首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of proline on the production of singlet oxygen   总被引:14,自引:0,他引:14  
Alia  Mohanty P  Matysik J 《Amino acids》2001,21(2):195-200
Molecular oxygen in electronic singlet state is a very powerful oxidant. Its damaging action in a variety of biological processes has been well recognized. Here we report the singlet oxygen quenching action of proline. Singlet oxygen (1O2) was produced photochemically by irradiating a solution of sensitiser and detected by following the formation of stable nitroxide radical yielded in the reaction of 1O2 with the sterically hindered amine (2,2,6,6-tetramethylpiperidine, TEMP). Illumination of a sensitiser, toluidine blue led to a time dependent increase in singlet oxygen production as detected by the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) by EPR spectrometry. Interestingly, the production of TEMPO was completely abolished by the presence of proline at concentration as low as 20mM. These results show that proline is a very effective singlet oxygen quencher. Other singlet oxygen generating photosensitizer like hematopophyrin and fluorescein also produced identical results with proline. Since proline is one of the important solutes which accumulate in many organisms when they are exposed to environmental stresses, it is likely that proline accumulation is related to the protection of these organisms against singlet oxygen production during stress conditions. A possible mechanism of singlet oxygen quenching by proline is discussed.  相似文献   

2.
Exposure of isolated spinach thylakoids to high intensity illumination (photoinhibition) results in the well-characterized impairment of Photosystem II electron transport, followed by degradation of the D1 reaction centre protein. In the present study we demonstrate that this process is accompanied by singlet oxygen production. Singlet oxygen was detected by EPR spectroscopy, following the formation of stable nitroxide radicals from the trapping of singlet oxygen with a sterically hindered amine TEMP (2,2,6,6-tetramethylpiperidine). There was no detectable singlet oxygen production during anaerob photoinhibition or in the presence of sodium-azide. Comparing the kinetics of the loss of PS II function and D1 protein with that of singlet oxygen trapping suggests that singlet oxygen itself or its radical product initiates the degradation of D1.Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonle acid - PS Photosystem - TEMP 2,2,6,6-tetramethylpiperidine - TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl  相似文献   

3.
In our study, EPR spin-trapping technique was employed to study dark production of two reactive oxygen species, hydroxyl radicals (OH) and singlet oxygen (1O2), in spinach photosystem II (PSII) membrane particles exposed to elevated temperature (47 °C). Production of OH, evaluated as EMPO-OH adduct EPR signal, was suppressed by the enzymatic removal of hydrogen peroxide and by the addition of iron chelator desferal, whereas externally added hydrogen peroxide enhanced OH production. These observations reveal that OH is presumably produced by metal-mediated reduction of hydrogen peroxide in a Fenton-type reaction. Increase in pH above physiological values significantly stimulated the formation of OH, whereas the presence of chloride and calcium ions had the opposite effect. Based on our results it is proposed that the formation of OH is linked to the thermal disassembly of water-splitting manganese complex on PSII donor side. Singlet oxygen production, followed as the formation of nitroxyl radical TEMPO, was not affected by OH scavengers. This finding indicates that the production of these two species was independent and that the production of 1O2 is not closely linked to PSII donor side.  相似文献   

4.
Mitochondrial damage is implicated in the progression of cardiac disease. Considerable evidence suggests that proinflammatory cytokines induce oxidative stress and contribute to cardiac dysfunction. This study was conducted to determine whether a TNF-induced increase in superoxide (O2?) contributes to mitochondrial damage in the left ventricle (LV) by impairing respiratory complex I activity. We employed an electron paramagnetic resonance (EPR) method to measure O2? and oxygen consumption in mitochondrial respiratory complexes, using an oxygen label. Adult male Sprague–Dawley rats were divided into four groups: control, TNF treatment (ip), TNF+ apocynin (APO; 200 μmol/kg bw, orally), and TNF+ Tempol (Temp; 300 μmol/kg bw, orally). TNF was injected daily for 5 days. Rats were sacrificed, LV tissue was collected, and mitochondria were isolated for EPR studies. Total LV ROS production was significantly higher in TNF animals than in controls; APO or Temp treatment ameliorated TNF-induced LV ROS production. Total mitochondrial ROS production was significantly higher in the TNF and TNF+ APO groups than in the control and TNF+ Temp groups. These findings suggest that TNF alters the cellular redox state, reduces the expression of four complex I subunits by increasing mitochondrial O2? production and depleting ATP synthesis, and decreases oxygen consumption, thereby resulting in mitochondrial damage and leading to LV dysfunction.  相似文献   

5.
Curcumin (diferuloylmethane) is a major component of food flavoring turmeric (Curcuma longa), and has been reported to be anticarcinogenic and anti-inflammatory. Although curcumin was shown to have antioxidant properties, its exact antioxidant nature has not been fully investigated. In this report we have investigated the possible antioxidant properties of curcumin using EPR spectroscopic techniques. Curcumin was found to inhibit the (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose-dependent manner. (1)O(2) was produced in a photosensitizing system using rose bengal as sensitizer, and was detected as TEMP-(1)O(2) adducts by electron paramagnetic resonance (EPR) spectroscopic techniques using TEMP as a spin-trap. Curcumin at 2.75 microM caused 50% inhibition of TEMP-(1)O(2) adduct formation. However, curcumin only marginally inhibited (24% maximum at 80 microM) reduction of ferricytochrome c in a xanthine-xanthine oxidase system demonstrating that it is not an effective superoxide radical scavenger. Additionally, there was minor inhibition of DMPO-OH adduct formation by curcumin (solubilized in ethanol) when an ethanol control was included in the EPR spin-trapping study, suggesting that curcumin may not be an effective hydroxyl radical scavenger. Together these data demonstrate that curcumin is able only to effectively quench singlet oxygen at very low concentration in aqueous systems.  相似文献   

6.
Deferiprone (L1) is an effective iron-chelating drug that is widely used for the treatment of iron-overload diseases. It is known that in aqueous solutions Fe2+ and Fe3+ ions can produce hydroxyl radicals via Fenton and photo-Fenton reactions. Although previous studies with Fe2+ have reported ferroxidase activity by L1 followed by the formation of Fe3+ chelate complexes and potential inhibition of Fenton reaction, no detailed data are available on the molecular antioxidant mechanisms involved. Similarly, in vitro studies have also shown that L1–Fe3+ complexes exhibit intense absorption bands up to 800 nm and might be potential sources of phototoxicity. In this study we have applied an EPR spin trapping technique to answer two questions: (1) does L1 inhibit the Fenton reaction catalyzed by Fe2+ and Fe3+ ions and (2) does UV–Vis irradiation of the L1–Fe3+ complex result in the formation of reactive oxygen species. PBN and TMIO spin traps were used for detection of oxygen free radicals, and TEMP was used to trap singlet oxygen if it was formed via energy transfer from L1 in the triplet excited state. It was demonstrated that irradiation of Fe3+ aqua complexes by UV and visible light in the presence of spin traps results in the appearance of an EPR signal of the OH spin adduct (TMIO–OH, a(N)=14.15 G, a(H)=16.25 G; PBN–OH, a(N)=16.0 G, a(H)=2.7 G). The presence of L1 completely inhibited the OH radical production. The mechanism of OH spin adduct formation was confirmed by the detection of methyl radicals in the presence of dimethyl sulfoxide. No formation of singlet oxygen was detected under irradiation of L1 or its iron complexes. Furthermore, the interaction of L1 with Fe2+ ions completely inhibited hydroxyl radical production in the presence of hydrogen peroxide. These findings confirm an antioxidant targeting potential of L1 in diseases related to oxidative damage.  相似文献   

7.
Tris(p-carboxyltetrathiaaryl)methyl radicals (TAM) are good EPR probes for measurement of dioxygen concentration in biological systems and for EPR imaging. It has been previously reported that these radicals are efficiently oxidized by superoxide, O2, or alkylperoxyl radicals, ROO, and by liver microsomes via an oxidative decarboxylation mechanism leading to the corresponding quinone-methides (QM). This article shows that peroxidases, such as horseradish peroxidase (HRP), lactoperoxidase (LPO) and prostaglandin synthase (PGHS), and other hemeproteins, such as methemoglobin (metHb), metmyoglobin (metMb) and catalase, also efficiently catalyze the oxidation of TAM radicals to QM by H2O2 or alkylhydroperoxides. These reactions involve the intermediate formation of the corresponding cations TAM+ that have also been cleanly generated by K2Ir(IV)Cl6 and characterized by UV-Visible spectroscopy and mass spectrometry, and through their reactions with ascorbate or H2O2. Labelling experiments on HRP-catalyzed oxidation of TAM to QM using H218O or 18O2 in the presence of glucose and glucose oxidase (GOX) showed that the oxygen atom incorporated into QM came both from O2 and from H2O. Mechanisms for these reactions in agreement with those data were proposed. Oxidative decarboxylation of TAM to QM is a new reaction catalyzed by peroxidases. Such reactions should be considered when using TAM as EPR oximetry probes invivo or in vitro in complex biological media.  相似文献   

8.
Two radicals have been detected previously by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies in bovine cytochrome oxidase after reaction with hydrogen peroxide, but no correlation could be made with predicted levels of optically detectable intermediates (PM, F and F) that are formed. This work has been extended by optical quantitation of intermediates in the EPR/ENDOR sample tubes, and by comparison with an analysis of intermediates formed by reaction with carbon monoxide in the presence of oxygen. The narrow radical, attributed previously to a porphyrin cation, is detectable at low levels even in untreated oxidase and increases with hydrogen peroxide treatments generally. It is presumed to arise from a side-reaction unrelated to the catalytic intermediates. The broad radical, attributed previously to a tryptophan radical, is observed only in samples with a significant level of F but when F is generated with hydrogen peroxide, is always accompanied by the narrow radical. When PM is produced at high pH with CO/O2, no EPR-detectable radicals are formed. Conversion of the CO/O2-generated PM into F when pH is lowered is accompanied by the appearance of a broad radical whose ENDOR spectrum corresponds to a tryptophan cation. Quantitation of its EPR intensity indicates that it is around 3% of the level of F determined optically. It is concluded that low pH causes a change of protonation pattern in PM which induces partial electron redistribution and tryptophan cation radical formation in F. These protonation changes may mimic a key step of the proton translocation process.  相似文献   

9.
Vasoactive intestinal peptide, a singlet oxygen quencher   总被引:1,自引:0,他引:1  
The neuropeptide vasoactive intestinal peptide (VIP), a highly basic 28-amino acid peptide, has a widespread distribution in the body. The functional specificity of this peptide not only includes its potent vasodilatory activity, but also its role in protecting lungs against acute injury, in preventing T-lymphocyte proliferation and in modulating immune function. We have investigated the possible antioxidant properties of VIP and found that VIP does not have significant O2-, OH., or H2O2 scavenging ability. However, VIP was found to inhibit, in a dose-dependent manner, the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation. 1O2 was produced in photosensitizing systems using rose bengal or methylene blue as sensitizers and was detected as TEMP-1O2 product (TEMPO) by electron paramagnetic resonance (EPR) spectroscopic techniques. The formation of TEMPO signal was strongly inhibited by known singlet quenchers, e.g. beta-carotene, histidine as well as azide, but not by catalase (20 micrograms/ml) which removes H2O2 and mannitol (6 mM) or ethanol (5.9 mM) which remove OH.. Superoxide dismutase (2.5 micrograms/ml) inhibited the photoreaction up to 20% by removing O2- and most probably by blocking the secondary charge transfer pathway of 1O2 formation. These results suggest that the formation of nitroxide radical by 1O2 attack on TEMP may be used as a simple and specific assay for 1O2, and VIP can serve as an effective 1O2 scavenger/quencher, thus it may modulate the oxidative tissue injury caused by this reactive species of oxygen.  相似文献   

10.
The YZ decay kinetics in a formal S−1 state, regarded as a reduced state of the oxygen evolving complex, was determined using time-resolved EPR spectroscopy. This S−1 state was generated by biochemical treatment of thylakoid membranes with hydrazine. The steady-state oxygen evolution of the sample was used to optimize the biochemical procedure for performing EPR experiments. A high yield of the S−1 state was generated as judged by the two-flash delay in the first maximum of oxygen evolution in Joliot flash-type experiments. We have shown that the YZ re-reduction rate by the S−1 state is much slower than that of any other S-state transition in hydrazine-treated samples. This slow reduction rate in the S−1 to S0 transition, which is in the order of the S3 to S0 transition rate, suggests that this transition is accompanied by some structural rearrangements. Possible explanations of this unique, slow reduction rate in the S−1 to S0 transition are considered, in light of earlier observations by others on hydrazine/hydroxylamine reduced PS II samples.  相似文献   

11.
Sara Rinalducci  Lello Zolla 《BBA》2008,1777(5):417-424
The mechanism of photodegradation of antenna system in cyanobacteria was investigated using spin trapping ESR spectroscopy, SDS-PAGE and HPLC-MS. Exposure of isolated intact phycobilisomes to illumination with strong white light (3500 μmol m− 2 s− 1 photosynthetically active radiation) gave rise to the formation of free radicals, which subsequently led to specific protein degradation as a consequence of reactive oxygen species-induced cleavage of the polypeptide backbone. The use of specific scavengers demonstrated an initial formation of both singlet oxygen (1O2) and superoxide (O2), most likely after direct reaction of molecular oxygen with the triplet state of phycobiliproteins, generated from intersystem crossing of the excited singlet state. In a second phase carbon-based radicals, detected through the appearance of DMPO-R adducts, were produced either via O2 or by direct 1O2 attack on amino acid moieties. Thus photo-induced degradation of intact phycobilisomes in cyanobacteria occurs through a complex process with two independent routes leading to protein damage: one involving superoxide and the other singlet oxygen. This is in contrast to the mechanism found in plants, where damage to the light-harvesting complex proteins has been shown to be mediated entirely by 1O2 generation.  相似文献   

12.
Experiments on the specific growth rate, bleaching of pigments, O2 evolution, lipid peroxidation, and loss of sulfhydryl (-SH) content in response to the varying light intensities (2–28 W/m2) suggested that photodamage to the Spirulina cells was maximum at or beyond the photosynthesis saturating light intensity (12 W/m2). However, photobleaching of the chlorophyll a was relatively higher than carotenoid. The results on the N,N-dimethyl-p-nitrosoaniline (RNO) bleaching in the presence of oxygen radical quenchers exhibited maximum effect of sodium azide and indicated about the generation of singlet oxygen. The chlorophyll a-sensitized production of singlet oxygen by a type II reaction cannot be ruled out because of maximum oxidative damage to the cells at or beyond the photosynthesis saturating light intensity, i.e., 12 W/m2, when the availability of triplet chlorophyll is maximum.  相似文献   

13.
With the goal of mimicking the mechanisms of the biological effects of low energy laser irradiation, we have shown that infrared low intensity laser radiation causes oxygenation of the chemical traps of singlet oxygen dissolved in organic media and water saturated by air at normal atmospheric pressure. The photooxygenation rate was directly proportional to the oxygen concentration and strongly inhibited by the singlet oxygen quenchers. The maximum of the photooxygenation action spectrum coincided with the maximum of the oxygen absorption band at 1270 nm. The data provide unambiguous evidence that photooxygenation is determined by the reactive singlet 1g state formed as a result of direct laser excitation of molecular oxygen. Hence, activation of oxygen caused by its direct photoexcitation may occur in natural systems.  相似文献   

14.
The Photosystem I reaction centre protein CP1, isolated from barley using polyacrylamide gel electrophoresis showed an EPR (Electron Paramgnetic Resonance) spectrum with the polarisation pattern AEEAAE, typical of the primary donor triplet state 3P700, created via radical pair formation and recombination. 3P700 could also be detected by Fluorescence Detected Magnetic Resonance (FDMR) at f > 700 nm even in the presence of a large number of chlorophyll antennae. Its zero field splitting parameters, D=282.5×10-4 cm-1 and E=38.5×10-4 cm-1, were independent of the detection wavelength, and agreed with ADMR (Absorption Detected Magnetic Resonance) and EPR values. The signs of the 3P700 D+E and D-E transitions were positive (increase in fluorescence intensity on applying a resonance microwave field). In contrast, in the emission band 685 < f < 700 nm FDMR spectra with negative D+E and D-E transitions were detected, and the D value was wavelength-dependent. These FDMR results support an excitation energy transfer model for CP1, derived from time-resolved fluorescence studies, in which two chlorophyll antenna forms are distinguished, with fluorescence at 685 < f < 700 nm (inner core antennae, F690), and f > 700 nm (low energy antenna sites, F720), in addition to the P700. The FDMR spectrum in F690 emission can be interpreted as that of 3P700, observed via reverse singlet excitation energy transfer and added to the FDMR spectrum of the antenna triplet states generated via intramolecular intersystem crossing. This would indicate that reversible energy transfer between F690 and P700 occurs even at 4.2 K.Abbreviations Chl chlorophyll - CP1 core chlorophyll protein of Photosystem I - EPR electron paramagnetic resonance - F690, F720 chlorophyll forms having fluorescence maximum at 690–695 and 720 nm, respectively - F(A)(O)DMR fluorescence (absorption) (optical) detected magnetic resonance - FF fluorescence fading - ISC intramolecular intersystem crossing - f fluorescence emission wave-length - LHC I light harvesting chlorophyll a/b protein of Photosystem I - P700 primary donor of Photosystem I - PS I Photosystem I - RC reaction centre - RP radical pair - SDS sodium dodecyl sulphate - ZFS zero field splitting  相似文献   

15.
Both HA-CdS and HB-CdS (Hys-CdS, Hys represents HA, HB) complex systems were established according to the dynamics of heterogeneous electron-transfer process <0. In these systems, the electron transferring from 1Hys* to conduction band of CdS is feasible. Determined from the fluorescence quenching, the apparent association constants (Kapp) between Hypocrellin A (HA), Hypocrellin B (HB) and CdS sol. were about 940 (mol/L)-1, 934 (mol/L) -1 , respectively. Fluorescence lifetime measurements gave the rate constant for the electron transfer process from 1HA*, 1HB* into conduction band of CdS semiconductor as 5.16×109 s -1, 5.10×109 s -1, respectively. TEMPO (2,2,6,6-tetramethy-1-piperdinyloxy), a stable nitroxide radical, was used in the kinetic study of the reduction reaction taking place on the surface of a CdS colloidal semiconductor, kinetics equation of the reaction was determined with the electron paramagnetic resonance (EPR) method, and the reaction order of TEMPO is zero. When Hys were added, the rate of EPR increased greatly. By comparing rate constants, the Hys-CdS systems were revealed to be about 350 times more efficient than CdS sol. alone in the photoreduction of TEMPO under visible light. It suggests that Hys can be used as efficient sensitizers of a colloidal semiconductor in the application of solar energy.  相似文献   

16.
Lidocaine, a local anaesthetic, has been shown to reduce ventricular arrhythmias associated with myocardial infarction and ischemic myocardial injury and its protective effects has been attributed to its membrane stabilizing properties. Since oxygen radicals are known to be produced during ischemia induced tissue damage, we have investigated the possible antioxidant properties of lidocaine and found that lidocaine does not scavenge 02 · radicals at 1 to 20 mM concentrations. However, lidocaine was found to be a potent scavenger of hydroxyl radicals and singlet oxygen. Hydroxyl radicals were produced in a Fenton type reaction and detected as DMPO-OH adducts by electron paramagnetic resonance spectroscopic techniques. Lidocaine inhibited DMPO-OH adduct formation in a dose dependent manner. The amount of lidocaine needed to cause 50% inhibition of that rate was found to be approximately 80 M and at 300 M concentration it virtually eliminated the DMPO-OH adduct formation. The production of OH-dependent TBA reactive products of deoxyribose was also inhibited by lidocaine in a dose dependent manner. Lidocaine was also found to inhibit the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose dependent manner. 1O2 was produced in a photosensitizing system using Rose Bengal or Methylene Blue as photosensitizers and was detected as TEMP-1O2 adduct by EPR spectroscopy. The amount of lidocaine required to cause 50% inhibition of TEMP-1O2 adduct formation was found to be 500 M. These results suggest that the protective effect of lidocaine on myocardial injury may, in part, be due to its reactive oxygen scavenging properties. These results may also explain the membrane stabilizing actions of lidocaine by scavenging OH · and 1O2 that are implicated in membrane lipid peroxidation.  相似文献   

17.
Singlet oxygen generation is reported from (1) enzymatic reaction and (2) electron transfer reactions of the superoxide anion measured directly with an ultrasensitive near-IR emission spectrophotometer by monitoring the O2(1Δg) → O2 (3Σg?) transition at 1268 nm. Near-IR emission spectra from the myeloperoxidase and lactoperoxidase enzymatic systems show only emission of singlet oxygen at 1268nm. The lipoxygenase/Na–linoleate enzymatic reaction exhibits two emissions, 1268 nm and 1288 nm. The latter emission is identified as originating from a peroxy radical. Spectral and kinetic data giving evidence of singlet oxygen generation is obtained from the reaction of potassium superoxide solubilized by 18-crown-6-ether in acetonitrile with a series of organometallic coordination compounds.  相似文献   

18.
The mechanism ofStaphylococcus aureus inactivation by deuteroporphyrin (DT) and light was studied with singlet oxygen quenchers or hydroxyl radical scavengers. The light-activated DT (10 /ml) reduced the viability of the culture to less than 1%, whereas methionine, tryptophan, and 1,4-diazabicyclo-2,2,2-octane (DBCO) used as singlet oxygen quenchers provided almost 60% protection. Propylgallate, which is a hydroxyl free radical scavenger, also provided 60% protection. The presence of a singlet oxygen quencher and propylgallate provided almost complete protection from inactivation (96%). Photoinactivation in the absence of culture media (in saline) increased the killing rate and decreased the ability of the singlet oxygen quenchers to protect. In the same conditions damage from hydroxl free radicals was well protected by propyl gallate. The present results indicate thatS. aureus photoinactivation by DT and light is mediated by both singlet oxygen and hydroxyl free radicals.  相似文献   

19.
The hydroxyl radical (OH) has detrimental biological activity due to its very high reactivity. Our experiments were designed to determine the effects of equimolar concentrations of glucose, fructose and mannitol and three phosphorylated forms of fructose (fructose-1-phosphate (F1P); fructose-6-phosphate (F6P); and fructose-1,6-bis(phosphate) (F16BP)) on OH radical production via the Fenton reaction. EPR spectroscopy using spin-trap DEPMPO was applied to detect radical production. We found that the percentage inhibition of OH radical formation decreased in the order F16BP > F1P > F6P > fructose > mannitol = glucose. As ketoses can sequester redox-active iron thus preventing the Fenton reaction, the Haber-Weiss-like system was also employed to generate OH, so that the effect of iron sequestration could be distinguished from direct OH radical scavenging. In the latter system, the rank order of OH scavenging activity was F16BP > F1P > F6P > fructose = mannitol = glucose. Our results clearly demonstrate that intracellular phosphorylated forms of fructose have more scavenging properties than fructose or glucose, leading us to conclude that the acute administration of fructose could overcome the body’s reaction to exogenous antioxidants during appropriate therapy in certain pathophysiological conditions related to oxidative stress, such as sepsis, neurodegenerative diseases, atherosclerosis, malignancy, and some complications of pregnancy.  相似文献   

20.
The production of O2(a1Δg) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O2(a1Δg production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2–1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O2(a1Δg and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O2(a1Δg and the dynamics of its concentration. It is shown that, in the dynamics of O2(a1Δg molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O(3P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar: O2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a significant energy deposition in a non-self-sustained discharge in the mixtures under study can be achieved due to the high rate of electron detachment from negative ions. In this case, however, significant heating of the mixture can lead to a rapid quenching of O2(a1Δg molecules by atomic hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号