共查询到20条相似文献,搜索用时 15 毫秒
1.
Kehmeier ES Kropp M Kleinbongard P Lauer T Balzer J Merx MW Heusch G Kelm M Lepper W Rassaf T 《Free radical biology & medicine》2008,44(11):1945-1950
Nitrite plays an eminent role in cardiovascular physiology and pathology, mediating hypoxic vasodilation, reducing ischemia–reperfusion injury, and regulating cardiac energetics and function. The role of circulating nitrite in critically ill patients has not been examined so far. To investigate whether whole blood nitrite can be determined reproducibly in an intensive care setting, 30 patients from a cardiology intensive care unit were enrolled in this study, no matter what the underlying disease. Blood was drawn from an arterial catheter and whole blood nitrite was determined, using a tri-iodide/ozone-based chemiluminescence assay after incubation with a ferricyanide-containing stabilization solution. Whole blood nitrite levels ranged from 35 to 1193 nmol/L (mean ± SEM: 220 ± 20 nmol/L). Myocardial infarction was associated with lower whole blood nitrite levels (200 ± 53 nmol/L for elevated serum CK MB levels vs 432 ± 95 nmol/L in the normal CK MB range, p = 0.039). Neither impaired kidney function nor an inflammatory state was associated with higher or lower whole blood nitrite levels. In conclusion, whole blood nitrite can be measured easily and reproducibly in critically ill patients, regardless of renal function and inflammation. The origin of decreased nitrite levels in myocardial infarction is currently unclear and needs to be further elucidated. 相似文献
2.
Beyond an inert oxidation product of nitric oxide (NO) metabolism, current thinking posits a key role for nitrite as a mediator of NO signaling, especially during hypoxia. This concept has been discussed in the context of nitrite serving a role as an endogenous modulator of NO homeostasis, but also from a novel clinical perspective whereby nitrite therapy may replenish NO signaling and prevent ischemic tissue injury. Indeed, the relatively rapid translation of studies delineating mechanisms of action to ongoing and planned clinical trials has been critical in fuelling interest in nitrite biology, and several excellent reviews have been written on this topic. In this article we limit our discussions to current concepts and what we feel are questions that remain unanswered within the paradigm of nitrite being a mediator of NO biology. 相似文献
3.
4.
Nitrosothiols are increasingly regarded as important participants in a range of physiological processes, yet little is known about their biological generation. Nitrosothiols can be formed from the corresponding thiols by nitric oxide in a reaction that requires the presence of oxygen and is mediated by reactive intermediates (NO2 or N2O3) formed in the course of NO autoxidation. Because the autoxidation of NO is second order in NO, it is extremely slow at submicromolar NO concentrations, casting doubt on its physiological relevance. In this paper we present evidence that at submicromolar NO concentrations the aerobic nitrosation of glutathione does not involve NO autoxidation but a reaction that is first order in NO. We show that this reaction produces nitrosoglutathione efficiently in a reaction that is strongly stimulated by physiological concentrations of Mg2+. These observations suggest that direct aerobic nitrosation may represent a physiologically relevant pathway of nitrosothiol formation. 相似文献
5.
Extracellular superoxide dismutase (EC SOD) is generally the least abundant SOD isozyme in tissues, while the intracellular Cu,Zn SOD is usually the most abundant isozyme. The biological significance of EC SOD is unknown. Immunolocalization studies show that EC SOD is in the connective tissue surrounding smooth muscle in vessels and airways within the lung. Endothelium derived relaxing factor, thought to be a nitric oxide (NO·) species, is a primary mediator of vascular relaxation. During NO·′ diffusion between the endothelium and smooth muscle, extracellular superoxide would be the most efficient scavenger of NO·. High levels of extracellualar superoxide dismutase in vessels could, therefore, be essential to enable NO' to modulate vascular tone. To evaluate the hypothesis that vessel walls are functionally rich in extracellular superoxide scavenging capacity, this study quantitates the EC SOD levels in pulmonary and systemic vessels and in airways. Both pulmonary and systemic arteries in humans and baboons were found to contain high activities of EC SOD. The level of EC SOD in all human and baboon arteries examined is greater than or equal to the level of intracellular Cu,Zn SOD, and EC SOD accounted for over 70% of the total SOD activity in some vessels examined. Immunolocalization of EC SOD in human and baboon vessels show similar distributions of this enzyme in pulmonary and systemic vessels. EC SOD is located beneath the endothelium, surrounding smooth muscle cells, and throughout the adventitia of vessels. The high level of EC SOD in vessels, and its localization between endothelial and smooth muscle cells, suggest that regulation of superoxide may be particularly important in this region, possibly in regulating vascular tone. 相似文献
6.
Zahran ZN Chooback L Copeland DM West AH Richter-Addo GB 《Journal of inorganic biochemistry》2008,102(2):216-233
Nitrite is now recognized as a storage pool of bioactive nitric oxide (NO). Hemoglobin (Hb) and myoglobin (Mb) convert, under certain conditions, nitrite to NO. This newly discovered nitrite reductase activity of Hb and Mb provides an attractive alternative to mammalian NO synthesis from the NO synthase pathway that requires dioxygen. We recently reported the X-ray crystal structure of the nitrite adduct of ferric horse heart Mb, and showed that the nitrite ligand binds in an unprecedented O-binding (nitrito) mode to the d(5) ferric center in Mb(III)(ONO) [D.M. Copeland, A. Soares, A.H. West, G.B. Richter-Addo, J. Inorg. Biochem. 100 (2006) 1413-1425]. We also showed that the distal pocket in Mb allows for different conformations of the NO ligand (120 degrees and 144 degrees ) in Mb(II)NO depending on the mode of preparation of the compound. In this article, we report the crystal structures of the nitrite and NO adducts of manganese-substituted hh Mb (a d(4) system) and of the nitrite adduct of cobalt-substituted hh Mb (a d(6) system). We show that the distal His64 residue directs the nitrite ligand towards the rare nitrito O-binding mode in Mn(III)Mb and Co(III)Mb. We also report that the distal pocket residues allow a stabilization of an unprecendented bent MnNO moiety in Mn(II)MbNO. These crystal structural data, when combined with the data for the aquo, methanol, and azide MnMb derivatives, provide information on the role of distal pocket residues in the observed binding modes of nitrite and NO ligands to wild-type and metal-substituted Mb. 相似文献
7.
Mitochondrial nitric oxide synthase is constitutively active and is functionally upregulated in hypoxia 总被引:6,自引:0,他引:6
Zsombor Lacza Michelle Puskar Jorge P. Figueroa Jie Zhang Nishadi Rajapakse David W. Busija 《Free radical biology & medicine》2001,31(12):1609-1615
Nitric oxide is a potent modulator of mitochondrial respiration, ATP synthesis, and KATP channel activity. Recent studies show the presence of a potentionally new isoform of the nitric oxide synthase (NOS) enzyme in mitochondria, although doubts have emerged regarding the physiological relevance of mitochondrial NOS (mtNOS). The aim of the present study were to: (i) examine the existence and distribution of mtNOS in mouse tissues using three independent methods, (ii) characterize the cross-reaction of mtNOS with antibodies against the known isoforms of NOS, and (iii) investigate the effect of hypoxia on mtNOS activity. Nitric oxide synthase activity was measured in isolated brain and liver mitochondria using the arginine to citrulline conversion assay. Mitochondrial NOS activity in the brain was significantly higher than in the liver. The calmodulin inhibitor calmidazolium completely inhibited mtNOS activity. In animals previously subjected to hypoxia, mtNOS activity was significantly higher than in the normoxic controls. Antibodies against the endothelial (eNOS), but not the neuronal or inducible isoform of NOS, showed positive immunoblotting. Immunogold labeling of eNOS located the enzyme in the matrix and the inner membrane using electron microscopy. We conclude that mtNOS is a constitutively active eNOS-like isoform and is involved in altered mitochondrial regulation during hypoxia. 相似文献
8.
The role of the reactions of NO with superoxide and oxygen in biological systems: A kinetic approach
In this study we calculate the half-life of ·NO in its reactions with superoxide and with oxygen under various conditions using the known rate constants for these reactions. The measured half-life of ·NO in biological systems is 3–5 s, which agrees well with the calculated value for intracellular ·NO, but not for extracellular ·NO under normal physiological conditions. The autoxidation of ·NO to yield NO2 as a final product cannot be responsible for such a short measured half-life under normal as well as pathologic conditions. Therefore, if there is direct evidence for the occurrence of the reaction of ·NO with O2 in the medium, one has to assume that the steady state concentrations of free ·NO are much lower than those measured. The very low concentrations of free ·NO in biological systems may result from its reversible strong binding to biological molecules. Simulation of the mechanism of the autoxidation of ·NO indicates that the binding constants of ·NO to O2 or to another ·NO are too small to account for the very low concentration of free ·NO in biological systems. Nevertheless, the reaction of ·NO with oxygen cannot be neglected in biological systems if the intermediate ONOO· reacts rapidly with a biological target. The biological damage caused by ONOO′ is expected to be due to the radical itself and to peroxynitrite, which is most probably formed via the reaction of ONOO· with the biological molecule. 相似文献
9.
Montenegro MF Amaral JH Pinheiro LC Sakamoto EK Ferreira GC Reis RI Marçal DM Pereira RP Tanus-Santos JE 《Free radical biology & medicine》2011,51(1):144-152
Dietary nitrite and nitrate are important sources of nitric oxide (NO). However, the use of nitrite as an antihypertensive drug may be limited by increased oxidative stress associated with hypertension. We evaluated the antihypertensive effects of sodium nitrite given in drinking water for 4 weeks in two-kidney one-clip (2K1C) hypertensive rats and the effects induced by nitrite on NO bioavailability and oxidative stress. We found that, even under the increased oxidative stress conditions present in 2K1C hypertension, nitrite reduced systolic blood pressure in a dose-dependent manner. Whereas treatment with nitrite did not significantly change plasma nitrite concentrations in 2K1C rats, it increased plasma nitrate levels significantly. Surprisingly, nitrite treatment exerted antioxidant effects in both hypertensive and sham-normotensive control rats. A series of in vitro experiments was carried out to show that the antioxidant effects induced by nitrite do not involve direct antioxidant effects or xanthine oxidase activity inhibition. Conversely, nitrite decreased vascular NADPH oxidase activity. Taken together, our results show for the first time that nitrite has antihypertensive effects in 2K1C hypertensive rats, which may be due to its antioxidant properties resulting from vascular NADPH oxidase activity inhibition. 相似文献
10.
Thomas DD Ridnour LA Isenberg JS Flores-Santana W Switzer CH Donzelli S Hussain P Vecoli C Paolocci N Ambs S Colton CA Harris CC Roberts DD Wink DA 《Free radical biology & medicine》2008,45(1):18-31
Nitric oxide (NO) has earned the reputation of being a signaling mediator with many diverse and often opposing biological activities. The diversity in response to this simple diatomic molecule comes from the enormous variety of chemical reactions and biological properties associated with it. In the past few years, the importance of steady-state NO concentrations has emerged as a key determinant of its biological function. Precise cellular responses are differentially regulated by specific NO concentration. We propose five basic distinct concentration levels of NO activity: cGMP-mediated processes ([NO]<1-30 nM), Akt phosphorylation ([NO] = 30-100 nM), stabilization of HIF-1alpha ([NO] = 100-300 nM), phosphorylation of p53 ([NO]>400 nM), and nitrosative stress (1 microM). In general, lower NO concentrations promote cell survival and proliferation, whereas higher levels favor cell cycle arrest, apoptosis, and senescence. Free radical interactions will also influence NO signaling. One of the consequences of reactive oxygen species generation is to reduce NO concentrations. This antagonizes the signaling of nitric oxide and in some cases results in converting a cell-cycle arrest profile to a cell survival profile. The resulting reactive nitrogen species that are generated from these reactions can also have biological effects and increase oxidative and nitrosative stress responses. A number of factors determine the formation of NO and its concentration, such as diffusion, consumption, and substrate availability, which are referred to as kinetic determinants for molecular target interactions. These are the chemical and biochemical parameters that shape cellular responses to NO. Herein we discuss signal transduction and the chemical biology of NO in terms of the direct and indirect reactions. 相似文献
11.
Sasaki M Bharwani S Jordan P Elrod JW Grisham MB Jackson TH Lefer DJ Alexander JS 《Free radical biology & medicine》2003,35(12):1679-1687
Oral dextran sodium sulfate (DSS, 3%) produces experimental colitis with many features of human inflammatory bowel disease (IBD), (leukocyte extravasation, cachexia, and histopathology). Previous studies suggest that the inducible nitric oxide synthase (iNOS) in blood cells or in the endothelium contribute to this injury. However, until now no study has been performed to directly evaluate the role of endothelial nitric oxide synthase (eNOS) in IBD. We compared disease activity in wild-type (eNOS+/+) and eNOS-deficient (eNOS−/−) mice in the DSS model of colitis. Administration of DSS induced weight loss, stool blood, and overt histopathology in both mouse strains. Disease activity was dramatically increased in eNOS−/− mice compared to wild types. Histologically, eNOS-deficient mice had greater leukocyte infiltration, gut injury, and expressed higher levels of the mucosal addressin, MAdCAM-1. These results demonstrate that eNOS plays an important role in limiting injury to the intestine during experimental colitis and altered eNOS content and/or activity may contribute to human IBD. 相似文献
12.
Nitric oxide (NO) has a highly diverse range of biological functions from physiological signaling and maintenance of homeostasis to serving as an effector molecule in the immune system. However, deleterious as well as beneficial roles of NO have been reported. Many of the dichotomous effects of NO and derivative reactive nitrogen species (RNS) can be explained by invoking precise interactions with different targets as a result of concentration and temporal constraints. Endogenous concentrations of NO span five orders of magnitude, with levels near the high picomolar range typically occurring in short bursts as compared to sustained production of low micromolar levels of NO during immune response. This article provides an overview of the redox landscape as it relates to increasing NO concentrations, which incrementally govern physiological signaling, nitrosative signaling and nitrosative stress-related signaling. Physiological signaling by NO primarily occurs upon interaction with the heme protein soluble guanylyl cyclase. As NO concentrations rise, interactions with nonheme iron complexes as well as indirect modification of thiols can stimulate additional signaling processes. At the highest levels of NO, production of a broader range of RNS, which subsequently interact with more diverse targets, can lead to chemical stress. However, even under such conditions, there is evidence that stress-related signaling mechanisms are triggered to protect cells or even resolve the stress. This review therefore also addresses the fundamental reactions and kinetics that initiate signaling through NO-dependent pathways, including processes that lead to interconversion of RNS and interactions with molecular targets. 相似文献
13.
The green synthesis and characterization of silver nanoparticles (AgNPs) derived from plants impart ecological and economic benefits to AgNPs. In addition, AgNPs have potential therapeutic roles in cytoprotectivity and anti-inflammation. The present work utilizes the aqueous extract of Phyllanthus acidus fruits for the production of AgNPs from aqueous silver nitrate solution. The synthesized AgNPs were characterized spectrophotometrically Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy and transmission electron microscopy analysis. The characterized AgNPs showed potent anti-inflammatory activity by scavenging nitric oxide and superoxide anions. In addition, blunting of the expression of pro-inflammatory cytokine interleukin 1 beta (IL-1β) assayed both by ELISA and Western blot, using H2O2 – induced inflammation in rat peritoneal macrophages. Furthermore, short-term exposure to P. acidus-mediated green-synthesized AgNPs did not affect the viability of peritoneal macrophages, as assessed by MTT assay. Our findings indicate that P. acidus-mediated green-synthesized AgNPs could be a potential therapeutics to treat inflammatory diseases. 相似文献
14.
Free radicals are essential for the vasopressin (AVP) response to plasmatic hyperosmolarity. Noradrenergic afferents are the major projections on the supraoptic nucleus (SON) of the hypothalamus and stimulate the expression of AVP via a nitric oxide (NO) pathway. In this study, we investigated the mechanisms linking free radicals and noradrenaline (NA)-induced regulation of AVP. Analysis of Tg8 transgenic mice, invalidated for the monoamine oxidase-A gene and with consequently high levels of brain monoamines and AVP in the SON, showed that free radicals are more abundant in their SON than in that of wild-type mice (WT). Antioxidant superoxide dismutase 1 and 2 and catalase enzyme activities were also higher in these mice than in WT. This may explain the observed absence of cytotoxicity that would otherwise be associated with such high level of free radicals. Treatment of Tg8 mice with α-MPT, a blocking agent for NA synthesis, decreased both the production of free radicals and the AVP levels in the SON. Furthermore, incubation of ex vivo slices including the SON with NA increased the production of free radicals and AVP levels in wild-type mice. When NA was associated with α-lipoic acid, an antioxidant blocking the production of free radicals, AVP remained at its control level, indicating that free radicals are required for the effect of NA on the expression of AVP. In slices incubated with SNP, a producer of NO, free radicals and AVP levels increased. When NA was associated with L-NAME (a NO synthase blocker), the levels of free radicals and AVP were the same as in controls. Thus, the noradrenaline–NO pathway, which stimulates the expression of vasopressin, involves free radicals. This study provides further evidence of the physiological importance of free radicals, which should no longer be considered solely as cytotoxic factors. 相似文献
15.
I El Menyawi S Looareesuwan S Knapp F Thalhammer B Stoiser H Burgmann 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1998,706(2):2373
Previous studies have reported increased serum concentrations of nitrite/nitrate – the degradation products of nitric oxide – in Plasmodium vivax malaria and uncomplicated Plasmodium falciparum malaria. In all these studies, however, nitrite/nitrate has been measured spectrometrically using Griess reagent which carries major disadvantages in the determination of serum nitrite/nitrate. The method does not allow an exact differentiation of nitrite and biogenic amines that are physiologically present in plasma. In the present study we introduce high-performance liquid chromatography as a new, accurate and cost effective method for determination of serum nitrite/nitrate levels. Significantly increased nitrate concentrations were found in malaria patients and serum values remained above normal levels for at least 21 days. It could be shown that our HPLC method is a sensitive and cost-effective method for direct determination of nitrite/nitrate in serum samples, which is not influenced by the presence of biogenic amines. 相似文献
16.
The rate that hemoglobin reacts with nitric oxide (NO) is limited by how fast NO can diffuse into the heme pocket. The reaction is as fast as any ligand/protein reaction can be and the result, when hemoglobin is in its oxygenated form, is formation of nitrate in what is known as the dioxygenation reaction. As nitrate, at the concentrations made through the dioxygenation reaction, is biologically inert, the only role hemoglobin was once thought to play in NO signaling was to inhibit it. However, there are now several mechanisms that have been discovered by which hemoglobin may preserve, control, and even create NO activity. These mechanisms involve compartmentalization of reacting species and conversion of NO from or into other species such as nitrosothiols or nitrite which could transport NO activity. Despite the tremendous amount of work devoted to this field, major questions concerning precise mechanisms of NO activity preservation as well as if and how Hb creates NO activity remain unanswered. 相似文献
17.
一氧化氮的功能及其作用机制(Ⅰ)——性质与功能 总被引:1,自引:0,他引:1
一氧化氮(nitric oxide,NO)是第一个被发现的参与细胞信号转导的气体信号分子。NO参与的生命活动非常广泛,在神经、免疫、呼吸等系统中发挥着重要作用。很久以来,一氧化氮合酶(nitric oxide synthase,NOS)被认为是人体内合成NO的主要途径,其活性受到严格的调控。直到最近,人们才发现亚硝酸盐(nitrite,NO2-)也可以参与体内NO的合成。本综述总结NO的相关性质与功能,并简介亚硝酸盐的研究进展。 相似文献
18.
Marcelo Nicolás Muscará Gilberto de Nucci 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1996,686(2):8245
A high-performance liquid chromatographic method for the determination of nitrite and nitrate anions derived from nitric oxide in biological fluids is presented. After separation on a strong anion-exchange column (Spherisorb SAX, 250×4.6 mm I.D., 5 μm), two on-line post-column reactions occur. The first involves nitrate reduction to nitrite on a copper-plated cadmium-filled column. In the second, the diazotization-coupling reaction between nitrite and the Griess reagent (0.05% naphtylethylendiamine dihydrochloride plus 0.5% sulphanilamide in 5% phosphoric acid) takes place, and the absorbance of the chromophore is read at 540 nm. This methodology was applied to biological fluids. Before injection into the chromatographic system, the samples were diluted and submitted to suitable clean-up procedures (urine and cell culture supernatant samples are passed through C18 cartridges, and serum samples were deproteinized by ultrafiltration through membranes with a molecular mass cut-off of 3000). The method has a sensitivity of 30 pmol for both anions, as little as 0.05–0.1 ml sample volume is required and linearity is observed up to 60 nmol for each anion. 相似文献
19.
The nitric oxide–cyclic GMP (NO–cGMP) pathway mediates important physiological functions associated with various integrative body systems including the cardiovascular and nervous systems. Furthermore, NO regulates cell growth, survival, apoptosis, proliferation, and differentiation at the cellular level. To understand the significance of the NO–cGMP pathway in development and differentiation, studies have been conducted both in developing embryos and in stem cells. Manipulation of the NO–cGMP pathway, by employing activators and inhibitors as pharmacological probes, and genetic manipulation of NO signaling components have implicated the involvement of this pathway in the regulation of stem cell differentiation. This review focuses on some of the work pertaining to the role of NO–cGMP in the differentiation of stem cells into cells of various lineages, particularly into myocardial cells, and in stem cell-based therapy. 相似文献
20.
Masaoka T Suzuki H Hosoda H Ota T Minegishi Y Nagata H Kangawa K Ishii H 《FEBS letters》2003,550(1-3):64-68
Human saliva, which contains nitrite, is normally mixed with gastric juice, which contains ascorbic acid (AA). When saliva was mixed with an acidic buffer in the presence of 0.1 mM AA, rapid nitric oxide formation and oxygen uptake were observed. The oxygen uptake was due to the oxidation of nitric oxide, which was formed by AA-dependent reduction of nitrite under acidic conditions, by molecular oxygen. A salivary component SCN− enhanced the nitric oxide formation and oxygen uptake by the AA/nitrite system. The oxygen uptake by the AA/nitrite/SCN− system was also observed in an acidic buffer solution. These results suggest that oxygen is normally taken up in the stomach when saliva and gastric juice are mixed. 相似文献