ER-stress, impaired UPS, and apoptosis. Rac1 inhibition mitigated the oxidative/nitrosative stress, prevented calcium-dependent ER-stress, and partially rescued UPS function. These findings demonstrate that Rac1 and NADPH oxidase play an important role in rotenone neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号