首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of stable cyclic nitroxide radicals have been extensively investigated both in vivo and in vitro demonstrating anti-inflammatory, radioprotective, anti-mutagenic, age-retardant, hypotensive, anti-cancer and anti-teratogenic activities. Yet, these stable radicals have not been evaluated in asthma and other airway inflammatory disorders. The present study investigated the effect of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (TPL) and 3-carbamoyl-proxyl (3-CP) in a mouse model of ovalbumin (OVA)-induced allergic asthma. Both 3-CP and TPL were non-toxic when administered either orally (1% w/w nitroxide-containing chow) or via intraperitoneal (IP) injection (∼300 mg/kg). Feeding the mice orally demonstrated that 3-CP was more effective than TPL in reducing inflammatory cell recruitment into the airway and in suppressing airway hyper-responsiveness (AHR) in OVA-challenged mice. To characterize the optimal time-window of intervention and mode of drug administration, 3-CP was given orally during allergen sensitization, during allergen challenge or during both sensitization and challenge stages, and via IP injection or intranasal instillation for 3 days during the challenge period. 3-CP given via all modes of delivery markedly inhibited OVA-induced airway inflammation, expression of cytokines, AHR and protein nitration of the lung tissue. Oral administration during the entire experiment was the most efficient delivery of 3-CP and was more effective than dexamethasone a potent corticosteroid used for asthma treatment. Under a similar administration regimen (IP injection before the OVA challenge), the effect of 3-CP was similar to that of dexamethasone and even greater on AHR and protein nitration. The protective effect of the nitroxides, which preferentially react with free radicals, in suppressing the increase of main asthmatic inflammatory markers substantiate the key role played by reactive oxygen and nitrogen species in the molecular mechanism of asthma. The present results demonstrate the therapeutic potential of nitroxides for the treatment of asthma.  相似文献   

2.
Flt3 ligand (Flt3-L) is a growth factor for dendritic cells and induces type 1 T cell responses. We recently reported that Flt3-L prevented OVA-induced allergic airway inflammation and suppressed late allergic response and airway hyper-responsiveness (AHR). In the present study we examined whether Flt3-L reversed allergic airway inflammation in an established model of asthma. BALB/c mice were sensitized and challenged with OVA, and AHR to methacholine was established. Then mice with AHR were randomized and treated with PBS or 6 microg of Flt3-L i.p. for 10 days. Pulmonary functions and AHR to methacholine were examined after rechallenge with OVA. Treatment with Flt3-L of presensitized mice significantly suppressed (p < 0.001) the late allergic response, AHR, bronchoalveolar lavage fluid total cellularity, absolute eosinophil counts, and inflammation in the lung tissue. There was a significant decrease in proinflammatory cytokines (TNF-alpha, IL-4, and IL-5) in bronchoalveolar lavage fluid, with a significant increase in serum IL-12 and a decrease in serum IL-5 levels. There was no significant effect of Flt3-L treatment on serum IL-4 and serum total IgE levels. Sensitization with OVA significantly increased CD11b(+)CD11c(+) cells in the lung, and this phenomenon was not significantly affected by Flt3-L treatment. These data suggest that Flt3-L can reverse allergic airway inflammation and associated changes in pulmonary functions in murine asthma model.  相似文献   

3.
4.
The mammalian target of rapamycin (mTOR) signaling pathway integrates environmental cues, promotes cell growth/differentiation, and regulates immune responses. Although inhibition of mTOR with rapamycin has potent immunosuppressive activity, mixed effects have been reported in OVA-induced models of allergic asthma. We investigated the impact of two rapamycin treatment protocols on the major characteristics of allergic asthma induced by the clinically relevant allergen, house dust mite (HDM). In protocol 1, BALB/c mice were exposed to 10 intranasal HDM doses over a period of 24 d and treated with rapamycin simultaneously during the sensitization/exposure period. In protocol 2, rapamycin was administered after the mice had been sensitized to HDM (i.p. injection) and prior to initiation of two intranasal HDM challenges over 4 d. Airway hyperreactivity (AHR), IgE, inflammatory cells, cytokines, leukotrienes, goblet cells, and activated T cells were assessed. In protocol 1, rapamycin blocked HDM-induced increases in AHR, inflammatory cell counts, and IgE, as well as attenuated goblet cell metaplasia. In protocol 2, rapamycin blocked increases in AHR, IgE, and T cell activation and reduced goblet cell metaplasia, but it had no effect on inflammatory cell counts. Increases in IL-13 and leukotrienes were also blocked by rapamycin, although increases in IL-4 were unaffected. These data demonstrated that rapamycin can inhibit cardinal features of allergic asthma, including increases in AHR, IgE, and goblet cells, most likely as a result of its ability to reduce the production of two key mediators of asthma: IL-13 and leukotrienes. These findings highlight the importance of the mTOR pathway in allergic airway disease.  相似文献   

5.
The mammalian target of rapamycin (mTOR) plays an important role in cell growth/differentiation, integrating environmental cues, and regulating immune responses. Our lab previously demonstrated that inhibition of mTOR with rapamycin prevented house dust mite (HDM)-induced allergic asthma in mice. Here, we utilized two treatment protocols to investigate whether rapamycin, compared to the steroid, dexamethasone, could inhibit allergic responses during the later stages of the disease process, namely allergen re-exposure and/or during progression of chronic allergic disease. In protocol 1, BALB/c mice were sensitized to HDM (three i.p. injections) and administered two intranasal HDM exposures. After 6 weeks of rest/recovery, mice were re-exposed to HDM while being treated with rapamycin or dexamethasone. In protocol 2, mice were exposed to HDM for 3 or 6 weeks and treated with rapamycin or dexamethasone during weeks 4–6. Characteristic features of allergic asthma, including IgE, goblet cells, airway hyperreactivity (AHR), inflammatory cells, cytokines/chemokines, and T cell responses were assessed. In protocol 1, both rapamycin and dexamethasone suppressed goblet cells and total CD4+ T cells including activated, effector, and regulatory T cells in the lung tissue, with no effect on AHR or total inflammatory cell numbers in the bronchoalveolar lavage fluid. Rapamycin also suppressed IgE, although IL-4 and eotaxin 1 levels were augmented. In protocol 2, both drugs suppressed total CD4+ T cells, including activated, effector, and regulatory T cells and IgE levels. IL-4, eotaxin, and inflammatory cell numbers were increased after rapamycin and no effect on AHR was observed. Dexamethasone suppressed inflammatory cell numbers, especially eosinophils, but had limited effects on AHR. We conclude that while mTOR signaling is critical during the early phases of allergic asthma, its role is much more limited once disease is established.  相似文献   

6.
Cyclooxygenase (COX) inhibition during allergic sensitization and allergen airway challenge results in augmented allergic inflammation. We hypothesized that this increase in allergic inflammation was dependent on increased generation of leukotrienes that results from COX inhibition, as leukotrienes are important proinflammatory mediators of allergic disease. To test this hypothesis, we allergically sensitized and challenged mice deficient in 5-lipoxygenase (5-LO). We found that 5-LO knockout mice that were treated with a COX inhibitor during allergic sensitization and challenge had significantly increased airway hyperresponsiveness (AHR) (p < 0.01) and airway eosinophilia (p < 0.01) compared with 5-LO knockout mice that were treated with vehicle. The proinflammatory cytokines have also been hypothesized to be critical regulators of airway inflammation and AHR. We found that the increase in airway eosinophilia seen with COX inhibition is dependent on IL-5, whereas the increase in AHR is not dependent on this cytokine. In contrast, the COX inhibition-mediated increase in AHR is dependent on IL-13, but airway eosinophilia is not. These results elucidate the pathways by which COX inhibition exerts a critical effect of the pulmonary allergen-induced inflammatory response and confirm that COX products are important regulators of allergic inflammation.  相似文献   

7.

Background

A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear.

Methods

Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry.

Results

Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass-stimulated wild type BMDCs were sufficient to induce AHR and allergic airway inflammation, while GC frass-stimulated PAR-2-deficient BMDC had attenuated responses.

Conclusions

Together these data suggest an important role for allergen activation of PAR-2 on mDCs in mediating Th2/Th17 cytokine production and allergic airway responses.  相似文献   

8.
The study aimed to investigate the effects of lipopolysaccharide (LPS) alone and in combination with calorie restriction (CR) on the pancreatic tissues in C57BL/6 mice modeled with pancreatic ductal adenocarcinoma (PDAC). Forty male C57BL/6 mice (10-13 weeks old) were divided into five groups; LPS, LPS + CR, PDAC, PDAC + LPS, and PDAC + LPS + CR. Nuclear factor kappa B (NF-κβ), interleukin-6 (IL-6), and c-Jun N-terminal kinases (JNK) mRNA expression levels were measured in pancreatic tissues. NF-κβ, IL-6, JNK, and proliferating cell nuclear antigen (PCNA) peptide levels were determined by immunohistochemistry. Oxidative stress markers and antioxidant enzyme activities were determined spectrophotometrically. TH1/TH2 cytokine measurements were determined by a flow cytometer. It was detected that the number of PCNA immune + cells in the PDAC + LPS + CR group was significantly lower than in the PDAC and PDAC + LPS groups (p < 0.01, p < 0.05 respectively). PDAC + LPS + CR group's plasma interferon-gamma (IFN-γ), IL-6, IL-2, tumor necrosis factor-alpha, IL-3, and IL-4 levels were found to be significantly lower than the PDAC group (p < 0.01, p < 0.001, p < 0.01, p < 0.05, p < 0.01, and p < 0.05 respectively). According to our findings, the combination of low-dose LPS and 40% CR was found to be more effective in PDAC model mice.  相似文献   

9.

Background

Th2 immune responses are linked primarily to mild and moderate asthma, while Th17 cells, Interleukin-17A (IL-17) and neutrophilia have been implicated in more severe forms of disease. How Th2-dependent allergic reactions are influenced by Th17 and IL-17-γδ T cells is poorly understood. In murine models, under some conditions, IL-17 promotes Th2-biased airway inflammatory responses. However, IL-17-γδ T cells have been implicated in the inhibition and resolution of allergic airway inflammation and hyperresponsiveness (AHR).

Methods

We compared airway responses in Balb/c mice sensitized to OVA with (and without) a Th2-skewing aluminum-based adjuvant and the IL-17 skewing, complete Freund’s adjuvant (CFA). AHR was measured invasively by flexiVent, while serum OVA-IgE was quantified by an enzyme immunoassay. Airway inflammatory and cytokine profiles, and cellular sources of IL-17 were assessed from bronchoalveolar lavage and/or lungs. The role of γδ T cells in these responses was addressed in OVA/CFA sensitized mice using a γδ T cell antibody.

Results

Following OVA challenge, all mice exhibited mixed eosinophilic/neutrophilic airway inflammatory profiles and elevated serum OVA-IgE. Whereas OVA/alum sensitized mice had moderate inflammation and AHR, OVA/CFA sensitized mice had significantly greater inflammation but lacked AHR. This correlated with a shift in IL-17 production from CD4+ to γδ T cells. Additionally, OVA/CFA sensitized mice, given a γδ TCR stimulatory antibody, showed increased frequencies of IL-17-γδ T cells and diminished airway reactivity and eosinophilia.

Conclusions

Thus, the conditions of antigen sensitization influence the profile of cells that produce IL-17, the balance of which may then modulate the airway inflammatory responses, including AHR. The possibility for IL-17-γδ T cells to reduce AHR and robust eosinophilic inflammation provides evidence that therapeutic approaches focused on stimulating and increasing airway IL-17-γδ T cells may be an effective alternative in treating steroid resistant, severe asthma.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0090-5) contains supplementary material, which is available to authorized users.  相似文献   

10.
The aim of our studies was to test the effect and role of vitamin E and selenium supplements on yeast cell. In this study, the effects of selenium (Se), vitamin E (Vit. E), and their combination (Se plus Vit. E) on the composition of fatty acids and proteins were examined in Saccharomyces cerevisiae strains WET136 and 522. S. cerevisiae cells were grown up in YEPD medium supplemented with Se, Vit. E or their combination. It was found that the level of stearic acid was increased in all supplemented groups (p<0·05; p<0·001). The content of saturated and unsaturated fatty acids was decreased (p<0·05; p<0·01; p<0·001) in Vit. E and Vit. E plus Se supplemented S. cerevisiae. On the other hand, Se alone caused an increase (p<0·001) in the saturated fatty acids but a decrease (p<0·05; p<0·001) in the unsaturated fatty acids. Total proteins in S. cerevisiae were significantly increased (p<0·001) by Vit. E supplement. There was no significant change observed in S. cerevisiae supplemented with Se. These findings indicate that membrane composition of S. cerevisiae is affected by both Vit. E and Se supplements. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.

Background

Allergic asthma is strongly associated with the exposure to house dust mite (HDM) and is characterized by eosinophilic pulmonary inflammation and airway hyperresponsiveness (AHR). Recently, there is an increased interest in using dietary oligosaccharides, also known as prebiotics, as a novel strategy to prevent the development of, or reduce, symptoms of allergy.

Aim

We investigated the preventive capacity of dietary galacto-oligosaccharides (GOS) compared to an intra-airway therapeutic treatment with budesonide on the development of HDM-induced allergic asthma in mice.

Methods

BALB/c mice were intranasally sensitized with 1 μg HDM on day 0 followed by daily intranasal challenge with PBS or 10 μg HDM on days 7 to 11. Two weeks prior to the first sensitization and throughout the experiment mice were fed a control diet or a diet containing 1% GOS. Reference mice were oropharyngeally instilled with budesonide (500 μg/kg) on days 7, 9, 11, and 13, while being fed the control diet. On day 14, AHR was measured by nebulizing increasing doses of methacholine into the airways. At the end of the experiment, bronchoalveolar lavage fluid (BALF) and lungs were collected.

Results

Sensitization and challenge with HDM resulted in AHR. In contrast to budesonide, dietary intervention with 1% GOS prevented the development of AHR. HDM sensitization and challenge resulted in a significant increase in BALF leukocytes numbers, which was suppressed by budesonide treatment and dietary intervention with 1% GOS. Moreover, HDM sensitization and challenge resulted in significantly enhanced concentrations of IL-6, CCL17, IL-33, CCL5 and IL-13 in lung tissue. Both dietary intervention with 1% GOS or budesonide treatment significantly decreased the HDM-induced increased concentrations of CCL5 and IL-13 in lung tissue, while budesonide also reduced the HDM-enhanced concentrations of IL-6 and CCL17 in lung tissue.

Conclusion

Not only did dietary intervention with 1% GOS during sensitization and challenge prevent the induction of airway eosinophilia and Th2-related cytokine and chemokine concentrations in the lung equally effective as budesonide treatment, it also prevented AHR development in HDM-allergic mice. GOS might be useful for the prevention and/or treatment of symptoms in asthmatic disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0171-0) contains supplementary material, which is available to authorized users.  相似文献   

14.
Airway responses induced by intranasal administration of mite allergen without adjuvant were studied in NC/Nga mice. A crude extract of Dermatophagoides farinae (Df) was administered for 5 consecutive days and a single intranasal challenge booster dose was given 1 week after the last sensitization. 24 h after the single challenge, the airway hyperresponsiveness (AHR) was measured and the bronchoalveolar lavage fluid (BALF) was analyzed for numbers of eosinophils and neutrophils, and both cytokine and chemokine levels. There were marked increases in number of eosinophils in the BALF, AHR, Th2 cytokines (IL-5 and IL-13), and chemokine (eotaxin-1 and eotaxin-2) levels in the BALF following Df exposure. C57BL/6N, A/J, BALB/c, and CBA/JN mouse strains were also exposed to Df crude extract, but all of the measured responses were strongest in NC/Nga mice. Furthermore, Df-exposed NC/Nga mice showed the goblet cell hyperplasia, pulmonary eosinophilic inflammation, and increases in both total serum IgE and Df-specific IgG1. After intranasal exposure of NC/Nga mice to crude extract of Dermatophagoides pteronyssinus, the BALF eosinophilia and AHR were similar to responses induced by Df. None of the study parameters were increased in response to intranasal exposure to ovalbumin. These data demonstrated that NC/Nga mice developed allergic asthma-like responses after intranasal exposure to mite allergens.  相似文献   

15.
Oxidative stress is implicated in the pathogenesis of asthma, and antioxidant levels are reduced in asthma patients. Previously, glutathione S-transferase (GST) with reduced IgE binding suppressed oxidative stress and modulated airway inflammation to some extent in mice. GST catalyzes the quenching of reactive oxygen species by reduced glutathione (GSH) and the absence of any one of them may limit antioxidative behavior. This study evaluates the effects of mutated (m) GST with GSH in combination and individually in limiting oxidative stress and inflammatory responses in a mouse model. BALB/c mice were immunized and challenged with ovalbumin. The mice were treated with mGST, GSH, mGST + GSH, or α-lipoic acid by inhalation and sacrificed to evaluate inflammation and oxidative stress parameters. Treatment with the mGST + GSH combination showed significantly reduced total cell (p < 0.01) and eosinophil (p < 0.01) counts in BALF compared to other groups. The lung inflammation score was lowest for the mGST + GSH group, along with reduced IL-4 (p < 0.01) and OVA-specific IgE compared to the other treatment groups. Oxidative stress as per the lipid peroxidation and 8-isoprostane level in BALF of mGST + GSH mice was reduced significantly compared to the individual antioxidants. In conclusion, mGST in combination with GSH has a synergistic effect in reducing airway inflammation compared to the individual antioxidants and has potential for the treatment of asthma.  相似文献   

16.

Background

Airway inflammation and airway remodeling are the key contributors to airway hyperresponsiveness (AHR), a characteristic feature of asthma. Both processes are regulated by Transforming Growth Factor (TGF)-β. Caveolin 1 (Cav1) is a membrane bound protein that binds to a variety of receptor and signaling proteins, including the TGF-β receptors. We hypothesized that caveolin-1 deficiency promotes structural alterations of the airways that develop with age will predispose to an increased response to allergen challenge.

Methods

AHR was measured in Cav1-deficient and wild-type (WT) mice 1 to 12 months of age to examine the role of Cav1 in AHR and the relative contribution of inflammation and airway remodeling. AHR was then measured in Cav1-/- and WT mice after an ovalbumin-allergen challenge performed at either 2 months of age, when remodeling in Cav1-/- and WT mice was equivalent, and at 6 months of age, when the Cav1-/- mice had established airway remodeling.

Results

Cav1-/- mice developed increased thickness of the subepithelial layer and a correspondingly increased AHR as they aged. In addition, allergen-challenged Cav1-/- mice had an increase in AHR greater than WT mice that was largely independent of inflammation. Cav1-/- mice challenged at 6 months of age have decreased AHR compared to those challenged at 2 months with correspondingly decreased BAL IL-4 and IL-5 levels, inflammatory cell counts and percentage of eosinophils. In addition, in response to OVA challenge, the number of goblet cells and α-SMA positive cells in the airways were reduced with age in response to OVA challenge in contrast to an increased collagen deposition further enhanced in absence of Cav1.

Conclusion

A lack of Cav1 contributed to the thickness of the subepithelial layer in mice as they aged resulting in an increase in AHR independent of inflammation, demonstrating the important contribution of airway structural changes to AHR. In addition, age in the Cav1-/- mice is a contributing factor to airway remodeling in the response to allergen challenge.  相似文献   

17.
《Cryobiology》2011,62(3):243-247
This study investigated whether failed maturation oocytes could be used to evaluate different cryopreservation procedures. A total of 289 failed maturation oocytes (GV and MI stages), obtained from 169 patients undergoing IVF treatment (mean age 33.84 ± 5.0) were divided into two different slow-cooling groups (1.5 mol/l 1,2-propanediol + 0.2 mol/l sucrose in either NaCl (group A) or choline chloride (ChCl) (group B) based cryopreservation solutions) and one vitrification group (15% ethylene glycol + 15% dimethyl sulphoxide). Survival rate, in vitro maturation (IVM) rate, fertilization and developmental rate of cryopreserved oocytes were assessed. Regardless of the stage at which cryopreservation was performed (GV + MI), the slow cooling with ChCl based medium always gave significantly lower survival rate than the slow cooling in NaCl based medium (p = 0.01) and vitrification (p < 0.001). An extended study also showed statistically reduced survival rate between slow-cooling NaCl based medium and vitrification (p < 0.05). Global results of in vitro maturation and fertilization showed worse results between both slow-cooling NaCl and ChCl based media versus vitrification. In conclusion, for oocytes that had failed to mature, vitrification gave better survival, maturation, fertilization and also cleavage rates than the slow-cooling protocols. Four cells embryos were obtained only from vitrified in vitro matured MI oocytes.  相似文献   

18.
Asthma is a chronic inflammatory disease affecting 300 million people worldwide. As telomere shortening is a well‐established hallmark of aging and that asthma incidence decreases with age, here we aimed to study the role of short telomeres in asthma pathobiology. To this end, wild‐type and telomerase‐deficient mice with short telomeres (third‐generation (G3 Tert −/− mice)) were challenged with intranasal house dust mite (HDM) extract. We also challenged with HDM wild‐type mice in which we induced a telomere dysfunction by the administration of 6‐thio‐2´‐deoxyguanosine (6‐thio‐dG). Following HDM exposure, G3 Tert −/− and 6‐thio‐dG treated mice exhibited attenuated eosinophil counts and presence of hematopoietic stem cells in the bone marrow, as well as lower levels of IgE and circulating eosinophils. Accordingly, both G3 Tert −/− and 6‐thio‐dG treated wild‐type mice displayed reduced airway hyperresponsiveness (AHR), as indicated by decreased airway remodeling and allergic airway inflammation markers in the lung. Furthermore, G3 Tert −/− and 6‐thio‐dG treated mice showed lower differentiation of Club cells, attenuating goblet cell hyperplasia. Club cells of G3 Tert −/− and 6‐thio‐dG treated mice displayed increased DNA damage and senescence and reduced proliferation. Thus, short/dysfunctional telomeres play a protective role in murine asthma by impeding both AHR and mucus secretion after HDM exposure. Therefore, our findings imply that telomeres play a relevant role in allergen‐induced airway inflammation.  相似文献   

19.
20.

Background

Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood.

Objective

This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma.

Methods

Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA) and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR), airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF) were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT)-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro.

Results

The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro.

Conclusion

These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号