首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic hepatitis is a major cause of liver cancer, so earlier treatment of hepatitis might be reducing liver cancer incidence. Hepatitis can be induced in mice by treatment with Concanavalin A (Con A); the resulting liver injury causes significant CD4+ T cell activation and infiltration. In these T cells, Roquin, a ring-type E3 ubiquitin ligase, is activated. To investigate the role of Roquin, we examined Con A-induced liver injury and T cell infiltration in transgenic (Tg) mice overexpressing Roquin specifically in T cells. In Roquin Tg mice, Con A treatment caused greater increases in both the levels of liver injury enzymes and liver tissue apoptosis, as revealed by TUNEL and H&E staining, than wild type (WT) mice. Further, Roquin Tg mice respond to Con A treatment with greater increases in the T cell population, particularly Th17 cells, though Treg cell counts are lower. Roquin overexpression also enhances increases in pro-inflammatory cytokines, including IFN-γ, TNF-α and IL-6, upon liver injury. Furthermore, Roquin regulates the immune response and apoptosis in Con A induced hepatitis via STATs, Bax and Bcl2. These findings suggest that over-expression of Roquin exacerbates T-cell mediated hepatitis.  相似文献   

2.
Dried plum (DP), a rich source of polyphenols has been shown to have bone-preserving properties in both animal models of osteoporosis and postmenopausal women. We evaluated if DP alleviated the destruction of joints in transgenic mice (TG) that overexpress human tumor necrosis factor (TNF), a genetic model of rheumatoid arthritis (RA). A four-week treatment of 20% DP diet in TG slowed the onset of arthritis and reduced bone erosions in the joints compared to TG on a regular diet. This was associated with fewer tartrate-resistant acid phosphatase (TRAP) positive cells, suggesting decreased osteoclastogenesis. A DP diet also produced significant protection of articular cartilage and reduction of synovitis. Cultures of human synovial fibroblast in the presence of TNF showed a significant increase in inflammatory interleukin (IL)-1β, chemokines (monocyte chemoattractant protein-1: MCP1 & macrophage inflammatory protein-1 alpha: MIP1α), cartilage matrix metalloproteinases (MMP1&3), and an osteoclastogenic cytokine (receptor activator of nuclear factor-κB ligand: RANKL) compared to controls. Addition of neochlorogenic acid (NC), a major polyphenol in DP to these cultures resulted in down-regulation of these genes. In the cultures of mouse bone marrow macrophage, NC also repressed TNF-induced formation of osteoclasts and mRNA levels of cathepsin K and MMP9 through inhibition of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) expression and nuclear factor kappa B (NF-κB) activation. Our data suggested that dietary supplementation with DP inhibited TNF singling; leading to decreased erosions of bone and articular cartilage as well as synovitis.  相似文献   

3.
4.
Glutathione S-transferase pi (GST pi) is an enzyme involved in cell protection against toxic electrophiles and products of oxidative stress. GST pi expression was studied in transgenic mice hybrids (B6-C3H) with symptoms of neurodegeneration harboring SOD1G93A (SOD1/+), Dync1h1 (Cra1/+) and double (Cra1/SOD1) mutations, at presymptomatic and symptomatic stages (age 70, 140, 365 days) using RT-PCR and Western blotting. The main changes in GST pi expression were observed in mice with the SODG93A mutation. In SOD1/+ and Cra1/SOD1 transgenics, with the exception of cerebellum, the changes in GST pi-mRNA accompanied those in GST pi protein. In brain cortex of both groups the expression was unchanged at the presymptomatic (age 70 days) but was lower at the symptomatic stage (age 140 days) and at both stages in hippocampus and spinal cord of SOD1/+ but not of Cra1/SOD1 mice compared to age-matched wild-type controls. In cerebellum of the presymptomatic and the symptomatic SOD1/+ mice and presymptomatic Cra1/SOD1 mice, the GST pi-mRNA was drastically elevated but the protein level remained unchanged. In Cra1/+ transgenics there were no changes in GST pi expression in any CNS region both on the mRNA and on the protein level. It can be concluded that the SOD1G93A but not the Dync1h1 mutation significantly decreases detoxification efficiency of GST pi in CNS, however the Dync1h1 mutation reduces the effects caused by the SOD1G93A mutation. Despite similarities in neurological symptoms, the differences in GST pi expression between SOD1/+ and Cra1/+ transgenics indicate a distinct pathogenic entity of these two conditions.  相似文献   

5.
Pretreatment of mice with the hemopoietic growth factor, FMS-like tyrosine kinase 3 ligand (Flt3L), has been shown to increase monocyte-derived myeloid dendritic cells (DC) in lung parenchymal tissue, with possible implications for protective immunity to lung bacterial infections. However, whether Flt3L treatment improves lung innate immunity of mice to challenge with Streptococcus pneumoniae has not been investigated previously. Mice pretreated with Flt3L exhibited a peripheral monocytosis and a strongly expanded lung myeloid DC pool, but responded with a similar proinflammatory cytokine release (TNF-alpha, IL-6, keratinocyte derived cytokine, MIP-2, CCL2) and neutrophilic alveolitis upon infection with S. pneumoniae as did control mice with a normal lung DC pool. Unexpectedly, however, Flt3L-pretreated mice, but not control mice, infected with S. pneumoniae developed vasculitis and increased lung permeability by days 2-3 postinfection, and florid pneumonia accompanied by sustained increased bacterial loads by days 3-4 postinfection. This was associated with an overall increased mortality of approximately 35% by day 4 after pneumococcal challenge. Application of anti-CCR2 Ab MC21 to block inflammatory monocyte-dependent lung mononuclear phagocyte mobilization significantly reduced the lung leakage, but not vasculitis in Flt3L-pretreated mice infected with S. pneumoniae, without affecting the intra-alveolar cytokine liberation or the concomitantly developing neutrophilic alveolitis. Together, the data demonstrate that previous Flt3L-induced lung DC accumulation is not protective in lung innate immunity to challenge with S. pneumoniae, and support the concept that CCR2-dependent mononuclear phagocyte as opposed to neutrophil recruitment contributes to increased lung leakage in Flt3L-pretreated mice challenged with S. pneumoniae.  相似文献   

6.
目的应用Morris水迷宫,测试AD模型APPswe/PSldE9双转基因小鼠定位航行及空间搜索等学习记忆和记忆保持能力,评价姜黄素对APPswe/PSldE9双转基因小鼠认知功能的影响。方法将3月龄的APPswe/PSldE9双转基因小鼠随机分为模型组、罗格列酮组(10ms/kg·d)、姜黄素高(400Ing/kg·d)、中(200ing/kg·d)、低剂量组(100mg,,kg·d),每组6只;并以同月龄遗传背景相同的C57/BL6J小鼠作为对照组。每天灌胃给药1次,连续灌胃6个月。应用Morris水迷宫进行行为学检测。结果姜黄素对APPswe/PSldE9双转基因小鼠空间学习记忆能力障碍有改善作用,尤以姜黄素大剂量和中剂量组效果比较明显。结论姜黄素能改善APPswe/PSldE9双转基因小鼠的认知功能。  相似文献   

7.
While there have been enormous strides in the understanding of Huntington's disease (HD) pathogenesis, treatment to slow or prevent disease progression remains elusive. We previously reported that dietary creatine supplementation significantly improves the clinical and neuropathological phenotype in transgenic HD mice lines starting at weaning, before clinical symptoms appear. We now report that creatine administration started after onset of clinical symptoms significantly extends survival in the R6/2 transgenic mouse model of HD. Creatine treatment started at 6, 8, and 10 weeks of age, analogous to early, middle, and late stages of human HD, significantly extended survival at both the 6- and 8-week starting points. Significantly improved motor performance was present in both the 6- and 8-week treatment paradigms, while reduced body weight loss was only observed in creatine-supplemented R6/2 mice started at 6 weeks. Neuropathological sequelae of gross brain and neuronal atrophy and huntingtin aggregates were delayed in creatine-treated R6/2 mice started at 6 weeks. We show significantly reduced brain levels of both creatine and ATP in R6/2 mice, consistent with a bioenergetic defect. Oral creatine supplementation significantly increased brain concentrations of creatine and ATP to wild-type control levels, exerting a neuroprotective effect. These findings have important therapeutic implications, suggesting that creatine therapy initiated after diagnosis may provide significant clinical benefits to HD patients.  相似文献   

8.
Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM-/-) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lymphoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM-/- HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM-/- mice. Instead, ATM and Gadd45a double knockout (ATM-/- Gadd45a-/-) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM-/- HSCs in HSC transplantation experiments. Further experiments revealed that the aggravated defect of ATM-/- Gadd45a-/- HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signaling pathway. Additionally, ATM-/- Gadd45a-/- mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM-/- mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which subsequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM-/- HSCs.  相似文献   

9.
Caveolin-1 is the principal structural component of caveolae microdomains, which represent a subcompartment of the plasma membrane. Several independent lines of evidence support the notion that caveolin-1 functions as a suppressor of cell transformation. For example, the human CAV-1 gene maps to a suspected tumor suppressor locus (D7S522/7q31.1) that is frequently deleted in a number of carcinomas, including breast cancers. In addition, up to 16% of human breast cancers harbor a dominant-negative mutation, P132L, in the CAV-1 gene. Despite these genetic associations, the tumor suppressor role of caveolin-1 still remains controversial. To directly assess the in vivo transformation suppressor activity of the caveolin-1 gene, we interbred Cav-1 (-/-) null mice with tumor-prone transgenic mice (MMTV-PyMT) that normally develop multifocal dysplastic lesions throughout the entire mammary tree. Herein, we show that loss of caveolin-1 gene expression dramatically accelerates the development of these multifocal dysplastic mammary lesions. At 3 wk of age, loss of caveolin-1 resulted in an approximately twofold increase in the number of lesions (foci per gland; 3.3 +/- 1.0 vs. 7.0 +/- 1.2) and an approximately five- to sixfold increase in the total area occupied by these lesions. Similar results were obtained at 4 wk of age. However, complete loss of caveolin-1 was required to accelerate the appearance of these dysplastic mammary lesions, because Cav-1 (+/-) heterozygous mice did not show any increases in foci development. We also show that loss of caveolin-1 increases the extent and the histological grade of these mammary lesions and facilitates the development of papillary projections in the mammary ducts. Finally, we demonstrate that cyclin D1 expression levels are dramatically elevated in Cav-1 (-/-) null mammary lesions, consistent with the accelerated appearance and growth of these dysplastic foci. This is the first in vivo demonstration that caveolin-1 can function as a transformation suppressor gene.  相似文献   

10.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is predominantly expressed in liver and regulates cholesterol metabolism by down regulating liver LDL receptor (LDLR) proteins. Here we report transgenic overexpression of human PCSK9 in kidney increased plasma levels of PCSK9 and subsequently led to a dramatic reduction in liver LDLR proteins. The regulation of LDLR by PCSK9 displayed tissue specificity, with liver being the most responsive tissue. Even though the PCSK9 transgene was highly expressed in kidney, LDLR proteins were suppressed to a lower extent in this tissue than in liver. Adrenal LDLR proteins were not regulated by elevated plasma PCSK9. hPCSK9 transgene expression and subsequent reduction of liver LDLR led to increases in plasma total cholesterol, LDL cholesterol, and ApoB, which were further increased by a high-fat, high-cholesterol diet. We also observed that the size distribution of hPCSK9 in transgenic mouse plasma was heterogeneous. In chow-fed mice, the majority of PCSK9 proteins were in free forms; however, feeding a high-fat, high-cholesterol diet resulted in a shift of hPCSK9 distribution toward larger complexes. PCSK9 distribution in human plasma also exhibited heterogeneity and individual variability in the percentage of PCSK9 in free form and in large complexes. We provide strong evidence to support that human PCSK9 proteins secreted from extrahepatic tissue are able to promote LDLR degradation in liver and increase plasma LDL. Our data also suggest that LDLR protein regulation by PCSK9 has tissue specificity, with liver being the most responsive tissue.  相似文献   

11.
12.
Bax and Bak are critical effectors of apoptosis. Although both are widely expressed and usually functionally redundant, recent studies suggest that Bak has particular importance in certain cell types. Genetic and biochemical studies indicate that Bak activation is prevented primarily by Mcl-1 and Bcl-xL, whereas Bax is held in check by all pro-survival Bcl-2 homologues, including Bcl-2 itself. In this study, we have investigated whether loss of Bak or elevated Mcl-1 modulates haemopoietic abnormalities provoked by overexpression of Bcl-2. The Mcl-1 transgene had little impact, probably because the expression level was insufficient to effectively reduce Bak activation. However, loss of Bak enhanced lymphocytosis in vavP-BCL-2 transgenic mice and increased resistance of their thymocytes to some cytotoxic agents, implying that Bak-specific signals can be triggered in certain lymphoid populations. Nevertheless, lack of Bak had no significant impact on thymic abnormalities in vavP-BCL-2tg mice, which kinetic analysis suggested was due to accumulation of self-reactive thymocytes that resist deletion. Intriguingly, although Bak−/− mice have elevated platelet counts, Bak−/−vavP-BCL-2 mice, like vavP-BCL-2 littermates, were thrombocytopaenic. To clarify why, the vavP-BCL-2 platelet phenotype was scrutinised more closely. Platelet life span was found to be elevated in vavP-BCL-2 mice, which should have provoked thrombocytosis, as in Bak−/− mice. Analysis of bone marrow chimaeric mice suggested the low platelet phenotype was due principally to extrinsic factors. Following splenectomy, blood platelets remained lower in vavP-BCL-2 than wild-type mice. However, in Rag1−/− BCL-2tg mice, platelet levels were normal, implying that elevated lymphocytes are primarily responsible for BCL-2tg-induced thrombocytopaenia.  相似文献   

13.
The mechanism underlying the dysregulation of cholesterol metabolism and inflammation in atherogenesis is not understood fully. Glycine N-methyltransferase (GNMT) has been implicated in hepatic lipid metabolism and the pathogenesis of liver diseases. However, little is known about the significance of GNMT in atherosclerosis. We showed the predominant expression of GNMT in foamy macrophages of mouse atherosclerotic aortas. Genetic deletion of GNMT exacerbated the hyperlipidemia, inflammation and development of atherosclerosis in apolipoprotein E-deficient mice. In addition, ablation of GNMT in macrophages aggravated oxidized low-density lipoprotein-mediated cholesterol accumulation in macrophage foam cells by downregulating the expression of reverse cholesterol transporters including ATP-binding cassette transporters-A1 and G1 and scavenger receptor BI. Furthermore, tumor necrosis factor-α-induced inflammatory response was promoted in GNMT-null macrophages. Collectively, our data suggest that GNMT is a crucial regulator in cholesterol metabolism and in inflammation, and contributes to the pathogenesis of atherosclerosis. This finding may reveal a potential therapeutic target for atherosclerosis.  相似文献   

14.
We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymography carried out on wound tissues revealed total blockage of gelatinolytic activity (i.e., MMP-9 and MMP-2). The results confirm studies with MMP-9 knockout mice showing that MMP-9 is not essential for general development, but they also demonstrate an important role of keratinocyte MMP-9, as well that of other keratinocyte MMPs that are inhibited by TIMP-1, in wound healing. The transgenic mice generated in this study provide a model for the role of MMPs in MMP-9-producing cells in other challenging situations such as bone fracture recovery and cancer invasion.The expert technical assistance of M. Jarva, L. Ollitervo, S. Kangas, and R. Jokisalo is gratefully acknowledged. This work was supported in part by grants from the Finnish Academy of Science, the Swedish Cancer Foundation, the Novo Nordisk Foundation and EC contract QLG1-CT-2000-01131 (K.T.), the Finnish Dental Society Apollonia and the Northern Finland Cancer Foundation (M.P.), as well as the K. Albin Johansson Foundation and the Einar and Karin Stroems Foundation (E.P.)  相似文献   

15.
Ca(v)2.1 (P/Q-type) voltage-gated calcium channels play an important role in neurotransmitter release at many brain synapses and at the neuromuscular junction. Mutations in the CACNA1A gene, encoding the pore forming alpha(1) subunit of Ca(v)2.1 channels, are associated with a wide spectrum of neurological disorders. Here we generated mice with a conditional, floxed, Cacna1a allele without any overt phenotype. Deletion of the floxed Cacna1a allele resulted in ataxia, dystonia, and lethality during the fourth week, a severe phenotype similar to conventional Ca(v)2.1 knockout mice. Although neurotransmitter release at the neuromuscular junction was not affected in the conditional mice, homozygous deletion of the floxed allele caused an ablation of Ca(v)2.1 channel-mediated neurotransmission that was accompanied by a compensatory upregulation of Ca(v)2.3 (R-type) channels at this synapse. Pharmacological inhibition of Ca(v)2.1 channels is possible, but the contributing cell-types and time windows relevant to the different Ca(v)2.1-related neurological disorders can only be reliably determined using Cacna1a conditional mice.  相似文献   

16.
WNT signaling pathways play an important role in both development and disease. By analyzing the signaling capabilities of commercially available WNT3a preparations towards the PI3K/AKT/GSK3 signaling pathway, we discovered unexpected inconsistencies from lot to lot of recombinant WNT3a. We provide evidence that: (1) The ability to trigger AKT/GSK3 signaling varies dramatically between different lots of WNT3a, without any variation in their ability to activate the canonical WNT/β‐catenin signaling. (2) sFRP1, a WNT signaling inhibitor, is unable to interfere with the activation of AKT/GSK3 signaling induced by some of the WNT3a lots. (3) Pharmacological inhibition of AKT/GSK3 phosphorylation by PI3K inhibitors fails to affect the stabilization of β‐catenin, the central effector of the canonical WNT/β‐catenin signaling pathway. In summary, while all tested lots of recombinant WNT3a activated WNT/β‐catenin pathway, our results suggest that individual lots of recombinant WNT3a activate the PI3K/AKT/GSK3 pathway in a WNT‐independent manner, hampering thus the analysis of regulation of PI3K/AKT/GSK3 by WNT ligand. J. Cell. Biochem. 111: 1077–1079, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
In recent decades, Drosophila mushroom bodies (MBs) have become a powerful model for elucidating the molecular mechanisms underlying brain development and function. We have previously characterized the derailed (drl; also known as linotte) receptor tyrosine kinase as an essential component of adult MB development. Here we show, using MARCM clones, a non-cell-autonomous requirement for the DRL receptor in MB development. This result is in accordance with the pattern of DRL expression, which occurs throughout development close to, but not inside, MB cells. While DRL expression can be detected within both interhemispheric glial and commissural neuronal cells, rescue of the drl MB defects appears to involve the latter cellular type. The WNT5 protein has been shown to act as a repulsive ligand for the DRL receptor in the embryonic central nervous system. We show here that WNT5 is required intrinsically within MB neurons for proper MB axonal growth and probably interacts with the extrinsic DRL receptor in order to stop axonal growth. We therefore propose that the neuronal requirement for both proteins defines an interacting network acting during MB development.  相似文献   

18.
Humanized mouse models are important tools in many areas of biological drug development including, within oncology research, the development of antagonistic antibodies that have the potential to block tumor growth by controlling vascularization and are key to the generation of in vivo proof-of-concept efficacy data. However, due to cross reactivity between human antibodies and mouse target such studies regularly require mouse models expressing only the human version of the target molecule. Such humanized knock-in/knock-out, KIKO, models are dependent upon the generation of homozygous mice expressing only the human molecule, compensating for loss of the mouse form. However, KIKO strategies can fail to generate homozygous mice, even though the human form is expressed and the endogenous mouse locus is correctly targeted. A typical strategy for generating KIKO mice is by ATG fusion where the human cDNA is inserted downstream of the endogenous mouse promoter elements. However, when adopting this strategy it is possible that the mouse promoter fails to express the human form in a manner compensating for loss of the mouse form or alternatively the human protein is incompatible in the context of the mouse pathway being investigated. So to understand more around the biology of KIKO models, and to overcome our failure with a number of ATG fusion strategies, we developed a range of humanized models focused on Delta-like 4 (Dll4), a target where we initially failed to generate a humanized model. By adopting a broader biologic strategy, we successfully generated a humanized DLL4 KIKO which led to a greater understanding of critical biological aspects for consideration when developing humanized models.  相似文献   

19.
20.
Surgical synovectomy to remove the inflammatory synovium can temporarily ameliorate rheumatoid inflammation and delay the progress of joint destruction. An efficient medically induced programmed cell death (apoptosis) in the rheumatoid synovium might play a role similar to synovectomy but without surgical tissue damage. Gene transfer of Fas ligand (FasL) has increased the frequency of apoptotic cells in mouse and rabbit arthritic synovium. In this study, we investigated whether repeated FasL gene transfer could remove human inflammatory synovial tissue in situ and function as a molecular synovectomy. Briefly, specimens of human synovium from joint replacement surgeries and synovectomies of rheumatoid arthritis (RA) patients were grafted subcutaneously into male C.B-17 severe combined immunodeficiency (SCID) mice. Injections of a recombinant FasL adenovirus (Ad-FasL) into the grafted synovial tissue at the dosage of 10(11) particles per mouse were performed every two weeks. Three days after the fifth virus injection, the mice were euthanized by CO2 inhalation and the human synovial tissues were collected, weighed and further examined. Compared to the control adenovirus-LacZ (Ad-LacZ) and phosphate buffered saline (PBS) injected RA synovium, the Ad-FasL injected RA synovium was dramatically reduced in size and weight (P < 0.005). The number of both synoviocytes & mononuclear cells was significantly reduced. Interestingly, an approximate 15-fold increased frequency of apoptotic cells was observed in RA synovium three days after Ad-FasL injection, compared with control tissues. In summary, our in vivo investigation of gene transfer to human synovium in SCID mice suggests that repeated intra-articular gene transfer of an apoptosis inducer, such as FasL, may function as a 'gene scalpel' for molecular synovectomy to arrest inflammatory synovium at an early stage of RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号